請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84166
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林志民(Jim Lin) | |
dc.contributor.author | Hsiu-Pu Chang | en |
dc.contributor.author | 張修菩 | zh_TW |
dc.date.accessioned | 2023-03-19T22:05:39Z | - |
dc.date.copyright | 2022-09-29 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-26 | |
dc.identifier.citation | 1. Rakitzis, T. P.; van den Brom, A. J.; Janssen, M. H., Directional dynamics in the photodissociation of oriented molecules. Science 2004, 303 (5665), 1852-1854. 2. van den Brom, A. J.; Rakitzis, T. P.; Janssen, M. H., Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil. The Journal of chemical physics 2004, 121 (23), 11645-11652. 3. Rakitzis, T. P.; van den Brom, A. J.; Janssen, M. H., Molecular and laboratory frame photofragment angular distributions from oriented and aligned molecules. Chemical physics letters 2003, 372 (1-2), 187-194. 4. van den Brom, A. J.; Rakitzis, T. P.; Janssen, M. H., Molecular frame properties from photodissociation of laboratory-oriented symmetric top and chiral molecules. Physica Scripta 2005, 73 (1), C83. 5. Lipciuc, M. L.; van den Brom, A. J.; Dinu, L.; Janssen, M. H., Slice imaging of photodissociation of spatially oriented molecules. Review of scientific instruments 2005, 76 (12), 123103. 1. Brooks, P. R.; Jones, E. M., Reactive scattering of K atoms from oriented CH3I molecules. The Journal of Chemical Physics 1966, 45 (9), 3449-3450. 2. Beuhler Jr, R. J.; Bernstein, R. B.; Kramer, K. H., Observation of the reactive asymmetry of methyl iodide. Crossed beam study of the reaction of rubidium with oriented methyl iodide molecules. Journal of the American Chemical Society 1966, 88 (22), 5331-5332. 3. Loesch, H.; Remscheid, A., Brute force in molecular reaction dynamics: A novel technique for measuring steric effects. The Journal of chemical physics 1990, 93 (7), 4779-4790. 4. Brooks, P. R., Reactions of Oriented Molecules: Molecules can be oriented in molecular beams and their reactions show some unexpected steric effects. Science 1976, 193 (4247), 11-16. 5. Kasai, T.; Fukawa, T.; Matsunami, T.; Che, D. C.; Ohashi, K.; Fukunishi, Y.; Ohoyama, H.; Kuwata, K., Formation of an intense pulsed beam of CH3Cl in the‖ 111≳ state using a 2‐m electrostatic hexapole field. Review of scientific instruments 1993, 64 (5), 1150-1154. 6. Janssen, M.; Mastenbroek, J.; Stolte, S., Imaging of oriented molecules. The Journal of Physical Chemistry A 1997, 101 (41), 7605-7613. 7. Ohoyama, H.; Kasai, T.; Ohashi, K.; Kuwata, K., Observation of orientation-dependent CF3 chemiluminescence in the reaction of Ar (3P0, 2) with oriented CF3H. Chemical physics letters 1987, 136 (3-4), 236-240. 8. Che, D.-C.; Palazzetti, F.; Okuno, Y.; Aquilanti, V.; Kasai, T., Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide. The Journal of Physical Chemistry A 2010, 114 (9), 3280-3286. 9. Nakamura, M.; Yang, S.-J.; Tsai, P.-Y.; Kasai, T.; Lin, K.-C.; Che, D.-C.; Lombardi, A.; Palazzetti, F.; Aquilanti, V., Hexapole-oriented asymmetric-top molecules and their stereodirectional photodissociation dynamics. The Journal of Physical Chemistry A 2016, 120 (27), 5389-5398. 10. ávan Leuken, J., Hexapole state selection and focusing vs. brute force orientation of beam molecules. Journal of the Chemical Society, Faraday Transactions 1995, 91 (2), 205-214. 11. Vallance, C., Generation, characterisation, and applications of atomic and molecular alignment and orientation. Physical Chemistry Chemical Physics 2011, 13 (32), 14427-14441. 