請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84233完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪茂蔚(Mao-Wei Hung) | |
| dc.contributor.author | YI-JU LIN | en |
| dc.contributor.author | 林怡汝 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:06:46Z | - |
| dc.date.copyright | 2022-07-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-24 | |
| dc.identifier.citation | 中文參考資料 1. 丁世飞, 齐丙娟, & 谭红艳. (2011). 支持向量机理论与算法研究综述. 电子科技大学学报, 40(1), 2-10. 2. 吳宗晏. (2020). 應用機器學習技術於股價預測之研究 輔仁大學. 新北市. 3. 张学工. (2000). 关于统计学习理论与支持向量机. 自动化学报, 26(1), 32-42. 4. 李孟潔. (2020). 以隨機森林演算法及極限梯度提升法分析台灣五十之交易策略 國立高雄科技大學. 高雄市. 5. 杨善林, & 倪志伟. (2004). 机器学习与智能决策支持系统. Ke xue chu ban she. 6. 林依萱. (2013). 應用K-means及支援向量機於股價漲跌趨勢預測之研究 元智大學. 桃園縣. 7. 林逸青. (2019). 以深度學習建構股價預測模型:以台灣股票市場為例 國立臺中科技大學. 台中市. 8. 胡如云, 张嵩亚, 蒙海林, 余函, 张建志, 罗小舟, 司同, 刘陈立, & 乔宇. (2021). 面向合成生物学的机器学习方法及应用. 科学通报, 66(3), 284-299. 9. 胡芯瑜. (2021). 應用機器學習於股價漲跌預測 中原大學. 桃園縣. 10. 徐仕旻. (2019). 極限梯度提升在不動產價格之預測效果研究 國立清華大學. 新竹市. 11. 陳同力. (2019). 運用機器學習預測台股股價走勢 國立臺灣大學. 台北市. 12. 陳志龍. (2006). 運用類神經網路與技術指標預測股票型基金漲跌及交易時機之研究-以臺灣50指數股票型基金為例 朝陽科技大學. 台中市. 13. 喻欣凱. (2008). 運用支援向量機與文字探勘於股價漲跌趨勢之預測 輔仁大學. 新北市. 14. 游智堯. (2006). 倒傳遞類神經網路應用於電子選擇權預測之研究 嶺東科技大學. 台中市. 15. 黎藍平. (2019). 應用機器學習於股價預測 :以越 南股票市場為例 國立高雄科技大學. 高雄市. 16. 邱正凱. (2020). 利用機器學習配置台灣指數多空模型 (Publication Number 2020年) 國立臺灣大學. AiritiLibrary. 英文參考資料 17. Akbari, A., Ng, L., & Solnik, B. (2021). Drivers of economic and financial integration: A machine learning approach. Journal of Empirical Finance, 61, 82-102. 18. Audrino, F., Huitema, R., & Ludwig, M. (2019). An Empirical Implementation of the Ross Recovery Theorem as a Prediction Device*. Journal of Financial Econometrics, 19(2), 291-312. 19. Bianchi, D., Büchner, M., Hoogteijling, T., & Tamoni, A. (2020). Corrigendum: Bond Risk Premiums with Machine Learning. The Review of Financial Studies, 34(2), 1090-1103. 20. Chen, M. A., Wu, Q., & Yang, B. (2019). How Valuable Is FinTech Innovation? The Review of Financial Studies, 32(5), 2062-2106. 21. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 22. Chinco, A., Clark-Joseph A. D., & Ye, M. (2019). Sparse Signals in the Cross-Section of Returns. The Journal of Finance, 74(1), 449-492. 23. Choi, K.-S. (2020). Integrating artificial intelligence into healthcare research. Hu Li Za Zhi, 67(5), 12-18. 24. Cookson, J. A., & Niessner, M. (2020). Why Don't We Agree? Evidence from a Social Network of Investors. The Journal of Finance, 75(1), 173-228. 25. Das, S. R. (2019). The future of fintech. Financial Management, 48(4), 981-1007. 26. De Moor, L., Luitel, P., Sercu, P., & Vanpée, R. (2018). Subjectivity in sovereign credit ratings. Journal of Banking & Finance, 88, 366-392. 27. Eckstein, S., Kupper, M., & Pohl, M. (2020). Robust risk aggregation with neural networks. Mathematical finance, 30(4), 1229-1272. 28. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. 29. Fama, E. F. (1995). Random walks in stock market prices. Financial Analysts Journal, 51(1), 75-80. 30. Feng, G., Giglio S., & Xiu, D. (2020). Taming the Factor Zoo: A Test of New Factors. The Journal of Finance, 75(3), 1327-1370. 31. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. 32. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193-202. 33. Gabriel, S., Iacoviello, M., & Lutz, C. (2020). A Crisis of Missed Opportunities? Foreclosure Costs and Mortgage Modification During the Great Recession. The Review of Financial Studies, 34(2), 864-906. 34. Gao, J., Guo, H., & Xu, X. (2022). Multifactor Stock Selection Strategy Based on Machine Learning: Evidence from China. Complexity, 2022, 7447229. 35. Gu, S., Kelly, B., & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. The Review of Financial Studies, 33(5), 2223-2273. 36. Han, X., & Wei, S.-J. (2017). Re-examining the middle-income trap hypothesis (MITH): What to reject and what to revive? Journal of International Money and Finance, 73, 41-61. 37. Hu, X., Huang, H., Pan, Z., & Shi, J. (2019). Information Asymmetry and Credit Rating: A Quasi-natural Experiment from China. Journal of Banking & Finance, 106. 38. Kendall, M. G., & Hill, A. B. (1953). The Analysis of Economic Time-Series-Part I: Prices. Journal of the Royal Statistical Society. Series A (General), 116(1), 11-34. 39. Lehrer, S., Xie, T., & Zeng, T. (2019). Does High-Frequency Social Media Data Improve Forecasts of Low-Frequency Consumer Confidence Measures?*. Journal of Financial Econometrics, 19(5), 910-933. 40. McDonald, G. C. (2009). Ridge regression. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1), 93-100. 41. McInish, T. H., Nikolsko-Rzhevska, O., Nikolsko-Rzhevskyy, A., & Panovska, I. (2020). Fast and slow cancellations and trader behavior. Financial Management, 49(4), 973-996. 42. Miller, P., & Töws, E. (2018). Loss given default adjusted workout processes for leases. Journal of Banking & Finance, 91, 189-201. 43. Nazemi, A., & Fabozzi, F. (2018). Macroeconomic Variable Selection for Creditor Recovery Rates. Journal of Banking & Finance, 89. 44. Renault, T. (2017). Intraday online investor sentiment and return patterns in the U.S. stock market. Journal of Banking & Finance, 84, 25-40. 45. Singh, A., Thakur, N., & Sharma, A. (2016, 16-18 March 2016). A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 46. Sopitpongstorn, N., Silvapulle, P., Gao, J., & Fenech, J.-P. (2021). Local logit regression for loan recovery rate. Journal of Banking & Finance, 126, 106093. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84233 | - |
| dc.description.abstract | 隨著科技日新月異的進步、雲端網路的發展、計算速率的提升,使的人們越來越喜歡將科技與生活進行結合,打造一個數位化的時代。同時,股價的發展趨勢是投資人們極度想要了解的,藉由預測股價未來的漲跌,便能對股票標的進行買進或賣出,藉以獲得合理的報酬。從古至今,許多的學者認為股價服從隨機遊走,因此難以從過去的經驗中看出端倪。儘管如此,人們仍希望藉由強大的機器學習,模擬人腦的思考模式,對股價的漲跌進行預測。 本論文中,決定以元大臺灣50為主軸,進行股價漲跌的研究,並且嘗試使用了羅吉斯回歸(Logistic Regression)、核支持向量機(Kernel SVM)、決策樹(Decision Tree)、隨機森林(Random Forest)、極限梯度提升(Extreme Gradient Boost, XGBoost)以及類神經網路(Artificial Neural Network)進行模型的訓練與測試,並結合特徵縮放(Feature Scaling)以及變數篩選(Variable Selection),建構出不同的實驗情境,希望從中可以找到最佳的預測模型。 發現在一般模型中,僅有極限梯度提升(XGBoost)的模型較為泛化,無過度擬合的問題。不論是一般模型,抑或是類神經網路模型,都有各自的準確率,針對股價預測上漲或下跌的目標,認為在羅吉斯回歸(Logistic Regression),極限梯度提升(XGBoost)以及類神經網路(Artificial Neural Network)軍可以得到較好的預測效果。 | zh_TW |
