Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84198
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor廖淑貞(Shwu-Jen Liaw)
dc.contributor.authorVivien Chengen
dc.contributor.author鄭穎倫zh_TW
dc.date.accessioned2023-03-19T22:06:10Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-09-27
dc.identifier.citation1. Schaffer, J.N. and M.M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiology spectrum, 2015. 3(5): p. 10.1128/microbiolspec.UTI-0017-2013. 2. Rózalski, A., Z. Sidorczyk, and K. Kotełko, Potential virulence factors of Proteus bacilli. Microbiology and molecular biology reviews : MMBR, 1997. 61(1): p. 65-89. 3. Rütschlin, S. and T. Böttcher, Inhibitors of Bacterial Swarming Behavior. Chemistry, 2020. 26(5): p. 964-979. 4. Badal, D., et al., Foraging Signals Promote Swarming in Starving Pseudomonas aeruginosa. mBio, 2021. 12(5): p. e0203321. 5. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 6. Du, H., et al., RpoE may promote flagellar gene expression in Salmonella enterica serovar typhi under hyperosmotic stress. Curr Microbiol, 2011. 62(2): p. 492-500. 7. Armbruster, C.E. and H.L.T. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nature reviews. Microbiology, 2012. 10(11): p. 743-754. 8. Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infection and immunity, 1996. 64(12): p. 5332-5340. 9. Braun, V. and T. Focareta, Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol, 1991. 18(2): p. 115-58. 10. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 11. Mobley, H.L., M.D. Island, and R.P. Hausinger, Molecular biology of microbial ureases. Microbiol Rev, 1995. 59(3): p. 451-80. 12. Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5. 13. Böckelmann, U., et al., Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett, 2006. 262(1): p. 31-8. 14. Campoccia, D., L. Montanaro, and C.R. Arciola, Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int J Mol Sci, 2021. 22(16). 15. Hu, W., et al., DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides. PLoS One, 2012. 7(12): p. e51905. 16. Trunk, T., H.S. Khalil, and J.C. Leo, Bacterial autoaggregation. AIMS Microbiol, 2018. 4(1): p. 140-164. 17. Bahrani, F.K., et al., Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infection and immunity, 1994. 62(8): p. 3363-3371. 18. Bijlsma, I.G.W., et al., Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains. Microbiology (Reading), 1995. 141 ( Pt 6): p. 1349-1357. 19. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505. 20. Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 21. Walker, K.E., et al., ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol, 1999. 32(4): p. 825-36. 22. Rensing, C. and G. Grass, Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev, 2003. 27(2-3): p. 197-213. 23. Giachino, A. and K.J. Waldron, Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol, 2020. 114(3): p. 377-390. 24. Koppenol, W.H., The Haber-Weiss cycle--70 years later. Redox Rep, 2001. 6(4): p. 229-34. 25. Stoyanov, J.V., J.L. Hobman, and N.L. Brown, CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol, 2001. 39(2): p. 502-11. 26. Yamamoto, K. and A. Ishihama, Transcriptional response of Escherichia coli to external copper. Mol Microbiol, 2005. 56(1): p. 215-27. 27. Subashchandrabose, S., et al., Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci U S A, 2014. 111(51): p. 18327-32. 