請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84258完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆(Fei-Pei Lai) | |
| dc.contributor.author | Ji-Han Liu | en |
| dc.contributor.author | 劉季涵 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:07:15Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-21 | |
| dc.identifier.citation | 1. Ministry of Health and Welfare of R.O.C. “Statistics on the cause of death of Chinese in 2020”, 2021. https://www.mohw.gov.tw/cp-5017-61533-1.html (2021.6.30 visited) 2. Ministry of Health and Welfare of R.O.C. “To stay away from metabolic syndrome, start with waist measurement”, https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1253&pid=7562 (2019.9.30 visited) 3. World Health Organization. “Global Report on Diabetes”, 2016. https://www.who.int/publications/i/item/9789241565257 (2018.12.31 visited) 4. Shishvan OR, Zois DS, Soyata T. Machine Intelligence in Healthcare and Medical Cyber Physical Systems: A Survey. IEEE Access. 2018; 6: 46419–46494. 5. Fan JG, Kim SU, Wong VWS. New Trends on Obesity and NAFLD in Asia. Journal of hepatology. 2017; 67(4): 862–873. 6. Rinella M, Charlton M. The globalization of nonalcoholic fatty liver disease: prevalence and impact on world health. Journal of hepatology. 2016; 64(1): 19-22. [doi:10.1002/hep.28524] 7. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Journal of hepatology. 2018; 67(1): 123–133. [doi:10.1002/hep.29466] 8. World Health Organization. “World Hypertension Day 2019”, 2019. https://www.who.int/news-room/events/world-hypertension-day-2019 (2019.12.31 visited) 9. American Heart Association. “Diabetes Risk Factors”, 2018. https://www.heart.org/en/health-topics/diabetes/understand-your-risk-for-diabetes (2022.5.30 visited) 10. World Health Organization. “Hypertension”, 2019. https://www.who.int/news-room/fact-sheets/detail/hypertension (2022.5.30 visited) 11. National Centers for Disease Control and Prevention. “Knowing your risk for high cholesterol”, https://www.cdc.gov/cholesterol/risk_factors.htm (2022.5.30 visited) 12. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Canadian Journal of Cardiology, 34(5), 575-584, 2018. [doi: 10.1016/j.cjca.2017.12.005] 13. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, GBD-NHLBI-JACC. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982-3021, 2020. [doi: 10.1016/j.jacc.2020.11.010] 14. Lai HH. Bivariate Events of Natural Course of Chronic Diseases: An Illustration with Hypertension and Diabetes Mellitus. Master Thesis of National Taiwan University. 2006. 15. Chin FY. The Associations between Areca Quid Chewing, Cigarette Smoking and Oral Health and Chronic Disease. Master Thesis of Kaohsiung Medical University. 2003. 16. Khanam JJ, and Foo SY. A comparison of machine learning algorithms for diabetes prediction. ICT Express, 7(4), 432-439, Elsevier, 2021. [doi:10.1016/j.icte.2021.02.004] 17. Jamali R, Arj A, Razavizade M, Aarabi MH. Prediction of Nonalcoholic Fatty Liver Disease Via A Novel Panel of Serum Adipokines, Medicine, volume:95, number:5, Wolters Kluwer Health, 2016. [doi: 10.1097/MD.0000000000002630] 18. Wu CC, Yeh WC, Hsu WD, Islam MM, Nguyen PAA, Poly TN. Prediction of Fatty Liver Disease Using Machine Learning Algorithms, Computer methods and programs in biomedicine, volume:170, pages:23–29, Elsevier, 2019. [doi: 10.1016/j.cmpb.2018.12.032] 19. Mostafa F, Hasan E, Williamson M, Khan H. Statistical Machine Learning Approaches to Liver Disease