請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84177完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐莞曾(Wan-Tseng Hsu) | |
| dc.contributor.author | Yueh-Chen Chen | en |
| dc.contributor.author | 陳玥蓁 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:05:50Z | - |
| dc.date.copyright | 2022-10-20 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-27 | |
| dc.identifier.citation | 1 Caplan, A. I. Mesenchymal Stem Cells. Journal of Orthopaedic Research 9, 641-650 (1991). 2 Friedenstein, A. J. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinetics 3, 393-403 (1970). 3 Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317 (2006). 4 da Silva Meirelles, L. et al. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119, 2204-2213, doi:10.1242/jcs.02932 (2006). 5 Patricia A. Zuk, M. Z., Hiroshi Mizuno, Jerry Huang, J. William Futrell, Adam J. Katz, Prosper Benhaim, H. Peter Lorenz, and Marc H. Hedrick. Multilineage Cells from Human Adipose Tissue- Implications for Cell-Based Therapies. Tissue Engineering 7, 211-228 (2001). 6 Yoshimura, K. et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208, 64-76 (2006). 7 Fraser, J. K. Adipose-derived stem cells. Mesenchymal Stem Cells. Humana Press, 59-67 (2008). 8 Locke, M. et al. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 79, 235-244 (2009). 9 Zuk, P. Adipose-Derived Stem Cells in Tissue Regeneration: A Review. ISRN Stem Cells 2013, 1-35 (2013). 10 van Dongen, J. A. et al. Adipose tissue-derived extracellular matrix hydrogels as a release platform for secreted paracrine factors. J Tissue Eng Regen Med 13, 973-985 (2019). 11 El-Jawhari, J. J. et al. Mesenchymal stem cells, autoimmunity and rheumatoid arthritis. QJM 107, 505-514 (2014). 12 Scuderi, N. et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transplant 22, 779-795 (2013). 13 Park, M. J. et al. Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant 24, 2367-2377 (2015). 14 Yanez, R. et al. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24, 2582-2591 (2006). 15 Constantinou, C. et al. Human pluripotent stem cell-derived cardiomyocytes as a target platform for paracrine protection by cardiac mesenchymal stromal cells. Sci Rep 10, 13016 (2020). 16 Tang, Y. L. et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80, 229-236; discussion 236-227 (2005). 17 Perez-Ilzarbe, M. et al. Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur J Heart Fail 10, 1065-1072 (2008). 18 Mirotsou, M. et al. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50, 280-289 (2011). 19 Arpaia, N. et al. A Distinct Function of Regulatory T Cells in Tissue Protection. Cell 162, 1078-1089 (2015). 20 Ko, J. H. et al. Mesenchymal Stem and Stromal Cells Harness Macrophage-Derived Amphiregulin to Maintain Tissue Homeostasis. Cell Reports 30, 3806-3820.e3806 (2020). 21 Gallo, S. et al. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci (Lond) 129, 1173-1193 (2015). 22 Shraim, B. A. et al. The role of epidermal growth factor receptor family of receptor tyrosine kinases in mediating diabetes-induced cardiovascular complications. Frontiers in Pharmacology, 1928 (2021). 23 Ma, X. J. et al. The role and possible molecular mechanism of valproic acid in the growth of MCF-7 breast cancer cells. Croat Med J 58, 349-357 (2017). 24 Accornero, F. et al. Placental growth factor as a protective paracrine effector in the heart. Trends in cardiovascular medicine 21, 220-224 (2011). 25 Zhang, Y. et al. Treatment with placental growth factor attenuates myocardial ischemia/reperfusion injury. PLoS One 13, e0202772 (2018). 