| dc.description.abstract | With the rapid advancement of technology, the development of cloud networks, and the enhancement of computing speed, people are more and more fond of combining life and technology. In addition, investors would like to know the trend of the stocks. They wish to earn the reasonable return by predicting the ups or downs of stock prices. Since ancient times, it is believed that stock prices follow random walks and there isn’t certain laws and trends, so it is difficult to see clues from past experience. Despite the phenomenon, we are still willing to simulate the thinking mode of our brains to predict the rise or fall of stock prices by using powerful machine learning. In this paper, I decide to use Yuanta Taiwan 50 as the underlying stock and take a research of its rise or fall in the stock prices. I try to use the models including logistic regression, kernel support vector machine, decision tree, random forest, extreme gradient boost and artificial neural network. Also, I combine these models and feature scaling (normalize and standardize) and variable selection (ridge and lasso) to construct different experimental scenarios, hoping to find out the best predictive model. It is found that the model with only XGBoost is more generalized and without overfitting. Whether it is a general model or a neural network model, it has its own accuracy rate. For the goal of predicting the rise or fall of stock prices, it is considered that in logistic regression, XGBoost and neural network can get better prediction effect. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:06:46Z (GMT). No. of bitstreams: 1 U0001-2406202214245600.pdf: 1969581 bytes, checksum: 3ced379707df9e832367b0a05e7fa37b (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究流程 2 第四節 章節概述 3 第一節 背景知識 5 第二節 文獻回顧 5 第一節 研究架構 9 第二節 股票挑選 11 第三節 輸入變數 11 第四節 變數降維挑選 14 第五節 分類模型 16 第六節 交叉驗證 28 第一節 變數蒐集 33 第二節 資料前處理 34 第三節 變數降維挑選 36 第四節 模型預測與分析 38 第一節 結論 53 第二節 未來展望 55 參考文獻 56 附件 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 股價預測 | zh_TW |
| dc.subject | 羅吉斯回歸 | zh_TW |
| dc.subject | 核支持向量機 | zh_TW |
| dc.subject | 決策樹 | zh_TW |
| dc.subject | 隨機森林 | zh_TW |
| dc.subject | 極限梯度提升 | zh_TW |
| dc.subject | Logistic regression | en |
| dc.subject | Stock prediction | en |
| dc.subject | Artificial neural network | en |
| dc.subject | Extreme gradient boost | en |
| dc.subject | Random forest | en |
| dc.subject | Decision tree | en |
| dc.subject | Kernel support vector machine | en |
| dc.title | 以機器學習預測元大臺灣50的股價 | zh_TW |
| dc.title | Predicting The Stock Price of Yuanta Taiwan Top 50 ETF With Machine Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡佳芬(Chia-Fen Tsai),蔡豐澤(Feng-Tse Tsai) | |
| dc.subject.keyword | 股價預測,羅吉斯回歸,核支持向量機,決策樹,隨機森林,極限梯度提升,類神經網路, | zh_TW |
| dc.subject.keyword | Stock prediction,Logistic regression,Kernel support vector machine,Decision tree,Random forest,Extreme gradient boost,Artificial neural network, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202201093 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-06-27 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 國際企業學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-08 | - |
| 顯示於系所單位: | 國際企業學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2406202214245600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