Prediction. Livers, volume: 1, number:4, pages:294-312, MDPI, 2021. [doi: 10.3390/livers1040023] 20. Islam MM, Wu CC, Poly TN, Yang HC, Li YCJ. Applications of Machine Learning in Fatty Live Disease Prediction, Machine learning, booktitle:MIE, pages:166–170, 2018. [doi: 10.3233/978-1-61499-852-5-166] 21. Ma H, Xu CF, Shen Z, Yu CH, Li YM. Application of Machine Learning Techniques for Clinical Predictive Modeling: A Cross- Sectional Study on Nonalcoholic Fatty Liver Disease in China, BioMed research international, Hindawi, 2018. [doi: 10.1155/2018/4304376] 22. Hosseini-Esfahani F, Alafchi B, Cheraghi Z, Doosti-Irani A, Mirmiran P, Khalili D, Azizi F. Using Machine Learning Techniques to Predict Factors Contributing to the Incidence of Metabolic Syndrome in Tehran: Cohort Study, volume:7, number:9, e27304, JMIR Public Health Surveillance, 2021. [doi: 10.2196/27304] 23. Du Z, Yang Y, Zheng J, Li Q, Lin D, Li Y, Fan J, Cheng W, Chen X, Cai Y. Accurate Prediction of Coronary Heart Disease for Patients with Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation, volume:8, number:7, e17257, JMIR Med Inform, 2020. [doi: 10.2196/17257] 24. Wshah S, Skalka C, Price M. Predicting Posttraumatic Stress Disorder Risk: A Machine Learning Approach, volume:6, number:7, e13946, JMIR Mental Health, 2019. [doi: 10.2196/13946] 25. Zhang, Y., Zhou, Y., Zhang, D., & Song, W. (2019). A stroke risk detection: improving hybrid feature selection method. Journal of medical Internet research, 21(4), e12437. 26. Tian Y, Zhang X, Wang C, Jin Y. An Evolutionary Algorithm for Large-Scale Sparse MultiObjective Optimization Problems, IEEE Transactions on Evolutionary Computation, IEEE, 2019. [doi: 10.1109/TEVC.2019.2918140] 27. Juha R. Overfitting in Making Comparisons Between Variable Selection Methods, Journal of Machine Learning Research, volume:3, number:Mar, pages:1371–1382, 2003. 28. Turk, M. A. and Pentland, A. P. 1991. Face Recognition Using Eigenfaces, IEEE Conference on Computer Vision and Pattern Recognition, 586-591. 29. Liu, JH, Wu, CT, Chu, TW, Jang, JS. Data-driven Feature Selection for Long Longitudinal Breadth and High Dimensional Dataset: Empirical Studies of Metabolic Syndrome Prediction. International Conference on Machine Learning and Computing (ICMLC). 2020; 208–212. 30. Martinez AM, Kak AC. PCA versus LDA. IEEE transactions on pattern analysis and machine intelligence. 2001; 23(2): 228-233. 31. Borade SN, Adgaonkar RP. Comparative analysis of PCA and LDA. International Conference on Business, Engineering and Industrial Applications. 2011; 203-206. 32. Yang WY, Zhang H, Li MX, Lai FN. Research on Improved PCA Face Recognition Algorithm. DEStech Transactions on Engineering and Technology Research. 2019. 33. Marcialis GL, Roli F. Fusion of LDA and PCA for Face Verification. International Workshop on Biometric Authentication. 2002; 30-37. 34. Ferizal R, Wibirama S, Setiawan NA. Gender recognition using PCA and LDA with improve preprocessing and classification technique. 7th International annual engineering seminar (InAES). 2017; 1-6. 35. Varma S, Shinde M, Chavan SS. Analysis of PCA and LDA Features for Facial Expression Recognition Using SVM and HMM Classifiers. Techno-Societal. 2020; 109-119. 36. Zhang D, Xiong A, Zhao X, Han J. PCA and LDA for EMG-based control of bionic mechanical hand. IEEE International Conference on Information and Automation. 2012; 960-965. 