26 Lin, Y. et al. Cardioprotective effects of rat adipose‑derived stem cells differ under normoxic/physioxic conditions and are associated with paracrine factor secretion. Int J Mol Med 45, 1591-1600 (2020). 27 Askevold, E. T. et al. Interleukin-6 signaling, soluble glycoprotein 130, and inflammation in heart failure. Curr Heart Fail Rep 11, 146-155 (2014). 28 Park, C.-Y. et al. Cardiac stem cell secretome protects cardiomyocytes from hypoxic injury partly via monocyte chemotactic protein-1-dependent mechanism. International journal of molecular sciences 17, 800 (2016). 29 Stroo, I. et al. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury. PloS one 10, e0123203 (2015). 30 Hsu, W. T. et al. Butyrate modulates adipose-derived stem cells isolated from polygenic obese and diabetic mice to drive enhanced immunosuppression. Cytotherapy 23, 567-581 (2021). 31 Maggioni, A. P. et al. The real-world evidence of heart failure: findings from 41 413 patients of the ARNO database. Eur J Heart Fail 18, 402-410 (2016). 32 Jenca, D. et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail 8, 222-237 (2021). 33 Pfeffer, M. A. et al. Effect of Captopril on Mortality and Morbidity in Patients with Left Ventricular Dysfunction after Myocardial Infarction. New England Journal of Medicine 327, 669-677 (1992). 34 Pfeffer, M. A. et al. Valsartan, Captopril, or Both in Myocardial Infarction Complicated by Heart Failure, Left Ventricular Dysfunction, or Both. New England Journal of Medicine 349, 1893-1906 (2003). 35 Pfeffer, M. A. et al. Impact of Sacubitril/Valsartan Versus Ramipril on Total Heart Failure Events in the PARADISE-MI Trial. Circulation 145, 87-89 (2022). 36 Bahit, M. C. et al. Post-Myocardial Infarction Heart Failure. JACC Heart Fail 6, 179-186 (2018). 37 Hare, J. M. et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308, 2369-2379 (2012). 38 Florea, V. et al. Dose Comparison Study of Allogeneic Mesenchymal Stem Cells in Patients With Ischemic Cardiomyopathy (The TRIDENT Study). Circ Res 121, 1279-1290 (2017). 39 Afzal, M. R. et al. Adult Bone Marrow Cell Therapy for Ischemic Heart Disease: Evidence and Insights From Randomized Controlled Trials. Circ Res 117, 558-575 (2015). 40 Eggenhofer, E. et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol 3, 297 (2012). 41 Serena, C. et al. Obesity and Type 2 Diabetes Alters the Immune Properties of Human Adipose Derived Stem Cells. Stem Cells 34, 2559-2573 (2016). 42 Zhou, Y. et al. Strategies to retain properties of bone marrow-derived mesenchymal stem cells ex vivo. Ann N Y Acad Sci 1409, 3-17 (2017). 43 Hu, C. et al. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med 22, 1428-1442 (2018). 44 Francois, M. et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20, 187-195 (2012). 45 Gorin, C. et al. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion. Stem Cells Transl Med 5, 392-404 (2016). 46 Wisel, S. et al. Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther 329, 543-550 (2009). 47 Sun, X. et al. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS One 9, e90667 (2014). 48 Ke, X. et al. An injectable chitosan/dextran/β-glycerophosphate hydrogel as cell delivery carrier for therapy of myocardial infarction. Carbohydrate polymers 229, 115516 (2020). 49 Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nature materials 16, 303-308 (2017). 50 Salminen, A. et al. Neuronal apoptosis induced by histone deacetylase inhibitors. Brain Res Mol Brain Res 61, 203-206 (1998). 51 Thangaraju, M. et al. GPR109A Is a G-protein–Coupled Receptor for the Bacterial Fermentation Product Butyrate and Functions as a Tumor Suppressor in Colon. Cancer Research 69, 2826-2832 (2009). 52 Bindels, L. B. et al. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 34, 226-232 (2013). 53 Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications 6, 6734 (2015). 54 Davie, J. R. Inhibition of Histone Deacetylase Activity by Butyrate. The Journal of Nutrition 133, 2485S-2493S (2003). 55 Lührs, H. et al. Butyrate Inhibits NF-κB Activation in Lamina Propria Macrophages of Patients with Ulcerative Colitis. Scandinavian Journal of Gastroenterology 37, 458-466 (2002). 56 Klampfer, L. et al. Inhibition of interferon γ signaling by the short chain fatty acid butyrate. Molecular Cancer Research 1, 855-862 (2003). 57 Schwab, M. et al. PPARγ is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis 11, 1801-1811 (2006). 58 Couto, M. R. et al. Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharmacological Research 159, 104947 (2020). 59 吳佳蓁。丁酸調控脂肪幹細胞之免疫抑制能力與機轉探討。國立臺灣大學醫學院藥學專業學院藥學研究所碩士論文,未出版,臺北 (2020)。 60 Yang, J. et al. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 130, 36-48 (2019). 61 Koko, K. R. et al. Histone Deacetylase Inhibitors Enhance Cytotoxicity Towards Breast Tumors While Preserving the Wound-Healing Function of Adipose-Derived Stem Cells. Ann Plast Surg 78, 728-735 (2017). 62 Cao, D. J. et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A 108, 4123-4128 (2011). 63 McKinsey, T. A. Targeting inflammation in heart failure with histone deacetylase inhibitors. Molecular medicine 17, 434-441 (2011). 64 Mariam Ghafoor, M. K., Urooba Nadeem, and Aliya N. Husain. Educational Case: Myocardial Infarction: Histopathology and Timing of Changes. Academic Pathology 7 (2020). 65 Whelan, R. S. et al. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72, 19-44 (2010). 66 Bulluck, H. et al. Reducing myocardial infarct size: challenges and future opportunities. Heart 102, 341-348 (2016). 67 Inserte, J. et al. Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovascular research 96, 23-31 (2012). 68 Yellon, D. M. et al. Myocardial Reperfusion Injury. New England Journal of Medicine 357, 1121-1135 (2007). 69 Zhou, W. et al. SnapShot: necroptosis. Cell 158, 464-464. e461 (2014). 70 Kawaguchi, M. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594-604 (2011). 71 Dong, Y. et al. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 136, 27-41 (2019). 72 Kajstura, J. et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74, 86-107 (1996). 73 Bradbury, D. et al. Measurement of the ADP: ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. Journal of immunological methods 240, 79-92 (2000). 74 Zorov, D. B. et al. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94, 909-950 (2014). 75 Marshall, C. et al. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. American journal of respiratory cell and molecular biology 15, 633-644 (1996). 76 Lemarie, A. et al. Specific disintegration of complex II succinate: ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death & Differentiation 18, 338-349 (2011). 77 Chen, Q. M. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med 179, 133-143 (2022). 78 Tanai, E. et al. Pathophysiology of Heart Failure. Compr Physiol 6, 187-214 (2015). 79 Swirski, F. K. et al. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nature Reviews Immunology 18, 733-744 (2018). 