請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84189完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳沛隆(Pei-Lung Chen) | |
| dc.contributor.author | Ying-Ju Chen | en |
| dc.contributor.author | 陳盈儒 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:06:01Z | - |
| dc.date.copyright | 2022-07-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-04 | |
| dc.identifier.citation | 1. Osborne, J.P., A. Fryer, and D. Webb, Epidemiology of tuberous sclerosis. Annals of the New York Academy of Sciences, 1991. 615(1): p. 125-127. 2. Crino, P.B., K.L. Nathanson, and E.P. Henske, The tuberous sclerosis complex. New England Journal of Medicine, 2006. 355(13): p. 1345-1356. 3. Shepherd, C.W., et al. Causes of death in patients with tuberous sclerosis. in Mayo Clinic Proceedings. 1991. Elsevier. 4. Northrup, H., et al., Tuberous sclerosis complex. 2021. 5. Hwang, S.-K., et al., Everolimus improves neuropsychiatric symptoms in a patient with tuberous sclerosis carrying a novel TSC2 mutation. Molecular brain, 2016. 9(1): p. 1-12. 6. Northrup, H., et al., Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatric neurology, 2021. 123: p. 50-66. 7. Dabora, S.L., et al., Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. The American Journal of Human Genetics, 2001. 68(1): p. 64-80. 8. Northrup, H., et al., Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatric neurology, 2013. 49(4): p. 243-254. 9. Ewalt, D.H., et al., Renal lesion growth in children with tuberous sclerosis complex. The Journal of urology, 1998. 160(1): p. 141-145. 10. Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine, 2015. 17(5): p. 405-423. 11. Lechuga, L. and D.N. Franz, Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert review of Neurotherapeutics, 2019. 19(10): p. 913-925. 12. Resta, R., et al., A new definition of genetic counseling: National Society of Genetic Counselors’ task force report. Journal of genetic counseling, 2006. 15(2): p. 77-83. 13. Nelson, C.P. and M.G. Sanda, Contemporary diagnosis and management of renal angiomyolipoma. The Journal of urology, 2002. 168(4): p. 1315-1325. 14. Eijkemans, M.J., et al., Long-term follow-up assessing renal angiomyolipoma treatment patterns, morbidity, and mortality: an observational study in tuberous sclerosis complex patients in the Netherlands. American Journal of Kidney Diseases, 2015. 66(4): p. 638-645. 15. Zhang, M.-L. and Z.-H. Zhou, ML-KNN: A lazy learning approach to multi-label learning. Pattern recognition, 2007. 40(7): p. 2038-2048. 16. Cherkassky, V. and Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks, 2004. 17(1): p. 113-126. 17. Belgiu, M. and L. Drăguţ, Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, 2016. 114: p. 24-31. 18. Hill, D.L., et al., Medical image registration. Physics in medicine & biology, 2001. 46(3): p. R1. 19. Besl, P.J. and N.D. McKay. Method for registration of 3-D shapes. in Sensor fusion IV: control paradigms and data structures. 