28. Hyre, A.N., et al., Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization. Infect Immun, 2017. 85(3). 29. Hodgkinson, V. and M.J. Petris, Copper homeostasis at the host-pathogen interface. J Biol Chem, 2012. 287(17): p. 13549-55. 30. Seiffer, D., J.R. Klein, and R. Plapp, EnvC, a new lipoprotein of the cytoplasmic membrane of Escherichia coli. FEMS Microbiology Letters, 1993. 107(2-3): p. 175-178. 31. Michel, G.P. and J. Starka, Origin and fate of the lysophosphatidylethanolamine in a chain-forming mutant (envC) of Escherichia coli. J Gen Microbiol, 1984. 130(6): p. 1391-8. 32. Bernhardt, T.G. and P.A.J. de Boer, Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Molecular microbiology, 2004. 52(5): p. 1255-1269. 33. Juan, C., et al., Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev, 2018. 82(4). 34. Ichimura, T., et al., Proteolytic activity of YibP protein in Escherichia coli. Journal of bacteriology, 2002. 184(10): p. 2595-2602. 35. Typas, A., et al., From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature reviews. Microbiology, 2011. 10(2): p. 123-136. 36. Ercoli, G., et al., LytM proteins play a crucial role in cell separation, outer membrane composition, and pathogenesis in nontypeable Haemophilus influenzae. mBio, 2015. 6(2): p. e02575-e02575. 37. Nakamura, N., et al., A Peptidoglycan Amidase Activator Impacts Salmonella enterica Serovar Typhimurium Gut Infection. Infection and immunity, 2020. 88(6): p. e00187-20. 38. Hoy, B., et al., Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep, 2010. 11(10): p. 798-804. 39. Xue, R.Y., et al., HtrA family proteases of bacterial pathogens: pros and cons for their therapeutic use. Clin Microbiol Infect, 2021. 27(4): p. 559-564. 40. Tans-Kersten, J., Y. Guan, and C. Allen, Ralstonia solanacearum pectin methylesterase is required for growth on methylated pectin but not for bacterial wilt virulence. Applied and environmental microbiology, 1998. 64(12): p. 4918-4923. 41. Belas, R., D. Erskine, and D. Flaherty, Transposon mutagenesis in Proteus mirabilis. Journal of bacteriology, 1991. 173(19): p. 6289-6293. 42. Saavedra, J.T., J.A. Schwartzman, and M.S. Gilmore, Mapping Transposon Insertions in Bacterial Genomes by Arbitrarily Primed PCR. Current protocols in molecular biology, 2017. 118: p. 15.15.1-15.15.15. 43. Wu, Y. and F.W. Outten, IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. Journal of bacteriology, 2009. 191(4): p. 1248-1257. 44. Horng, Y.-T., et al., Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. Journal of Microbiology, Immunology and Infection, 2018. 51(2): p. 174-183. 45. Malik, A., et al., Coaggregation among nonflocculating bacteria isolated from activated sludge. Applied and environmental microbiology, 2003. 69(10): p. 6056-6063. 46. Chiang, M.-K., et al., Impact of Hfq on global gene expression and virulence in Klebsiella pneumoniae. PloS one, 2011. 6(7): p. e22248-e22248. 47. Alamuri, P., et al., Adhesion, invasion, and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis. Infection and immunity, 2010. 78(11): p. 4882-4894. 48. Peerbooms, P.G., A.M. Verweij, and D.M. MacLaren, Vero cell invasiveness of Proteus mirabilis. Infection and immunity, 1984. 43(3): p. 1068-1071. 49. Giulietti, A., et al., An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 2001. 25(4): p. 386-401. 50. Del Porto, P., et al., Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa. PloS one, 2011. 6(5): p. e19970-e19970. 51. Tsai, Y.