80 Bauer, M. et al. Adult cardiac progenitor cell aggregates exhibit survival benefit both in vitro and in vivo. PLoS One 7, e50491 (2012). 81 Brodarac, A. et al. Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation. Stem Cell Res Ther 6, 83 (2015). 82 William C. Claycomb, N. A. L. J., Beverly S. Stallworth, Daniel B. Egeland, Joseph B. Delcarpio, Anthony Bahinski, and Nicholas J. Izzo JR. HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Cell Biology 95, 2979-2984 (1998). 83 Peter M. Kang, A. H., Hiroki Aoki, Anny Usheva, Seigo Izumo. Morphological and Molecular Characterization of Adult Cardiomyocyte Apoptosis During Hypoxia and Reoxygenation. Circulation Research 87, 118-125 (2000). 84 Giugliano, R. P. et al. Selecting the Best Reperfusion Strategy in ST-Elevation Myocardial Infarction. Circulation 108, 2828-2830 (2003). 85 Ovize, M. et al. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular research 87, 406-423 (2010). 86 Investigators, T. A. A. Pexelizumab for Acute ST-Elevation Myocardial Infarction in Patients Undergoing Primary Percutaneous Coronary InterventionA Randomized Controlled Trial. JAMA 297, 43-51 (2007). 87 Atar, D. et al. Effect of Intravenous FX06 as an Adjunct to Primary Percutaneous Coronary Intervention for Acute ST-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology 53, 720-729 (2009). 88 WC, C. MEA Application Note: HL-1 Cardiac Cell Line by Dr. W. Claycomb. . (2021). 89 Bader, A. M. et al. Mechanisms of paracrine cardioprotection by cord blood mesenchymal stromal cells. Eur J Cardiothorac Surg 45, 983-992 (2014). 90 Ulmer, B. M. et al. Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism. Biochim Biophys Acta Mol Cell Res 1867, 118471 (2020). 91 Onukwufor, J. O. et al. Physiologic Implications of Reactive Oxygen Species Production by Mitochondrial Complex I Reverse Electron Transport. Antioxidants (Basel) 8 (2019). 92 Mizuta, Y. et al. Exosomes from adipose tissue-derived mesenchymal stem cells ameliorate histone-induced acute lung injury by activating the PI3K/Akt pathway in endothelial cells. Stem Cell Res Ther 11, 508 (2020). 93 Liu, X. et al. Exosomes from mesenchymal stem cells overexpressing MIF enhance myocardial repair. Journal of cellular physiology 235, 8010-8022 (2020). 94 Patrick C.H. Hsieh, M. E. D., Laura K. Lisowski, et al. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu. Rev. Physiol. 68, 51-66 (2006). 95 Turer, A. T. et al. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 106, 360-368 (2010). 96 Rovira Gonzalez, Y. I. et al. In vitro cytokine licensing induces persistent permissive chromatin at the Indoleamine 2,3-dioxygenase promoter. Cytotherapy 18, 1114-1128 (2016). 97 Ong, S. B. et al. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 78, 23-34 (2015). 98 Frangogiannis, N. G. et al. The inflammatory response in myocardial infarction. Cardiovascular Research 53, 31-47 (2002). 99 Yamaguchi, S. et al. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci Rep 5, 16295 (2015). 100 Gregor, M. F. et al. Inflammatory mechanisms in obesity. Annual review of immunology 29, 415-445 (2011). 101 Fain, J. N. et al. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145, 2273-2282 (2004). 102 Oñate, B. et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC genomics 14, 1-12 (2013). 103 Karnam, K. et al. HDAC6 inhibitor accelerates wound healing by inhibiting tubulin mediated IL-1β secretion in diabetic mice. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1866, 165903 (2020). 104 Hull, E. E. et al. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. BioMed Research International 2016, 8797206 (2016). 105 Barile, L. et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc Res 114, 992-1005 (2018). 106 Liu, L. et al. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biology International 37, 551-560 (2013). 107 Hu, X. et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. The Journal of Thoracic and Cardiovascular Surgery 135, 799-808 (2008). 108 Park, B.-W. et al. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor–engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Science Advances 6, eaay6994 (2020). 109 Zhang, X. et al. Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem cell research & therapy 12, 1-13 (2021). 110 Barile, L. et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovascular research 114, 992-1005 (2018). 111 Kang, K. et al. Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via Akt signaling pathway following myocardial infarction. Stem Cells International 2015 (2015). 112 Eimre, M. et al. Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. Biochim Biophys Acta 1777, 514-524 (2008). 113 Monge, C. et al. Comparative analysis of the bioenergetics of adult cardiomyocytes and nonbeating HL-1 cells: respiratory chain activities, glycolytic enzyme profiles, and metabolic fluxes. Can J Physiol Pharmacol 87, 318-326 (2009). 114 Morrissette-McAlmon, J. et al. Adipose-derived perivascular mesenchymal stromal/stem cells promote functional vascular tissue engineering for cardiac regenerative purposes. J Tissue Eng Regen Med 12, e962-e972 (2018). 115 Portal, L. et al. A model of hypoxia-reoxygenation on isolated adult mouse cardiomyocytes: characterization, comparison with ischemia-reperfusion, and application to the cardioprotective effect of regular treadmill exercise. Journal of cardiovascular pharmacology and therapeutics 18, 367-375 (2013). 116 Maddaford, T. G. et al. A model of low-flow ischemia and reperfusion in single, beating adult cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology 277, H788-H798 (1999). 117 Scott, S. R. et al. Bone marrow- or adipose-mesenchymal stromal cell secretome preserves myocardial transcriptome profile and ameliorates cardiac damage following ex vivo cold storage. Journal of Molecular and Cellular Cardiology 164, 1-12 (2022). 118 Blankenberg, F. G. et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci U S A 95, 6349-6354 (1998). 119 Xing, L. et al. Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem Cell Research & Therapy 5, 101 (2014). 120 Soares Martins, T. et al. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One 13, e0198820 (2018). 121 Kalluri, R. et al. The biology, function, and biomedical applications of exosomes. Science 367 (2020). 122 Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of extracellular vesicles 7, 1535750 (2018). 123 Guay, C. et al. Exosomes as new players in metabolic organ cross‐talk. Diabetes, Obesity and Metabolism 19, 137-146 (2017). 124 Hanahan, D. et al. Hallmarks of cancer: the next generation. cell 144, 646-674 (2011). 125 Mizuta, Y. et al. Exosomes from adipose tissue-derived mesenchymal stem cells ameliorate histone-induced acute lung injury by activating the PI3K/Akt pathway in endothelial cells. Stem cell research & therapy 11, 1-12 (2020). 126 Cui, X. et al. Exosomes from adipose-derived mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through Wnt/β-catenin signaling pathway. Journal of cardiovascular pharmacology 70, 225 (2017). 