1992. Spie. 20. Avants, B.B., N. Tustison, and G. Song, Advanced normalization tools (ANTS). Insight j, 2009. 2(365): p. 1-35. 21. Klein, S., et al., Elastix: a toolbox for intensity-based medical image registration. IEEE transactions on medical imaging, 2009. 29(1): p. 196-205. 22. Balakrishnan, G., et al., VoxelMorph: a learning framework for deformable medical image registration. IEEE transactions on medical imaging, 2019. 38(8): p. 1788-1800. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84189 | - |
| dc.description.abstract | 結節性硬化症 (Tuberous sclerosis complex , TSC) 是一種體染色體顯性遺傳病,每 6,000 至 10,000 名活產嬰兒中就有一人患病,此疾病的致病基因是TSC1和TSC2是負責調控細胞生長的基因,當失去功能時,便無法抑制mTOR,導致細胞生長無法踩煞車,使身體各個器官都會產生腫瘤,而我研究的主題之一就是長在腎臟的腫瘤-腎血管肌脂肪瘤(Renal Angiomyolipoma)。腎血管肌脂肪瘤能會因內源性或外力撞擊破裂,造成嚴重的內出血,這是結節性硬化症主要的死因之一。如果放任腫瘤持續變大,會使腎臟變形,壓迫到其他器官,影響到腎功能。Renal Angiomyolipoma(AML)的治療方法為服用mTOR抑制劑- Everolimus,然而這個藥物若要健保給付有一套規範。Renal Angiomyolipoma是很多型態的腫瘤,要判斷是否合乎用藥標準或觀察用藥效果是件非常耗時的工作,因此希望透過這些研究減輕人力需求。 第一部分研究主題是關於Renal Angiomyolipoma的醫學影像研究。基於醫學影像AI的崛起,可以自動化標出(segmentation)腎臟及腫瘤,有已標記的影像後,希望能用AI的方式自動去比對一個病人前後次的影像 - registraion(對位),這是一種將兩個影像對齊的技術,透過這個技術,觀察兩次影像的差異。研究有用了幾個對位的方法包括Advanced Normalization Tools(ANTS),voxelmorph對位,視覺化對位的結果,並且我設計了自動化整個腫瘤判讀流程。希望能做到當醫師輸入一個病人新的影像檔案後,自動化分割,將腫瘤自動分顆,並算出總共有幾顆腫瘤,每個腫瘤的位子和體積大小,並與上次影像做比較,到達節省人力的效果,這是醫學影像部分。 第二部分研究主題是希望能藉由長期收集到的臨床數據用機器學習的方法去預測疾病。台大結節硬化症整合門診迄今已有10年以上的歷史,累積了100多人的臨床數據,這次實驗共有116個病人,共26項臨床特徵,希望能藉由這些數據用機器學習的方法(KNN,SVM,Random Forest,Bagging AdaBoost)來預測病人未來是否有腎出血的風險,和用上述資料看是否能預測病人基因型,雖然NGS技術不像過往那麼高不可攀,但從抽血到有正式的臨床報告也是需要一個月以上的時間,希望藉由機器學習的方式,可以直接藉由臨床的數據及影像推測出病人的基因型,在進一步的用臨床數據去預測未來病人是否有腎出血的可能性。 | zh_TW |
| dc.description.abstract | Tuberous sclerosis complex (TSC) is a chromosomal dominant genetic disease affecting one in every 6,000 to 10,000 live births. The disease is caused by the genes TSC1 and TSC2 responsible for regulating cell growth. When it loses function, mTOR cannot be inhibited, resulting in cell growth unable to step on the brakes, causing tumors in various. One of my research topics is the tumor that grows in the kidney - Renal Angiomyolipoma (AML) . Renal angiomyolipoma can rupture due to endogenous or external impact, resulting in severe internal bleeding, which is one of the main causes of death in tuberous sclerosis complex patients. If the tumor continues to grow, it will deform the kidney, compress other organs, and affect kidney function. The treatment for Renal Angiomyolipoma is to take the mTOR inhibitor - Everolimus, but there are several critera for this drug to be covered by health insurance. Renal Angiomyolipoma is a tumor of many types and interpretation is time-consuming. Based on the rise of AI in medical imaging, kidneys and tumors can be automatically segmented. We hoped that AI can be used to compare the images of a patient before and after automatically. Registration (alignment). It is a technique to distinguish difference between two images. Several methods of alignment have been used in the research including Advanced Normalization Tools (ANTS), voxelmorph alignment, and