-L., et al., cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Scientific reports, 2017. 7(1): p. 7282-7282. 52. Devi, K.P., et al., Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 2010. 130(1): p. 107-115. 53. Fukuoka, T., et al., Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrob Agents Chemother, 1991. 35(3): p. 529-32. 54. Neu, H.C. and L.A. Heppel, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem, 1965. 240(9): p. 3685-92. 55. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22. 56. Guo, M.S., et al., MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev, 2014. 28(14): p. 1620-34. 57. Cook, J., et al., Insights into bacterial cell division from a structure of EnvC bound to the FtsX periplasmic domain. Proc Natl Acad Sci U S A, 2020. 117(45): p. 28355-28365. 58. Uehara, T., et al., Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. Embo j, 2010. 29(8): p. 1412-22. 59. Newton, A. and N. Ohta, Regulation of the cell division cycle and differentiation in bacteria. Annu Rev Microbiol, 1990. 44: p. 689-719. 60. Romilly, C., et al., Small RNAs OmrA and OmrB promote class III flagellar gene expression by inhibiting the synthesis of anti-Sigma factor FlgM. RNA Biol, 2020. 17(6): p. 872-880. 61. Pearson, M.M., et al., Transcriptome of swarming Proteus mirabilis. Infect Immun, 2010. 78(6): p. 2834-45. 62. Harshey, R.M. and J.D. Partridge, Shelter in a Swarm. J Mol Biol, 2015. 427(23): p. 3683-94. 63. Muok, A.R., A. Briegel, and B.R. Crane, Regulation of the chemotaxis histidine kinase CheA: A structural perspective. Biochim Biophys Acta Biomembr, 2020. 1862(1): p. 183030. 64. Reuter, M., et al., Inactivation of the core cheVAWY chemotaxis genes disrupts chemotactic motility and organised biofilm formation in Campylobacter jejuni. FEMS Microbiol Lett, 2020. 367(24). 65. Belas, R., D. Erskine, and D. Flaherty, Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol, 1991. 173(19): p. 6279-88. 66. Doyle, T.B., A.C. Hawkins, and L.L. McCarter, The complex flagellar torque generator of Pseudomonas aeruginosa. J Bacteriol, 2004. 186(19): p. 6341-50. 67. Jansen, A.M., et al., Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infection and immunity, 2004. 72(12): p. 7294-7305. 68. Bode, N.J., et al., Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun, 2015. 83(6): p. 2542-56. 69. Scavone, P., et al., Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation. Pathog Dis, 2016. 74(5). 70. Weichhart, T., et al., Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest, 2008. 38 Suppl 2: p. 29-38. 71. Mora-Bau, G., et al., Macrophages Subvert Adaptive Immunity to Urinary Tract Infection. PLoS pathogens, 2015. 11(7): p. e1005044-e1005044. 72. Sheldon, J.R. and E.P. Skaar, Metals as phagocyte antimicrobial effectors. Current opinion in immunology, 2019. 60: p. 1-9. 73. López, C., S.K. Checa, and F.C. Soncini, CpxR/CpxA Controls scsABCD Transcription To Counteract Copper and Oxidative Stress in Salmonella enterica Serovar Typhimurium. J Bacteriol, 2018. 200(16). 74. Ji, X., et al., The lipoprotein NlpD in Cronobacter sakazakii responds to acid stress and regulates macrophage resistance and virulence by maintaining membrane integrity. Virulence, 2021. 12(1): p. 415-429. 75. Oguri, T., et al., Identification of EnvC and Its Cognate Amidases as Novel Determinants of Intrinsic Resistance to Cationic Antimicrobial Peptides. Antimicrobial agents and chemotherapy, 2016. 