127 Ono, K. et al. Enhanced Expression of Hepatocyte Growth Factor/c-Met by Myocardial Ischemia and Reperfusion in a Rat Model. Circulation 95, 2552-2558 (1997). 128 Kitta, K. et al. Hepatocyte growth factor protects cardiac myocytes against oxidative stress-induced apoptosis. Free Radical Biology and Medicine 31, 902-910 (2001). 129 Wang, Y. et al. Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. Journal of Molecular and Cellular Cardiology 37, 1041-1052 (2004). 130 Nakamura, T. et al. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. The Journal of clinical investigation 106, 1511-1519 (2000). 131 Waldecker, M. et al. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. The Journal of Nutritional Biochemistry 19, 587-593 (2008). 132 Miller, A. A. et al. Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Cancer Clin Oncol 23, 1283-1287 (1987). 133 Daniel, P. et al. Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts. Clinica chimica acta; international journal of clinical chemistry 181, 255-263 (1989). 134 Remiszewski, S. W. et al. N-hydroxy-3-phenyl-2-propenamides as novel inhibitors of human histone deacetylase with in vivo antitumor activity: discovery of (2E)-N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl]phenyl]-2-propenamide (NVP-LAQ824). J Med Chem 46, 4609-4624 (2003). 135 You, B. R. et al. Trichostatin A induces apoptotic cell death of HeLa cells in a Bcl-2 and oxidative stress-dependent manner. Int J Oncol 42, 359-366 (2013). 136 Sanderson, L. et al. Plasma pharmacokinetics and metabolism of the histone deacetylase inhibitor trichostatin A after intraperitoneal administration to mice. Drug metabolism and disposition: the biological fate of chemicals 32, 1132-1138 (2004). 137 Heltweg, B. et al. Subtype Selective Substrates for Histone Deacetylases. Journal of Medicinal Chemistry 47, 5235-5243 (2004). 138 Cook, C. et al. Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Human Molecular Genetics 21, 2936-2945 (2012). 139 Göttlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO Journal 20, 6969-6978 (2001). 140 Dutta, S. et al. Functional half-life is a meaningful descriptor of steady-state pharmacokinetics of an extended-release formulation of a rapidly cleared drug : as shown by once-daily divalproex-ER. Clin Drug Investig 26, 681-690 (2006). 141 Zaccara, G. et al. Clinical pharmacokinetics of valproic acid--1988. Clin Pharmacokinet 15, 367-389 (1988). 142 Lee, S. C. et al. Essential role of insulin-like growth factor 2 in resistance to histone deacetylase inhibitors. Oncogene 35, 5515-5526 (2016). 143 Curtin, M. L. et al. Succinimide hydroxamic acids as potent inhibitors of histone deacetylase (HDAC). Bioorganic & Medicinal Chemistry Letters 12, 2919-2923 (2002). 144 Park, I.-H. et al. Trichostatin A Inhibits Epithelial Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium. PLOS ONE 11, e0162058 (2016). 145 Furchert, S. E. et al. Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. International Journal of Cancer 120, 1787-1794 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84177 | - |