visualizing the results of alignment. I designed to automate the entire tumor interpretation process. We hoped that when the doctor inputs a new image file of a patient, it can be automatically segmented, the tumor can be automatically divided into particles, and the total number of tumors, the location and size of each tumor can be calculated, and compared with the previous image. The integrated clinic for tuberous sclerosis in National Taiwan University Hospital has been open 10 years, and has accumulated clinical datas of more than 100 people. This experiment has a total of 116 patients with a total of 26 clinical characteristics. , Bagging Boost, Random Forest) to predict whether the patient has the risk of renal hemorrhage in the future, and use the above data to see whether the patient's genotype can be predicted. The report also takes a month. It is hoped that by means of machine learning, the patient's genotype can be directly inferred from clinical data and images. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:06:01Z (GMT). No. of bitstreams: 1 U0001-0107202212302700.pdf: 1684810 bytes, checksum: a2560d08237d167e3aba51aa3322fb8b (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xii Chapter 1 研究背景與動機 1 1.1 結節硬化症之疾病介紹 1 1.2 結節硬化症之臨床表徵 2 1.2.1 皮膚表徵 2 1.2.2 神經與精神表徵 4 1.2.3 心臟表徵 5 1.2.4 肺臟表徵 5 1.2.5 腎臟表徵 6 1.2.6 眼睛表徵 6 1.3 結節硬化症之臨床診斷及檢查 6 1.3.1 臨床診斷標準 6 1.3.2 基因診斷標準 7 1.4 結節硬化症之治療現況 8 1.5 遺傳諮詢 9 1.6 研究動機 9 1.6.1 腎血管肌脂肪瘤的醫學影像部分 9 1.6.2 結節硬化症病人與機器學習部分 11 Chapter 2 研究方法 12 2.1 研究對象來源 12 2.2 臨床資料蒐集 12 2.3 影像來源與取得 12 2.3.1 影像來源 12 2.3.2 影像去個資 12 2.4 影像標記 13 2.4.1 影像標記設備 13 2.4.2 影像標記軟體 13 2.4.3 影像標記目標 13 2.5 臨床資料分析方法 14 2.5.1 程式語言 14 2.5.2 資料預處理: 14 2.5.3 機器學習方法 16 2.6 醫學影像對位(Registration) 21 2.6.1 醫學影像對位方法 21 2.6.2 醫學影像對位步驟 22 2.6.3 VoxelMorph介紹 23 2.6.4 Renal Angiomyolipoma(腎臟血管肌脂肪瘤)分顆自動化 25 Chapter 3 研究結果 27 3.1 機器學習結果 27 3.1.1 基因型與臨床特徵之機器學習結果 27 3.1.2 臨床特徵與預測腎出血與之機器學習結果 42 3.2 腎血管肌脂肪瘤之醫學影像結果 48 3.2.1 腎血管肌脂肪瘤之Everolimus用藥後結果 48 3.2.2 腎血管肌脂肪瘤之人工對位結果 49 3.2.3 腎血管肌脂肪瘤之voxelmorph對位結果 50 3.2.4 腎血管肌脂肪瘤之自動分割腫瘤 53 3.2.5 腎血管肌脂肪瘤之自動分割腫瘤後對位結果 58 3.2.6 遺傳諮詢案例 60 Chapter 4 討論 62 4.1 臨床特徵之機器學習 62 4.2 腎血管肌脂肪瘤討論 63 Chapter 5 結論 66 5.1 臨床特徵之機器學習 66 5.2 腎血管肌脂肪瘤影像 66 REFERENCE 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | Tuberous sclerosis complex | zh_TW |
| dc.subject | Machine learning | zh_TW |
| dc.subject | Renal Angiomyolipoma | zh_TW |
| dc.title | 以人工智慧為基礎之影像處理分析而研究結節硬化症之腎臟病灶 | zh_TW |
| dc.title | Artificial intelligence (AI)-based image processing and analysis for studying renal lesions of tuberous sclerosis complex (TSC) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳志宏(Chih-Horng Wu),王碩盟(Sho-Mon Wang) | |
| dc.subject.keyword | Tuberous sclerosis complex,Renal Angiomyolipoma,Machine learning, | zh_TW |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202201237 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-08 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0107202212302700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