60(4): p. 2222-2231. 76. Sud, I.J. and D.S. Feingold, Mechanism of polymyxin B resistance in Proteus mirabilis. Journal of bacteriology, 1970. 104(1): p. 289-294. 77. Mansour, H., et al., Imipenem/cilastatin/relebactam: A new carbapenem β-lactamase inhibitor combination. Am J Health Syst Pharm, 2021. 78(8): p. 674-683. 78. Jenab, A., R. Roghanian, and G. Emtiazi, Bacterial Natural Compounds with Anti-Inflammatory and Immunomodulatory Properties (Mini Review). Drug Des Devel Ther, 2020. 14: p. 3787-3801. 79. Hessle, C.C., B. Andersson, and A.E. Wold, Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine, 2005. 30(6): p. 311-8. 80. Tsai, Y.L., et al., cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Sci Rep, 2017. 7(1): p. 7282. 81. Chen, H.H., et al., A CpxR-Regulated zapD Gene Involved in Biofilm Formation of Uropathogenic Proteus mirabilis. Infect Immun, 2020. 88(7). 82. Liu, M.C., et al., New aspects of RpoE in uropathogenic Proteus mirabilis. Infect Immun, 2015. 83(3): p. 966-77. 83. Pannen, D., et al., Interaction of the RcsB Response Regulator with Auxiliary Transcription Regulators in Escherichia coli. J Biol Chem, 2016. 291(5): p. 2357-70. 84. Wang, M.C., et al., The RNA chaperone Hfq is involved in stress tolerance and virulence in uropathogenic Proteus mirabilis. PLoS One, 2014. 9(1): p. e85626. 85. Jin, X. and J.S. Marshall, Mechanics of biofilms formed of bacteria with fimbriae appendages. PLoS One, 2020. 15(12): p. e0243280. 86. Hutchison, C.A., 3rd, et al., Polar Effects of Transposon Insertion into a Minimal Bacterial Genome. J Bacteriol, 2019. 201(19).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84198-
dc.description.abstract奇異變形桿菌(P. mirabilis)是一種重要的泌尿道病原體,主要是經由尿道或導尿管進入泌尿道,爬行進入膀胱並增生,接著再沿著輸尿管上行至腎臟,造成腎臟感染。而銅是所有生命皆必需的微量元素,但過量也會對生物體造成毒性。以P. mirabilis引發的UTI期間,尿液中銅離子的濃度會顯著上升,其中可使尿液中銅濃度上升,銅在巨噬細胞亦會發揮殺菌作用,因此我們利用跳躍子卡匣突變法構建突變菌株,並以高濃度之銅來篩選出對銅有高感受性的突變株。其中,我們發現envC突變株對銅感受性增加,經基因分析後發現EnvC蛋白在Escherichia coli及Salmonella enterica serovar Typhimurium中作為peptidoglycan的水解酶AmiA和AmiB的activator,對細菌的細胞分裂以及細胞膜的完整性維持有關。為了探討EnvC在P. mirabilis所扮演的角色,本篇分析了野生株以及envC突變株的抗銅及致病因子之表達,結果顯示P. mirabilis中envC突變對不同銅濃度較野生株更有感受性,而細胞有分裂異常的情況,envC突變株對比野生株表現出運動性顯著降低、生物膜生成量顯著上升、細胞黏附率下降、細胞入侵率下降、在氧化壓力下存活率顯著下降、外膜通透性及藥物感受性改變,以及對小鼠的定殖能力顯著下降。綜上所述,EnvC參與了P. mirabilis的抗銅和致病因子之表達。這是首次發現EnvC參與尿道致病菌P. mirabilis的研究,我們的研究結果表明,參與peptidoglycan裂解的EnvC 可能會影響細胞表面特性,從而改變細胞膜相關之致病因子,包括細胞膜結構、運動性、生物膜形成,在壓力環境下的存活、細胞黏附率與入侵率,以及對小鼠的定殖能力。zh_TW
dc.description.abstractProteus mirabilis is an important uropathogen. Copper is an essential trace element for all lives but lethal upon excess. During UTI, the urine copper level rises, and copper exerts bacterial killing in macrophages. Previously we found copper affects P. mirabilis virulence factors such as urease activity and biofilm formation. We then performed transposon mutagenesis to investigate how P. mirabilis deploys copper detoxification system to maintain copper homeostasis. We isolated several mutants exhibited increased copper susceptibility. An envC mutant displaying increased copper susceptibility was identified. The envC gene, encoding a murein hydrolase activator, has been found to be involved in cell division and membrane integrity maintenance in E. coli and Salmonella. We found P. mirabilis envC mutant cells are longer than the wild-type and swarming and swimming motility ability was significantly decreased in the mutant. The mutant