12. Härtelt, M.; Friedrich, B., Directional states of symmetric-top molecules produced by combined static and radiative electric fields. The Journal of chemical physics 2008, 128 (22), 224313. 13. Hain, T. D.; Moision, R. M.; Curtiss, T. J., Hexapole state-selection and orientation of asymmetric top molecules: CH 2 F 2. The Journal of chemical physics 1999, 111 (15), 6797-6806. 14. Aquilanti, V.; Cavalli, S.; Sevryuk, M. B., Adiabatic and post‐adiabatic representations for multichannel Schrödinger equations. Journal of Mathematical Physics 1994, 35 (2), 536-559. 15. Che, D.-C.; Kanda, K.; Palazzetti, F.; Aquilanti, V.; Kasai, T., Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide: Rotational and orientational distributions. Chemical Physics 2012, 399, 180-192. 16. Solomon, J.; Jonah, C.; Chandra, P.; Bersohn, R., Photolysis mapping studies of aliphatic carbonyl compounds. The Journal of Chemical Physics 1971, 55 (4), 1908-1914. 17. Solomon, J., Photodissociation as studied by Photolysis Mapping. The Journal of Chemical Physics 1967, 47 (3), 889-895. 18. Chandler, D. W.; Houston, P. L., Two‐dimensional imaging of state‐selected photodissociation products detected by multiphoton ionization. The Journal of chemical physics 1987, 87 (2), 1445-1447. 19. Eppink, A. T.; Parker, D. H., Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Review of Scientific Instruments 1997, 68 (9), 3477-3484. 20. Wiley, W.; McLaren, I. H., Time‐of‐flight mass spectrometer with improved resolution. Review of scientific instruments 1955, 26 (12), 1150-1157. 21. Whitaker, B. J., Image reconstruction: the Abel transform. ACS Publications: 2001. 22. Smith, L. M.; Keefer, D. R.; Sudharsanan, S., Abel inversion using transform techniques. Journal of Quantitative Spectroscopy and Radiative Transfer 1988, 39 (5), 367-373. 23. Bracewell, R. N.; Bracewell, R. N., The Fourier transform and its applications. McGraw-Hill New York: 1986; Vol. 31999. 24. Dribinski, V.; Ossadtchi, A.; Mandelshtam, V. A.; Reisler, H., Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method. Review of Scientific Instruments 2002, 73 (7), 2634-2642. 1. Zare, R. N., Photoejection dynamics. Mol. Photochem 1972, 4 (1), 1-37. 2. van den Brom, A. J.; Rakitzis, T. P.; Janssen, M. H., Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil. The Journal of chemical physics 2004, 121 (23), 11645-11652. 3. Rakitzis, T. P.; van den Brom, A. J.; Janssen, M. H., Directional dynamics in the photodissociation of oriented molecules. Science 2004, 303 (5665), 1852-1854. 4. Rakitzis, T. P.; van den Brom, A. J.; Janssen, M. H., Molecular and laboratory frame photofragment angular distributions from oriented and aligned molecules. Chemical physics letters 2003, 372 (1-2), 187-194. 5. Nakamura, M.; Yang, S.-J.; Tsai, P.-Y.; Kasai, T.; Lin, K.-C.; Che, D.-C.; Lombardi, A.; Palazzetti, F.; Aquilanti, V., Hexapole-oriented asymmetric-top molecules and their stereodirectional photodissociation dynamics. The Journal of Physical Chemistry A 2016, 120 (27), 5389-5398. 6. Nakamura, M.; Yang, S.-J.; Lin, K.-C.; Kasai, T.; Che, D.-C.; Lombardi, A.; Palazzetti, F.; Aquilanti, V., Stereodirectional images of molecules oriented by a variable-voltage hexapolar field: Fragmentation channels of 2-bromobutane electronically excited at two photolysis wavelengths. The Journal of chemical physics 2017, 147 (1), 013917. 