37. Li R, Zhao Y, Zhang X, Cao Y, Chen X. Banknote Infrared Characteristics Discrimination Based on PCA and LDA. International Conference on Artificial Intelligence and Security. 2020; 493-502. 38. Davagdorj, K., Yu, S. H., Kim, S. Y., Huy, P. V., Park, J. H., and Ryu, K. H. 2019. Prediction of 6 Months Smoking Cessation Program among Women in Korea. International Journal of Machine Learning and Computing 9 (1): 83-90. 39. Park, H. W., Batbaatar, E., Li, D., and Ryu, K. H. 2016. Risk factors rule mining in hypertension: Korean National Health and Nutrient Examinations Survey 2007-2014, IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 1-4. 40. Park, K. H., Ishag, M. I. M., Ryu, K. S., Li, M., and Ryu, K. H. 2018. Efficient ensemble methods for classification on clear cell renal cell carcinoma clinical dataset. In Proceedings of Asian Conference on Intelligent Information and Database Systems, 235-242.: Springer. 41. Whitney AW. A Direct Method of Nonparametric Measurement Selection, IEEE Transactions on Computers, volume:100, number:9, pages:1100–1103, IEEE, 1971. [doi: 10.1109/T-C.1971.223410] 42. Ye, C., Fu, T., Hao, S., Zhang, Y., Wang, O., Jin, B., Ling, X. Prediction of incident hypertension within the next year: prospective study using statewide electronic health records and machine learning. J Med Internet Res,20(1), e22, 2018.[doi: 10.2196/jmir.9268] 43. AlKaabi, L. A., Ahmed, L. S., Al Attiyah, M. F., & Abdel-Rahman, M. E. Predicting hypertension using machine learning: Findings from Qatar Biobank Study. Plos one, 15(10), e0240370, 2020. [doi:10.1371/journal.pone.0240370] 44. Heo, B. M., & Ryu, K. H. Prediction of pre-hypertension and hypertension based on anthropometry, blood parameters, and spirometry. International journal of environmental research and public health, 15(11), 2571, MDPI, 2018. [doi:10.3390/ijerph15112571] 45. Olah, C. “Understanding LSTM Networks”, 2015. https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (2018.12.31 visited) 46. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computer 1997 Nov 15;9(8):1735-1780. [doi: 10.1162/neco.1997.9.8.1735] 47. Schuster M, Paliwal K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process 1997;45(11):2673-2681. [doi: 10.1109/78.650093] 48. Said AB, Erradi A, Aly HA, Mohamed A. Predicting COVID-19 cases using bidirectional LSTM on multivariate time series. Environ Sci Pollut Res Int. 2021 Oct;28(40):56043-56052. [doi: 10.1007/s11356-021-14286-7] 49. Graves A, Schmidhuber J. Bidirectional Recurrent Neural Networks, IEEE Transactions on Signal Processing, volume:45, pages:2673-2681, IEEE, 1997. [doi: 10.1016/j.neunet.2005.06.042] 50. Dyer C, Ballesteros M, Ling W, Matthews A, Noah A. Transition-based dependency parsing with stack long short-term memory, Proceedings of ACL, 2015. https://arxiv.org/abs/1505.08075 (2015.5.29 visited) 51. Kim DY, Lee SH, Jeong GM. Stack LSTM-Based User Identification Using Smart Shoes with Accelerometer Data. Sensors (Basel). 2021 Dec 5;21(23):8129. [doi: 10.3390/s21238129] 52. Cai L, Zhou S, Yan X, Yuan R. A Stacked BiLSTM Neural Network Based on Coattention Mechanism for Question Answering. Computational Intelligence and Neuroscience; 2019. [doi: 10.1155/2019/9543490] 53. Song H, Rajan D, Thiagarajan J, Spanias A. Attend and diagnose: clinical time series analysis using attention models. 2018 Presented at: Thirty-Second AAAI Conference on Artificial Intelligence; February 2-7, 2018; New Orleans, LA 54. Singh, JP, Kumar, A, Rana, NP. Attention-Based LSTM Network for Rumor Veracity Estimation of Tweets. Information Systems Frontiers. 12(8), 2020. [doi: 10.1007/s10796-020-10040-5] 55. Akhunzada I, Malik A, Iqbal J, Musaddiq J, Kim A, Sung. A Dynamic DL-Driven Architecture to Combat Sophisticated Android Malware. PP. 1, IEEE Access, 2020. [do: 10.1109/ACCESS.2020.3009819] 56. Yang, S., Yu, X., & Zhou, Y. LSTM and GRU neural network performance comparison study: Taking yelp review dataset as an example. In 2020 International workshop on electronic communication and artificial intelligence (IWECAI) 98-101). IEEE, 2020. [doi:10.1109/IWECAI50956.2020.00027] 57. Kim MH, Kim JH, Lee K, Gim GY. The Prediction of COVID-19 Using LSTM Algorithms, International Journal of Networked and Distributed Computing, Atlantis Press, 2021. [doi: 10.2991/ijndc.k.201218.003] 58. Zhang N, Shen SL, Zhou A, Jin YF. Application of LSTM approach for modelling stress–strain behavior of soil, Journal of Applied Soft Computing, Elsevier, volume:100, pages:106959, 2021. [doi: 10.1016/j.asoc.2020.106959] 59. Sunny MAI, Maswood MMS, Alharbi AG. Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Model, IEEE, In 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pages:87-92, 2020. [doi: 10.1109/NILES50944.2020.9257950] 60. Wang G, Li Z, Li G, Dai G, Xiao Q, Bai L, Bai S. Real-time liver tracking algorithm based on LSTM and SVR networks for use in surface-guided radiation therapy, Journal of Radiation Oncology, BioMed Central, 16(1), 1-12, 2021. [doi: 10.1186/s13014-020-01729-7] 61. Angulo P. Nonalcoholic Fatty Liver Disease. New England Journal of Medicine. 346 (16): 1221–1231, 2002. [doi:10.1056/NEJMra011775] 62. Bayard M, Holt J, Boroughs E. Nonalcoholic fatty liver disease. American Family Physician. 73 (11): 1961–8, 2006. 63. O'Brien E, Beevers DG, Lip GY. ABC of hypertension. London: BMJ Books, 2007. ISBN 978-1-4051-3061-5. 64. Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D'Agostino RB, Levy D. Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study. JAMA. 287 (8): 1003–1010, 2002. [doi:10.1001/jama.287.8.1003] 65. Carrera-Bastos P, Fontes-Villalba M, O'Keefe JH, Lindeberg S, Cordain L. The western diet and lifestyle and diseases of civilization. Research Reports in Clinical Cardiology. 2: 15–35, 2021. [doi:10.2147/RRCC.S16919] 66. Grossman E, Messerli FH. Drug-induced hypertension: an unappreciated cause of secondary hypertension. The American Journal of Medicine. 125 (1): 14–22, 2012. [doi:10.1016/j.amjmed.2011.05.024] 67. Meng L, Chen D, Yang Y, Zheng Y, Hui R. Depression increases the risk of hypertension incidence: a meta-analysis of prospective cohort studies. Journal of Hypertension. 30 (5): 842–851, 2012. [doi:10.1097/hjh.0b013e32835080b7] | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84258 | - |
| dc.description.abstract | 本研究旨在根據所提出的基於特徵向量的自動特徵選擇方法(Eigenvector- based Feature Selections, EFSs),來實現滿足專家觀點的輸入特徵子集的快速優化,以提高例如脂肪肝 (Fatty Liver Disease, FLD) 與高血壓 (Hypertension)等慢性或代謝疾病基於機器或深度學習進行早期預測模型的效能,並據此為單一或多種具有共病性或併發症因子的慢性或代謝疾病,就治療或生活方式改變提供簡單可行之建議。 在實驗中,針對脂肪肝及高血壓的預測與防治為例,我們分別探索來自台灣北部的健檢中心的大規模且高維度數據集(包括從1999到2017年約50萬筆記錄)。進行資料前處理及清理後,以所提出的三種植基於特徵向量的自動特徵選擇方法(即EFS-TW、EFS-TRW及EFS-RW)、聯合交集 (Intersection of Union, IoU) 和覆蓋率 (coverage) 最高值來確定包含單一疾病病因的最佳特徵子集,並使用各種與長短期記憶 (LSTM) 相關的分類器進行此種單一疾病預測及評估模型與系統性能。實驗結果顯示,針對脂肪肝及高血壓的預測與防治,EFS-TW及EFS-RW分別可選出對應最佳的特徵子集且耗費最短的總計算時間,且相比之下,最高的IoU、覆蓋率和計算時間都優於講求精確卻耗時的序列前向特徵選擇 (Sequence Forward Feature Selection, SFS)。 此外,從預防醫學的角度來看,早期預測並從眾多致病因素中選擇關鍵因素來制定簡單易行的預防計劃是有必要的,因此,本研究進一步提出了模式匹配和概率樹(Pattern Matching and Probability Tree, PMPT)方法,用於根據此潛在的高血壓患者和數據集內與他具有相同致病特徵與模式的罹病者的統計值,來預測他未來基於排名前n個特徵的罹病概率與擬訂醫療或生活型態的防治計畫,使其易於遵循、預防高血壓等慢性和代謝疾病的發生,且有助於醫院的家庭醫學科或健檢中心達成疾病早期預防、精準醫療、決策輔助及健康管理等目的。 | zh_TW |