also exhibited impaired survival on exposure to oxidative stress and significantly reduced ability to adhere and invade urothelial cells. Accordingly, a defect in mouse colonization of the envC mutant was observed. In summary, EnvC participates in copper tolerance and virulence factor expression of P. mirabilis. This is the first study to investigate the role of envC gene in uropathogenic P. mirabilis. Our results suggest that the P. mirabilis EnvC, participating in cell wall development, may influence the cell surface properties, thereby altering the cell envelope-associated phenotypes including membrane composition, motility, survival in the stressful environment, adhesion and invasion and also colonization in mice.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:06:10Z (GMT). No. of bitstreams: 1
U0001-2609202209555100.pdf: 4043170 bytes, checksum: 76763fd70e5cc8ebdd3c8a96d5a4e8e7 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………… i 誌謝…………………………………………………………………………………… ii 中文摘要……………………………………………………………………………… iii 英文摘要……………………………………………………………………………… iv 目錄…………………………………………………………………………………… v 圖目錄………………………………………………………………………………… vii 表目錄………………………………………………………………………………… ix 第一章 緒論…………………………………………………………………………… 1 第1節 奇異變形桿菌(Proteus mirabilis)的基本介紹……………………………… 1 第2節 P. mirabilis的表面移行能力(swarming)………………………………… 1 第3節 P. mirabilis的致病因子……………………………………………………… 2 第4節 銅之生物特性………………………………………………………………… 5 第5節 EnvC之基本特性…………………………………………………………… 6 第6節 研究動機與目的……………………………………………………………… 8 第二章 實驗設計、材料與方法……………………………………………………… 9 第1節 實驗設計……………………………………………………………………… 9 第2節 實驗材料………………………………………………………………………10 第3節 構築突變株及互補株……………………………………………………… 12 第4節 突變基因之鑑定…………………………………………………………… 21 第5節 表現型(phenotype)及毒力因子(virulence factors)分析……………… 25 第6節 基因表達…………………………………………………………………… 39 第三章 實驗結果………………………………………………………………………43 第1節 篩選對銅高感受性之突變株………………………………………………43 第2節 突變株對銅之感受性………………………………………………………51 第3節 envC突變株之細胞形態及運動能力…………………………………… 56 第4節 envC之表現型及毒力因子……………………………………………… 65 第5節 分析EnvC之調控…………………………………………..………………76 第四章 結論與未來展望…………………………………………………………… 80 第1節 討論………………………………………………………………………… 80 第2節 結論………………………………………………………………………… 85 參考文獻…………………………………………………………………………… 86 表…………………………………………………………………………………… 91 附錄………………………………………………………………………………… 95
dc.language.isozh-TW
dc.subject致病因子zh_TW
dc.subject奇異變形桿菌zh_TW
dc.subjectenvCzh_TW
dc.subject銅zh_TW
dc.subject肽聚醣水解蛋白活化劑zh_TW
dc.subject細胞分裂zh_TW
dc.subject壓力抵抗zh_TW
dc.subjectProteus mirabilisen
dc.subjectvirulence factorsen
dc.subjectstress resistanceen
dc.subjectcell divisionen
dc.subjectmurein hydrolase activatoren
dc.subjectcopperen
dc.subjectenvCen
dc.title"尿道致病性奇異變形桿菌中肽聚醣水解蛋白之活化劑基因, envC, 抗銅及調控毒力因子之研究"zh_TW
dc.titleInvestigation of envC, encoding a murein hydrolase activator, in copper resistance and virulence factor expression of uropathogenic Proteus mirabilisen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴信志(Hsin-Chih Lai),楊翠青(Tsuey-Ching Yang)
dc.subject.keyword奇異變形桿菌,envC,銅,肽聚醣水解蛋白活化劑,細胞分裂,壓力抵抗,致病因子,zh_TW
dc.subject.keywordProteus mirabilis,envC,copper,murein hydrolase activator,cell division,stress resistance,virulence factors,en
dc.relation.page103
dc.identifier.doi10.6342/NTU202204046
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
dc.date.embargo-lift2022-10-14-
Appears in Collections:醫學檢驗暨生物技術學系

Files in This Item:
File SizeFormat 
U0001-2609202209555100.pdf
Access limited in NTU ip range
3.95 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved