請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝旭亮(Hsu-Liang Hsieh) | |
| dc.contributor.author | Kuo-Chao Huang | en |
| dc.contributor.author | 黃國超 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:06:18Z | - |
| dc.date.copyright | 2022-07-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-01 | |
| dc.identifier.citation | Ballaré, C.L., and Pierik, R. (2017). The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environment 40, 2530-2543. Casal, J.J. (2012). Shade avoidance. Arabidopsis Book 10, e0157. Cashmore, A.R., Jarillo, J.A., Wu, Y.-j., and Liu, D. (1999). Cryptochromes: Blue Light Receptors for Plants and Animals. Science 284, 760-765. Chen, C., Lee, S.-C., Pan, S.-M., and Hsieh, H.-L. (2007). GASA4, a GA-stimulated gene, participates in light signaling in Arabidopsis. Plant Science 172, 1062-1071. Chen, H.J., Chen, C.L., and Hsieh, H.L. (2015). Far-Red Light-Mediated Seedling Development in Arabidopsis Involves FAR-RED INSENSITIVE 219/JASMONATE RESISTANT 1-Dependent and -Independent Pathways. PLoS One 10, e0132723. Chen, H.J., Fu, T.Y., Yang, S.L., and Hsieh, H.L. (2018). FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis. PLoS Genetics 14, e1007248. Cheng, M.C., Kathare, P.K., Paik, I., and Huq, E. (2021). Phytochrome Signaling Networks. Annual Review Plant Biology 72, 217-244. Chung, H.S., Koo, A.J.K., Gao, X., Jayanty, S., Thines, B., Jones, A.D., and Howe, G.A. (2008). Regulation and Function of Arabidopsis JASMONATE ZIM-Domain Genes in Response to Wounding and Herbivory. Plant Physiology 146, 952-964. Cole, B., Kay, S.A., and Chory, J. (2011). Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabidopsis. The Plant Journal 65, 991-1000. De Wit, M., Spoel, S.H., Sanchez-Perez, G.F., Gommers, C.M.M., Pieterse, C.M.J., Voesenek, L., and Pierik, R. (2013). Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. The Plant Journal 75, 90-103. De Wit, M., Keuskamp, D.H., Bongers, F.J., Hornitschek, P., Gommers, C.M.M., Reinen, E., Martínez-Cerón, C., Fankhauser, C., and Pierik, R. (2016). Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light. Current Biology 26, 3320-3326. Devlin, P.F., Patel, S.R., and Whitelam, G.C. (1998). Phytochrome E influences internode elongation and flowering time in Arabidopsis. The Plant Cell 10, 1479-1487. Devlin, P.F., Robson, P.R., Patel, S.R., Goosey, L., Sharrock, R.A., and Whitelam, G.C. (1999). Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiology 119, 909-915. Gu, D., Chen, C.Y., Zhao, M., Zhao, L., Duan, X., Duan, J., Wu, K., and Liu, X. (2017). Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Research 45, 7137-7150. Han, X., Huang, X., and Deng, X.W. (2020). The Photomorphogenic Central Repressor COP1: Conservation and Functional Diversification during Evolution. Plant Communications 1, 100044. Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. Journal of Integrative Plant Biology 50, 875-885. Hornitschek, P., Kohnen, M.V., Lorrain, S., Rougemont, J., Ljung, K., López-Vidriero, I., Franco-Zorrilla, J.M., Solano, R., Trevisan, M., Pradervand, S., Xenarios, I., and Fankhauser, C. (2012). Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. The Plant Journal 71, 699-711. Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Development 14, 1958-1970. Huang, H., Liu, B., Liu, L., and Song, S. (2017). Jasmonate action in plant growth and development. Journal of Experimental Botany 68, 1349-1359. Jing, Y., Guo, Q., and Lin, R. (2021). The SNL-HDA19 histone deacetylase complex antagonizes HY5 activity to repress photomorphogenesis in Arabidopsis. New Phytologist 229, 3221-3236. Kami, C., Lorrain, S., Hornitschek, P., and Fankhauser, C. (2010). Light-regulated plant growth and development. Current Topics Develoment Biology 91, 29-66. Keller, M.M., Jaillais, Y., Pedmale, U.V., Moreno, J.E., Chory, J., and Ballaré, C.L. (2011). Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. The Plant Journal 67, 195-207. Keuskamp, D.H., Sasidharan, R., Vos, I., Peeters, A.J., Voesenek, L.A., and Pierik, R. (2011). Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. The Plant Journal 67, 208-217 Lee, H.G., and Seo, P.J. (2019). MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nature Communications 10, 1713. Li, T., Jia, K.P., Lian, H.L., Yang, X., Li, L., and Yang, H.Q. (2014). Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochemical and Biophysical Research Communications 454, 78-83. Liu, H., and Timko, M.P. (2021). Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences 22, 2914. Liu, X., Chen, C.Y., Wang, K.C., Luo, M., Tai, R., Yuan, L., Zhao, M., Yang, S., Tian, G., Cui, Y., Hsieh, H.L., and Wu, K. (2013). PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. The Plant Cell 25, 1258-1273. Liu, Y., Wei, H., Ma, M., Li, Q., Kong, D., Sun, J., Ma, X., Wang, B., Chen, C., Xie, Y., and Wang, H. (2019). Arabidopsis FHY3 and FAR1 Regulate the Balance between Growth and Defense Responses under Shade Conditions. The Plant Cell 31, 2089-2106. Liu, Z., Zhang, Y., Wang, J., Li, P., Zhao, C., Chen, Y., and Bi, Y. (2015). Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Science 238, 64-72. Lorrain, S., Allen, T., Duek, P.D., Whitelam, G.C., and Fankhauser, C. (2008). Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. The Plant Journal 53, 312-323. Maier, A., Schrader, A., Kokkelink, L., Falke, C., Welter, B., Iniesto, E., Rubio, V., Uhrig, J.F., Hülskamp, M., and Hoecker, U. (2013). Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. The Plant Journal 74, 638-651. Martínez-García, J.F., Gallemí, M., Molina-Contreras, M.J., Llorente, B., Bevilaqua, M.R., and Quail, P.H. (2014). The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome a and B differentiates vegetation proximity and canopy shade. PLoS One 9, e109275. Nemhauser, J., and Chory, J. (2002). Photomorphogenesis. Arabidopsis Book 1, e0054. Ortiz-Alcaide, M., Llamas, E., Gomez-Cadenas, A., Nagatani, A., Martínez-García, J.F., and Rodríguez-Concepción, M. (2019). Chloroplasts modulate elongation responses to canopy shade by retrograde pathways involving HY5 and abscisic acid. The Plant Cell 31, 384-398. Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Development 11, 2983-2995. Pacín, M., Legris, M., and Casal, J.J. (2013). COP1 re-accumulates in the nucleus under shade. The Plant Journal 75, 631-641. Pacín, M., Semmoloni, M., Legris, M., Finlayson, S.A., and Casal, J.J. (2016). Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance. New Phytologist 211, 967-979. Paik, I., and Huq, E. (2019). Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Seminars in Cell Development Biology 92, 114-121. Peng, M., Li, Z., Zhou, N., Ma, M., Jiang, Y., Dong, A., Shen, W.H., and Li, L. (2018). Linking PHYTOCHROME-INTERACTING FACTOR to Histone Modification in Plant Shade Avoidance. Plant Physiology 176, 1341-1351. Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., and Xie, D. (2011). The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana. The Plant Cell 23, 1795-1814. Rockwell, N.C., Su, Y.S., and Lagarias, J.C. (2006). Phytochrome structure and signaling mechanisms. Annual Review Plant Biology 57, 837-858. Roig-Villanova, I., Bou-Torrent, J., Galstyan, A., Carretero-Paulet, L., Portolés, S., Rodríguez-Concepción, M., and Martínez-García, J.F. (2007). Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. The Embo Journal 26, 4756-4767. Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J., and Zhang, K. (2019). Jasmonic Acid Signaling Pathway in Plants. International Journal of Molecular Sciences 20, 2479. Sessa, G., Carabelli, M., Possenti, M., Morelli, G., and Ruberti, I. (2018). Multiple Pathways in the Control of the Shade Avoidance Response. Plants 7, 102. Shen, Y., Lei, T., Cui, X., Liu, X., Zhou, S., Zheng, Y., Guérard, F., Issakidis-Bourguet, E., and Zhou, D.X. (2019). Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature. The Plant Journal 100, 991-1006. Song, B., Zhao, H., Dong, K., Wang, M., Wu, S., Li, S., Wang, Y., Chen, P., Jiang, L., and Tao, Y. (2020). Phytochrome A inhibits shade avoidance responses under strong shade through repressing the brassinosteroid pathway in Arabidopsis. The Plant Journal 104, 1520-1534. Staswick, P.E., Tiryaki, I., and Rowe, M.L. (2002). Jasmonate Response Locus JAR1 and Several Related Arabidopsis Genes Encode Enzymes of the Firefly Luciferase Superfamily That Show Activity on Jasmonic, Salicylic, and Indole-3-Acetic Acids in an Assay for Adenylation. The Plant Cell 14, 1405-1415. Swain, S., Jiang, H.-W., and Hsieh, H.-L. (2017). FAR-RED INSENSITIVE 219/JAR1 contributes to shade avoidance responses of Arabidopsis seedlings by modulating key shade signaling components. Frontiers in plant science 8, 1901. Tripathi, S., Hoang, Q.T.N., Han, Y.-J., and Kim, J.-I. (2019). Regulation of Photomorphogenic Development by Plant Phytochromes. International Journal of Molecular Sciences 20, 6165. Turner, J.G., Ellis, C., and Devoto, A. (2002). The jasmonate signal pathway. The Plant Cell 14, S153-S164. Wang, J.-G., Chen, C.-H., Chien, C.-T., and Hsieh, H.-L. (2011). FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis. Plant Physiology 156, 631-646. Wu, F.-H., Shen, S.-C., Lee, L.-Y., Lee, S.-H., Chan, M.-T., and Lin, C.-S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16. Wu, K., Zhang, L., Zhou, C., Yu, C.W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. Journal of Experimantal Botany 59, 225-234. Yang, D.L., Yao, J., Mei, C.S., Tong, X.H., Zeng, L.J., Li, Q., Xiao, L.T., Sun, T.P., Li, J., Deng, X.W., Lee, C.M., Thomashow, M.F., Yang, Y., He, Z., and He, S.Y. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America 109, E1192-E1200. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., and Cashmore, A.R. (2000). The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103, 815-827. Yoo, S.-D., Cho, Y.-H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2, 1565-1572. Zhao, L., Peng, T., Chen, C.-Y., Ji, R., Gu, D., Li, T., Zhang, D., Tu, Y.-T., Wu, K., and Liu, X. (2019). HY5 interacts with the histone deacetylase HDA15 to repress hypocotyl cell elongation in photomorphogenesis. Plant physiology 180, 1450-1466. 王志恭. (2011). 阿拉伯芥FIN219在遠紅光與茉莉酸訊息傳遞間交互作用之功能性研究。國立台灣大學博士論文。 宋孟樺. (2016). 阿拉伯芥中FIN219在鹽害逆境和乾旱逆境的功能性研究。國立台灣大學碩士論文。 李芳玟. (2018). 受阿拉伯芥FIN219調控的ERFs在滲透壓與鹽害逆境下的功能性研究。國立台灣大學碩士論文。 陳彥合. (2016). 阿拉伯芥轉錄因子HY5參與茉莉酸訊息傳遞途徑之功能性研究。國立台灣大學碩士論文。 謝承錐. (2009). 阿拉伯芥中FIN219與隱花色素參與乙烯反應的分子機制的研究。國立台灣大學碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84206 | - |
| dc.description.abstract | 植物演化出許多分子機制適應環境中光條件的變化。在阿拉伯芥中遮蔭迴避效應即是個經典的例子。FIN219/JAR1已知會催化茉莉酸(jasmonate)結合異白胺酸(isoleucine, Ile)形成有活性JA-Ile,來參與茉莉酸訊息傳遞,並且也會參與阿拉伯芥的遮蔭迴避效應。其生理功能似乎透過調節COP1在細胞中的位置或轉錄因子ATHB2和PIF5等基因表現來負調控遮蔭迴避效應。因此FIN219/JAR1不僅參與光訊號路徑也參與賀爾蒙訊息傳遞。目前已有文獻顯示轉錄因子HY5可藉由與組蛋白去乙醯酶15(HDA15)交互作用來共同調節植物的光型態發生;且之前也已發現FIN219/JAR1在光訊息與茉莉酸訊息傳遞中會正調控HY5的蛋白含量。更進一步的文獻證實HY5也會負調控遮蔭迴避效應。但HDA15是否會參與遮蔭迴避效應到目前仍然不清楚。本研究發現HDA15會負調控阿拉伯芥的遮蔭迴避效應,進一步也發現在遮蔭環境下HDA15與HY5仍會有交互作用,因此推測HDA15與HY5藉由交互作用來共同調節遮蔭迴避效應的反應。另外透過對fin219-2 hy5-ks50以及pGR219 hy5-ks50雙突變株在遮蔭環境下的外表型分析,顯示FIN219/JAR1和HY5很可能位於同一條訊號路徑上,且在遮蔭環境底下FIN219/JAR1也會促進HY5蛋白質的穩定性。綜合上述,推測在遮蔭環境底下FIN219/JAR1可藉由調節HY5蛋白質的穩定性,進而影響HY5和HDA15的交互作用來共同調節阿拉伯芥遮蔭迴避效應。 | zh_TW |
| dc.description.abstract | Plants have evolved many molecular mechanisms to adapt to changes in light conditions. In Arabidopsis, the shade avoidance response is a typical example. Our laboratory found that FIN219/JAR1, an enzyme known to catalyze the formation of JA-isoleucine (JA-Ile), participates in JA signaling and is also involved in the shade avoidance response in Arabidopsis. Its physiological function appears to negatively regulate the shade avoidance by regulating the subcellular localization of COP1 and the expression of ATHB2 and PIF5. Therefore, FIN219/JAR1 is involved not only in light signaling but also in hormonal signaling pathways. It has been shown that transcription factor HY5 can co-regulate the photomorphogenesis of plants by interacting with HDA15. Previous studies also found that FIN219/JAR1 greatly affected HY5 protein levels under far-red light and JA treatment conditions. Other studies also showed that HY5 negatively regulated shade avoidance responses. However, whether HDA15 is involved in the shade avoidance responses remains unclear. This study reported that HDA15 negatively regulated the shade avoidance response, and HDA15 and HY5 also could interact with each other under shading conditions, suggesting that their interaction might regulate shade avoidance responses. In addition, the phenotypic analyses by using fin219-2 hy5-ks50 and pGR219 hy5-ks50 double mutants showed that FIN219/JAR1 and HY5 are likely to be on the same signaling pathway to modulate hypocotyl elongation under shading condition. Moreover, FIN219/ JAR1 may promote the stability of HY5 protein. In summary, FIN219/JAR1 regulates shade avoidance responses by regulating the stability of HY5 protein, leading to the effects on HY5 and HDA15 interaction under shade conditions. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:06:18Z (GMT). No. of bitstreams: 1 U0001-2906202214463900.pdf: 3965560 bytes, checksum: e7315cb310cff78e6f955b7dd1a815d5 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 口試審定書 I 誌謝 II 中文摘要 IV Abstract V 目錄 VII 圖目錄 IX 縮寫 X 前言 1 一、 阿拉伯芥中光訊息傳遞 1 二、 遮蔭迴避效應(SAR) 2 三、 茉莉酸合成和訊息傳遞以及其與SAR的關係 4 四、 FIN219/JAR1與遮蔭迴避效應(SAR) 5 五、 阿拉伯芥的組蛋白去乙醯酶(HDAC) 6 六、 研究動機與目標 7 材料方法 9 一、 植物材料 9 二、 質體建構與阿拉伯芥轉殖 9 三、 植物生長條件及甲基茉莉酸處理 10 四、 下胚軸量測及花青素含量測定 10 五、 開花時間量測 11 六、 重組蛋白誘導及純化 11 七、 重組蛋白質Pull-down實驗分析 12 八、 雙分子螢光互補(BiFC)分析 13 九、 RNA萃取 14 十、 定量即時聚合酶連鎖反應(qPCR) 14 十一、 Genomic DNA萃取 14 十二、 植物蛋白萃取與西方墨點法 15 結果 16 一、 HY5和HDA15在遮蔭環境下的交互作用 16 二、 FIN219/JAR1和HY5以及HDA15皆負調節阿拉伯芥的遮蔭迴避效應 16 三、 FIN219/JAR1和HY5和HDA15三者皆會參與MeJA誘導花青素累積的訊息傳遞 17 四、 HDA15會受到光以及MeJA所調控 18 五、 FIN219/JAR1對於HY5在遮蔭環境下的影響 19 討論 20 一、 FIN219和HY5和HDA15在遮蔭環境下的關係 20 二、 HDA15會負調控MeJA誘導花青素累積的現象 21 三、 HY5和HDA15在遮蔭環境下的交互作用 22 結論 23 結果圖片 24 附件 39 參考文獻 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | FIN219 | zh_TW |
| dc.subject | HY5 | zh_TW |
| dc.subject | HDA15 | zh_TW |
| dc.subject | JAR1 | zh_TW |
| dc.subject | 遮蔭迴避效應 | zh_TW |
| dc.subject | HDA15 | en |
| dc.subject | Shade avoidance response | en |
| dc.subject | FIN219 | en |
| dc.subject | JAR1 | en |
| dc.subject | HY5 | en |
| dc.title | 探討遮蔭光下阿拉伯芥中受光與茉莉酸調控的FIN219/JAR1與組蛋白去乙醯酶HDA15的調控關係 | zh_TW |
| dc.title | Study on the regulatory relationship between light- and jasmonates-regulated FIN219/JAR1 and HISTONE DEACETYLASE 15 in response to shade light in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳克強(Keqiang Wu),鄭貽生(Yi-Sheng Cheng),李金美(Chin-Mei Lee),蔡皇龍(Huang-Lung Tsai) | |
| dc.subject.keyword | 遮蔭迴避效應,FIN219,JAR1,HY5,HDA15, | zh_TW |
| dc.subject.keyword | Shade avoidance response,FIN219,JAR1,HY5,HDA15, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202201201 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-08 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2906202214463900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