7. Nakamura, M.; Palazzetti, F.; Tsai, P.-Y.; Yang, S.-J.; Lin, K.-C.; Kasai, T.; Che, D.-C.; Lombardi, A.; Aquilanti, V., Vectorial imaging of the photodissociation of 2-bromobutane oriented via hexapolar state selection. Physical Chemistry Chemical Physics 2019, 21 (26), 14164-14172. 8. Tang, Y.; Ji, L.; Tang, B.; Zhu, R.; Zhang, S.; Zhang, B., Studies on photodissociation of alkyl bromides at 234 and 267 nm. Chemical physics letters 2004, 392 (4-6), 493-497. 9. Tang, B.; Zhang, B., Photodissociation pathways and dissociation energy of C–Br bond of n-C4H9Br determined using velocity map imaging. Chemical physics letters 2005, 412 (1-3), 145-151. 10. Aarset, K.; Hagen, K.; Stølevik, R., Molecular structures and conformational compositions of 2-chlorobutane and 2-bromobutane; an investigation using gas-phase electron-diffraction data and ab initio molecular orbital calculations. Journal of Molecular Structure 2001, 567, 157-165. 11. Wang, F.; Polavarapu, P. L.; Lebon, F.; Longhi, G.; Abbate, S.; Catellani, M., Conformational analysis of (S)-(+)-1-bromo-2-methylbutane and the influence of bromine on conformational stability. The Journal of Physical Chemistry A 2002, 106 (51), 12365-12369. 12. Che, D.-C.; Palazzetti, F.; Okuno, Y.; Aquilanti, V.; Kasai, T., Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide. The Journal of Physical Chemistry A 2010, 114 (9), 3280-3286. 13. Che, D.-C.; Kanda, K.; Palazzetti, F.; Aquilanti, V.; Kasai, T., Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide: Rotational and orientational distributions. Chemical Physics 2012, 399, 180-192. 14. Choi, S. E.; Bernstein, R. B., Theory of oriented symmetric‐top molecule beams: Precession, degree of orientation, and photofragmentation of rotationally state‐selected molecules. The Journal of chemical physics 1986, 85 (1), 150-161. 15. Mulliken, R. S., Intensities in Molecular Electronic Spectra X. Calculations on Mixed‐Halogen, Hydrogen Halide, Alkyl Halide, and Hydroxyl Spectra. The Journal of Chemical Physics 1940, 8 (5), 382-395. 16. Tang, Y.; Lee, W.-B.; Hu, Z.; Zhang, B.; Lin, K.-C., Productions of I, I*, and C 2 H 5 in the A-band photodissociation of ethyl iodide in the wavelength range from 245 to 283 nm by using ion-imaging detection. The Journal of chemical physics 2007, 126 (6), 064302. 17. Zhang, X.-P.; Lee, W.-B.; Lin, K.-C., Nonadiabatic transition in the A-band photodissociation of ethyl iodide from 294 to 308 nm by using velocity imaging detection. The Journal of Physical Chemistry A 2009, 113 (1), 35-39. 18. Zhu, R.; Tang, B.; Zhang, X.; Zhang, B., Photodissociation dynamics of 2-bromopropane using velocity map imaging technique. The Journal of Physical Chemistry A 2010, 114 (21), 6188-6193. 19. Wei, Z.; Tang, Y.; Zheng, Q.; Zhang, B., Photodissociation dynamics of n-C5H11Br at 234 nm. Optics communications 2006, 265 (2), 532-536. 20. Mao, R.; Zhang, Q.; Zang, J.-z.; Zhang, Z.-g.; He, C.; Qin, C.-b.; Chen, Y., Time-sliced Velocity Map Imaging Study on Photodissociation of Neopentyl Bromide and Tert-pentyl Bromide at 234 nm. Chinese Journal of Chemical Physics 2011, 24 (5), 631. 21. Zhang, S.; Wang, Y.; Tang, B.; Zheng, Q.; Zhang, B., Ultraviolet photodissociation of 1-bromopropane at 234 and 267 nm. Chemical physics letters 2005, 413 (1-3), 129-134. 22. Luo, Y.-R., Comprehensive handbook of chemical bond energies. CRC press: 2007. 23. Palazzetti, F.; Tsai, P.-Y.; Lombardi, A.; Nakamura, M.; Che, D.