| dc.description.abstract | 研究背景與目的 冠狀動脈阻塞導致缺氧的心肌短時間內大量死亡,稱為心肌梗塞 (myocardial infarction),當前臨床處置主要為經皮冠狀動脈介入術,然而缺血再灌注傷害,致使部分病人預後不佳,可能併發心臟衰竭。 脂肪幹細胞 (adipose-derived stem cell, ASC) 可透過旁分泌生物活性因子,調控梗塞處的心肌發炎反應並進行再生修復,具有縮減缺血再灌注氧化壓力及救援瀕死的心肌細胞之潛能。然而,心肌梗塞病人多半有代謝症候群的共病,自體ASC功能減損,因此需發展強化ASC的方法,並應用其條件培養基 (conditioned media, CM) 於心肌保護。 研究方法與結果 本研究第一部份以心肌細胞建立模擬缺血再灌注 (simulated ischemia reperfusion, SIR) 的療效測試平台,分析收集自代謝症候群疾病模式小鼠Tsumura, Suzuki, obese diabetes (TSOD) 的ASC-CM之心肌保護效果,結果指出ASCTSOD-CM有效回復HL-1心肌細胞的代謝活性 (48% vs 33%, p < 0.05),卻會加劇心肌細胞總體凋亡 (2.53倍 vs 1.86倍, p < 0.05)。因此,第二部分研究進一步發展強化ASC心肌保護潛能的方法開發,分別以6種化合物合併雙重細胞激素預處理收集多種ASC-CM,稱為優化CM,經由定性與定量分析所含的滋養因子,篩選候選CM,未經預處理的CM則稱為基礎CM (ASCBALB/c-CTL CM)。功能性測試結果指出基礎CM及優化CM均能有效回復損傷心肌細胞之代謝活性 (CTL CM = 63%, BA 750 CM = 59%, SAHA 0.5 CM = 55%, p < 0.05),減少再灌注時細胞初期和總體凋亡比例 (SIR = 3.2 倍, CTL CM = 1.93 倍, BA 750 CM = 1.85 倍, SAHA 0.5 CM = 2.18 倍, p < 0.05)。進一步我們利用mtSOX螢光染劑標定粒線體的超氧化物,以高通量影像系統所偵測的螢光強度定量超氧化物的生成量,結果顯示特定組別之條件培養基可降低粒線體超氧化物的生成 (SIR = 24393, CTL CM = 23438, SAHA 0.5 CM = 23463, p < 0.05)。 結論 本研究以ASCTSOD-CM療效分析結果推導出具代謝症候群共病之病人自體ASC的治療潛能不佳,因此開發ASC策略,優化CM於模擬缺血再灌注時可有效救援心肌細胞,然而,基礎CM與優化CM療效並無顯著差異。本研究可作為應用及優化ASC條件培養基於開發幹細胞治療產品之參考,而未來應將發展重心放在提高CM的濃度與療效穩定性,並可深入探討預處理策略調控ASC功能的機轉,提升促存活因子之分泌。 | zh_TW |
| dc.description.abstract | Background and Research Aim The blockage of the coronary arteries leads to the massive death of the ischemia myocardium in a short period called myocardial infarction (MI). The dominant treatment, percutaneous coronary intervention, can temporarily treat MI. However, ischemia and reperfusion injury results in a poor prognosis among some patients, which may contribute to complicated heart failure. Adipose-derived stem cells (ASCs) and their paracrine factors simultaneously modulate the inflammatory responses and repair the infarcted area. ASCs may exert their potential when reducing oxidative stress induced by a reperfused blood flow to salvage dying cardiomyocytes. Patients with MI often have comorbidities such as metabolic syndrome or other cardiovascular disorders, which are responsible for insufficient ASCs. Consequently, researchers must devise methods to optimize autologous ASC function and use ASC-conditioned media (CM) for cardioprotection. Methods and Results In the first part of our study, we developed a simulated ischemia-reperfusion (SIR) platform. We analyzed the cardioprotective effect of ASC-CM derived from Tsumura, Suzuki, obese diabetes (TSOD) mice in vitro. We named ASC-CM derived from TSOD mice ASCTSOD-CM. The ASCTSOD-CM could significantly restore the metabolic activity of HL-1 cardiomyocytes (48% vs 33%, p < 0.05), but exacerbated the total apoptosis (2.53 vs 1.86, p < 0.05). Therefore, in the second part of the study, we demonstrated that the ASCBALB/c could protect human umbilical vein endothelial cells from high-intensity oxidative injury. To further enhance the cardioprotective function of ASCs, we primed the ASCs with dual cytokines and six compounds through high throughput screening. The optimized CM was selected after qualitative and quantitative analyses of trophic factors. We called the ASC-CM derived from BALB/c mice without priming ASCBALB/c-CTL CM, abbreviated CTL CM. The CTL CM and priming CM could significantly restore the metabolic activity of injured cardiomyocytes (CTL CM = 63%, BA 750 CM = 59%, SAHA 0.5 CM = 55%, p < 0.05). Moreover, the application of CM attenuated the excessive apoptosis caused by ischemia and reperfusion injury (SIR = 3.2, CTL CM = 1.93, BA 750 CM = 1.85, SAHA 0.5 CM = 2.18, p < 0.05). After labeling the mitochondrial superoxide with mtSOX dye, we detected and quantified the mtSOX fluorescence using a high-content imaging system. The result indicated that the specific groups of CM significantly reduced the generation of mitochondrial superoxide (SIR = 24393, CTL CM = 23438, SAHA 0.5 CM = 23463, p < 0.05). Conclusion ASCs from MI donors complicated with metabolic syndrome have limited utility; thus, we developed an ASC priming strategy. The optimized CM efficiently rescued the damaged cardiomyocytes; however, the priming CM was not superior to the original CMs. Moreover, our findings could be applied to develop novel ASC-based products. Future research should improve the concentration and effectiveness of ASC-CM, and explore the mechanism underlying the effects of pro-survival factors. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:05:50Z (GMT). No. of bitstreams: 1 U0001-2609202211310000.pdf: 36345074 bytes, checksum: eea5f909f6443bdb7bcacc004a592ed2 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v 圖目錄 x 表目錄 xi 第一章 緒論 1 壹、 幹細胞簡介 1 一、 幹細胞簡介 1 二、 脂肪幹細胞 (adipose-derived stem cell, ASC) 概論 2 (一) 間葉幹細胞 (mesenchymal stem cell, MSC) 起源與組織來源 2 (二) 脂肪組織取得間葉幹細胞之發展歷程 2 (三) 脂肪幹細胞的生物特性 3 三、 間葉幹細胞的旁分泌作用及潛能 4 (一) MSC的旁分泌修復機制 4 (二) 具備心肌保護潛能之因子:amphiregulin、HGF、EGF、VEGF、PLGF、IL-6和MCP-1 5 四、 發展及應用MSC於治療心肌梗塞之策略 6 五、 MSC臨床治療困境與優化方案 8 (一) 目前MSC之臨床治療與困境 8 (二) 發展MSC條件培養基 (conditioned media, CM) 的優勢 9 (三) 強化MSC的治療潛能 — 預處理 (priming) 概念之興起 9 (四) 體外模式預處理概念 9 (五) 其他體內模式預處理策略 10 六、 發展新穎優化ASC功能之體外模式策略 10 貳、 心肌梗塞簡介 13 一、 心肌梗塞之病理變化 13 (一) 心肌細胞死亡 13 (二) 氧化壓力 15 (三) 粒線體的影響與應對機制 16 (四) 免疫發炎反應 16 (五) 心臟代償機制 17 二、 心肌梗塞之體外模式平台先導性研究 18 參、 當前研究限制 20 肆、 研究目的 20 第二章 研究方法 21 壹、 研究設計與架構 21 貳、 分析代謝症候群模式ASCTSOD-CM之體外心肌保護效果 22 一、 代謝症候群疾病模式小鼠ASCTSOD-CM培養基收集平台 22 二、 探討ASCTSOD-CM之體外心肌細胞保護效果 24 參、 優化ASCBALB/C心肌保護功能之方法開發 30 一、 ASCBALB/c的旁分泌細胞保護機制 30 二、 發展ASCBALB/c優化培養基之收集平台 32 三、 ASCBALB/c優化培養基之體外心肌保護效果 37 第三章 研究結果 40 壹、 分析代謝症候群疾病模式ASCTSOD-CM之體外心肌保護效果 40 一、 ASCTSOD-CM於回復再灌注損傷HL-1心肌細胞代謝活性之效果 40 二、 ASCTSOD-CM於再灌注損傷HL-1心肌細胞凋亡之影響 40 貳、 優化ASCBALB/C心肌保護功能之方法開發 41 一、 ASCBALB/c藉由旁分泌機制保護血管內皮細胞 41 二、 優化ASCBALB/c條件培養基收集平台的建立 42 (一) 建立雙重促發炎細胞激素與收集時長的預處理條件 42 (二) 建立候選化合物的預處理濃度條件 42 三、 分析優化ASCBALB/c條件培養基中心肌保護之富集因子 43 四、 ASCBALB/c優化培養基回復再灌注損傷HL-1心肌細胞代謝活性之效果 44 五、 ASCBALB/c優化培養基於再灌注損傷HL-1心肌細胞凋亡之影響 45 六、 ASCBALB/c優化培養基於心肌細胞粒線體抗氧化之能力 46 第四章 討論 47 壹、 應用代謝症候群疾病模式ASCTSOD-CM於心肌保護 47 一、 ASCTSOD-CM加劇心肌細胞凋亡的可能原因 47 二、 肥胖及代謝症候群之於ASC的影響與應用發展可能 47 貳、 優化ASCBALB/C心肌保護功能之方法開發 48 一、 ASCBALB/c優化培養基收集平台之可能機轉與發展 49 二、 模擬心肌缺血再灌注平台的研究限制 50 三、 ASCBALB/c優化培養基之劑型影響 53 參、 ASCBALB/C條件培養基應用注意事項 55 第五章 結論與展望 56 第六章 圖 57 第七章 表83 參考文獻 93 附錄 104 專有名詞之中英文暨縮寫對照表 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 組蛋白去乙醯酶抑制劑 | zh_TW |
| dc.subject | 心肌梗塞 | zh_TW |
| dc.subject | 缺血再灌注損傷 | zh_TW |
| dc.subject | 脂肪幹細胞 | zh_TW |
| dc.subject | 心肌保護 | zh_TW |
| dc.subject | 條件培養基 | zh_TW |
| dc.subject | 丁酸 | zh_TW |
| dc.subject | butyrate | en |
| dc.subject | HDAC inhibitor | en |
| dc.subject | myocardial infarction | en |
| dc.subject | reperfusion injury | en |
| dc.subject | adipose-derived stem cell | en |
| dc.subject | cardioprotection | en |
| dc.subject | conditioned media | en |
| dc.title | 應用與優化脂肪幹細胞條件培養基之心肌保護效果 | zh_TW |
| dc.title | Optimizing the Cardioprotective Potential of Conditioned Media Derived from Adipose-derived Stem Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳玉怜(Yuh-Lien Chen),郭薇雯(Wei-Wen Kuo),余兆武(Zhao-Wu Yu) | |
| dc.subject.keyword | 心肌梗塞,缺血再灌注損傷,脂肪幹細胞,心肌保護,條件培養基,丁酸,組蛋白去乙醯酶抑制劑, | zh_TW |
| dc.subject.keyword | myocardial infarction,reperfusion injury,adipose-derived stem cell,cardioprotection,conditioned media,butyrate,HDAC inhibitor, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU202204057 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-09-26 | - |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2609202211310000.pdf 未授權公開取用 | 35.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