| dc.description.abstract | This study aims to achieve rapid and automatic optimization of input feature subsets that satisfy expert’ domain knowledge based on the proposed Eigenvector-based Feature Selections (EFSs) to improve the performance of early prediction models based on machine or deep learning for chronic or metabolic diseases, such as fatty liver disease (FLD) and hypertension, and accordingly provide simple and feasible suggestions for the treatment or lifestyle changes of single or multiple types of chronic or metabolic diseases with the comorbidity or the complication factors. In the experiment, for the prediction and prevention of FLD and hypertension, we separately explored a large-scale and high-dimensional dataset including around 500,000 records from 1999 to 2017 from a health examination center in Taipei. After data preprocessing and cleaning, we obtained the optimal feature subset by using the proposed EFSs (That is, EFS-TW, EFS-TRW, and EFS-RW) and the best intersection of union (IoU) and coverage, and then we used Long Short-Term Memory (LSTM)-related classifiers for FLD and hypertension prediction and model performance evaluation. Experimental results show that the optimal feature subset selected by EFS-TW for FLD prediction and EFS-RW for hypertension prediction have the highest IoU and coverage, and the corresponding feature selections consume the far shorter total computation time than that of Sequence Forward Feature Selection (SFS). From the perspective of preventive medicine, it is necessary to develop a simple and easy-to-follow prevention plan by early prediction and selection of the key risk factors. Accordingly, we further propose a pattern matching and probability tree (PMPT) method, based on the statistics of diagnosed and non-diagnosed hypertension patients with the same pathogenic features, trends and patterns in the data set as the potential patient, to predict the probability based on each of the top n features in the future and formulate the prevention plan in medical arrangement or life style change. The proposed method makes the prevention and treatment plan easy to follow, prevents the occurrence of chronic and metabolic diseases, and helps the family medicine department of the hospital or health examination center to achieve the purposes of early disease prevention, precision medicine, decision-making support and health management. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:07:15Z (GMT). No. of bitstreams: 1 U0001-1806202210263300.pdf: 2713146 bytes, checksum: 2c51425ecaf5f82255a6d111e8f615a8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xii Chapter 1. Introduction 1 1.1 Background 1 1.1.1 Top Ten Causes of Death and Common Chronic Diseases in Taiwan 1 1.1.2 Concept and Progression of Fatty Liver Disease 4 1.1.3 Concept and Progression of Hypertension 10 1.1.4 Common Risk Factors and Comorbidity of Chronic and Metabolic Diseases 12 1.2 Related work 14 1.2.1 Literature Review 14 1.2.2 Commonly Used Algorithms for Dimensionality Reductions 14 1.2.3 Commonly Used Feature Selections 15 1.2.4 Applications of LSTM-Related Classifiers 18 Chapter 2. Methods 26 2.1 Flowchart 26 2.2 Data Preprocessing and Cleaning 27 2.3 Features Suggested by Medical Experts 28 2.4 Automatic Eigenvector-based Feature Selections (EFSs) 32 2.4.1 Eigenvector-based Feature Selection with Features Determined by Threshold and Sliding Window (EFS-TW) 34 2.4.2 Eigenvector-based Feature Selection with Features Determined by Threshold, Ranking and Sliding Window (EFS-TRW) 39 2.4.3 Eigenvector-based Feature Selection with Features Determined by Ranking and Sliding Window (EFS-RW) 39 2.5 Model Training and Evaluation 40 2.6 Prediction Recommendation of Treatment or Lifestyle Change 42 2.7 Dataset Used in the Study 47 Chapter 3. Results 52 3.1 Case 1: FLD Prediction for Next Visit 52 3.1.1 Environment and Specification 52 3.1.2 Data Preprocessing and Cleaning 52 3.1.3 Feature Sets Derived and Measurement 53 3.1.4 Performance of Various Classifiers 57 3.1.5 Recommendation 60 3.2 Case 2: Hypertension Prediction for Next Visit 62 3.2.1 Environment and Specification 62 3.2.2 Data Preprocessing and Cleaning 62 3.2.3 Feature Sets Derived and Measurement 63 3.2.4 Performance of Various Classifiers 66 3.2.5 Recommendation 67 Chapter 4. Discussion 73 4.1 Limitations 73 4.2 Efficient and Rapid Feature Selections 73 4.3 High-performance Prediction of Diseases 77 4.4 Recommendation and Comorbidity/Complications-based Perspective 79 4.5 Conclusions and Future Work 83 Acknowledgments 85 Bibliography 86 Abbreviations 95 Appendix 96 | |
| dc.language.iso | en | |
| dc.subject | 序列前向特徵選擇 | zh_TW |
| dc.subject | 模式匹配和概率樹 | zh_TW |
| dc.subject | 高血壓 | zh_TW |
| dc.subject | 自動化特徵選取方法 | zh_TW |
| dc.subject | 長短期記憶 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 預測 | zh_TW |
| dc.subject | 共病性 | zh_TW |
| dc.subject | 併發症 | zh_TW |
| dc.subject | 精準醫療 | zh_TW |
| dc.subject | 決策輔助 | zh_TW |
| dc.subject | 脂肪肝疾病 | zh_TW |
| dc.subject | 健康管理 | zh_TW |
| dc.subject | health management | en |
| dc.subject | machine learning | en |
| dc.subject | deep learning | en |
| dc.subject | automatic feature selections | en |
| dc.subject | pattern matching and probability trees | en |
| dc.subject | sequence forward selection | en |
| dc.subject | fatty liver diseases | en |
| dc.subject | hypertension | en |
| dc.subject | prediction | en |
| dc.subject | long short-term memory | en |
| dc.subject | comorbidities | en |
| dc.subject | complications | en |
| dc.subject | precision medicine | en |
| dc.subject | decision-making auxiliary | en |
| dc.title | 具有自動化特徵選取方法之機器/深度學習型慢性與代謝疾病早期預測及其病因防治系統 | zh_TW |
| dc.title | Machine/Deep Learning-Based Chronic and Metabolic Diseases Early Prediction and Risk Factors Prevention System with Automatic Feature Selections | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳朝欽(Charu-Chin Chen),黃國晉(Kuo-Chin Huang),趙坤茂(Kun-Mao Chao),汪大暉(Ta-hui Wang),朱學亭(Hsueh-Ting Chu),吳經閔(Jīn-Ming Wu),張孟洲(Meng-Chou Chang) | |
| dc.subject.keyword | 機器學習,深度學習,自動化特徵選取方法,模式匹配和概率樹,序列前向特徵選擇,脂肪肝疾病,高血壓,長短期記憶,預測,共病性,併發症,精準醫療,決策輔助,健康管理, | zh_TW |
| dc.subject.keyword | machine learning,deep learning,automatic feature selections,pattern matching and probability trees,sequence forward selection,fatty liver diseases,hypertension,prediction,long short-term memory,comorbidities,complications,precision medicine,decision-making auxiliary,health management, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU202200994 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-06-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1806202210263300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