-C.; Kasai, T.; Lin, K.-C.; Aquilanti, V., Aligned molecules: chirality discrimination in photodissociation and in molecular dynamics. Rendiconti Lincei 2013, 24 (3), 299-308. 1. Chandler, D. W.; Houston, P. L., Two‐dimensional imaging of state‐selected photodissociation products detected by multiphoton ionization. The Journal of chemical physics 1987, 87 (2), 1445-1447. 2. Eppink, A. T.; Parker, D. H., Methyl iodide A-band decomposition study by photofragment velocity imaging. The Journal of chemical physics 1998, 109 (12), 4758-4767. 3. Leskiw, B. D.; Kim, M. H.; Hall, G. E.; Suits, A. G., Reflectron velocity map ion imaging. Review of scientific instruments 2005, 76 (10), 104101. 4. Kim, M. H.; Leskiw, B. D.; Suits, A. G., Vibrationally mediated photodissociation of ethylene cation by reflectron multimass velocity map imaging. The Journal of Physical Chemistry A 2005, 109 (35), 7839-7842. 5. Gebhardt, C. R.; Rakitzis, T. P.; Samartzis, P. C.; Ladopoulos, V.; Kitsopoulos, T. N., Slice imaging: A new approach to ion imaging and velocity mapping. Review of Scientific Instruments 2001, 72 (10), 3848-3853. 6. Townsend, D.; Minitti, M. P.; Suits, A. G., Direct current slice imaging. Review of scientific instruments 2003, 74 (4), 2530-2539. 7. Lin, J. J.; Zhou, J.; Shiu, W.; Liu, K., Application of time-sliced ion velocity imaging to crossed molecular beam experiments. Review of scientific instruments 2003, 74 (4), 2495-2500. 8. van den Brom, A. J.; Rakitzis, T. P.; van Heyst, J.; Kitsopoulos, T. N.; Jezowski, S. R.; Janssen, M. H., State-to-state photodissociation of OCS (ν 2= 0, 1| JlM). I. The angular recoil distribution of CO (X 1 Σ+; v= 0| J). The Journal of chemical physics 2002, 117 (9), 4255-4263. 9. Rakitzis, T. P.; van den Brom, A. J.; Janssen, M. H., Directional dynamics in the photodissociation of oriented molecules. Science 2004, 303 (5665), 1852-1854. 10. Rakitzis, T. P.; van den Brom, A. J.; Janssen, M. H., Molecular and laboratory frame photofragment angular distributions from oriented and aligned molecules. Chemical physics letters 2003, 372 (1-2), 187-194. 11. van den Brom, A. J.; Rakitzis, T. P.; Janssen, M. H., Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil. The Journal of chemical physics 2004, 121 (23), 11645-11652. 12. van den Brom, A. J.; Rakitzis, T. P.; Janssen, M. H., Molecular frame properties from photodissociation of laboratory-oriented symmetric top and chiral molecules. Physica Scripta 2005, 73 (1), C83. 13. Lipciuc, M. L.; Janssen, M. H., Slice imaging of the quantum state-to-state cross section for photodissociation of state-selected rovibrational bending states of OCS (v 2= 0, 1, 2∣ J l M)+ h ν→ CO (J)+ S (D 2 1). The Journal of chemical physics 2007, 126 (19), 194318. 14. Rakitzis, T. P.; Janssen, M. H., Photofragment angular momentum distributions from oriented and aligned polyatomic molecules: beyond the axial recoil limit. Molecular Physics 2010, 108 (7-9), 937-944. 15. Nakamura, M.; Yang, S.-J.; Tsai, P.-Y.; Kasai, T.; Lin, K.-C.; Che, D.-C.; Lombardi, A.; Palazzetti, F.; Aquilanti, V., Hexapole-oriented asymmetric-top molecules and their stereodirectional photodissociation dynamics. The Journal of Physical Chemistry A 2016, 120 (27), 5389-5398. 16. Nakamura, M.; Yang, S.-J.; Lin, K.-C.; Kasai, T.; Che, D.-C.; Lombardi, A.; Palazzetti, F.; Aquilanti, V., Stereodirectional images of molecules oriented by a variable-voltage hexapolar field: Fragmentation channels of 2-bromobutane electronically excited at two photolysis wavelengths. The Journal of chemical physics 2017, 147 (1), 013917. 17. Nakamura, M.; Palazzetti, F.; Tsai, P.-Y.; Yang, S.-J.; Lin, K.-C.; Kasai, T.; Che, D.-C.; Lombardi, A.; Aquilanti, V., Vectorial imaging of the photodissociation of 2-bromobutane oriented via hexapolar state selection. Physical Chemistry Chemical Physics 2019, 21 (26), 14164-14172. 18. Nakamura, M.; Chang, H.-P.; Lin, K.-C.; Kasai, T.; Che, D.-C.; Palazzetti, F.; Aquilanti, V., Stereodynamic imaging of bromine atomic photofragments eliminated from 1-bromo-2-methylbutane oriented via hexapole state selector. The Journal of Physical Chemistry A 2019, 123 (31), 6635-6644. 19. Palazzetti, F.; Tsai, P.-Y.; Lombardi, A.; Nakamura, M.; Che, D.-C.; Kasai, T.; Lin, K.-C.; Aquilanti, V., Aligned molecules: chirality discrimination in photodissociation and in molecular dynamics. Rendiconti Lincei 2013, 24 (3), 299-308. 20. Dreiling, J.; Gay, T. J., Chirally sensitive electron-induced molecular breakup and the Vester-Ulbricht hypothesis. Physical review letters 2014, 113 (11), 118103. 21. Janssen, M. H.; Powis, I., Detecting chirality in molecules by imaging photoelectron circular dichroism. Physical Chemistry Chemical Physics 2014, 16 (3), 856-871. 22. Lischke, T.; Böwering, N.; Schmidtke, B.; Müller, N.; Khalil, T.; Heinzmann, U., Circular dichroism in valence photoelectron spectroscopy of free unoriented chiral molecules: Camphor and bromocamphor. Physical Review A 2004, 70 (2), 022507. 23. Böwering, N.; Lischke, T.; Schmidtke, B.; Müller, N.; Khalil, T.; Heinzmann, U., Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Physical review letters 2001, 86 (7), 1187. 24. Eppink, A. T.; Parker, D. H., Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Review of Scientific Instruments 1997, 68 (9), 3477-3484. 25. Tang, Y.; Ji, L.; Tang, B.; Zhu, R.; Zhang, S.; Zhang, B., Studies on photodissociation of alkyl bromides at 234 and 267 nm. Chemical physics letters 2004, 392 (4-6), 493-497. 26. Mulliken, R. S., Intensities in Molecular Electronic Spectra X. Calculations on Mixed‐Halogen, Hydrogen Halide, Alkyl Halide, and Hydroxyl Spectra. The Journal of Chemical Physics 1940, 8 (5), 382-395. 27. Garcia, G. A.; Nahon, L.; Powis, I., Two-dimensional charged particle image inversion using a polar basis function expansion. Review of Scientific Instruments 2004, 75 (11), 4989-4996. 28. Zhu, R.; Tang, B.; Zhang, X.; Zhang, B., Photodissociation Dynamics of 2-Bromopropane Using Velocity Map Imaging Technique. The Journal of Physical Chemistry A 2010, 114 (21), 6188-6193. 29. Tang, B.; Zhang, B., Photodissociation pathways and dissociation energy of C–Br bond of n-C4H9Br determined using velocity map imaging. Chemical physics letters 2005, 412 (1-3), 145-151. 30. Wang, Y.; Zhang, S.; Wei, Z.; Zheng, Q.; Zhang, B., Br (P j 2) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide. The Journal of chemical physics 2006, 125 (18), 184307. 31. Mossa, J. S.; Hassan, M. M., Camphor. In Analytical Profiles of Drug Substances, Elsevier: 1984; Vol. 13, pp 27-93. 32. Hsu, M. Y.; Tsai, P. Y.; Wei, Z. R.; Chao, M. H.; Zhang, B.; Kasai, T.; Lin, K. C., Competitive Bond Rupture in the Photodissociation of Bromoacetyl Chloride and 2‐and 3‐Bromopropionyl Chloride: Adiabatic versus Diabatic Dissociation. ChemPhysChem 2013, 14 (5), 936-945. 1. Townsend, D.; Lahankar, S. A.; Lee, S. K.; Chambreau, S. D.; Suits, A. G.; Zhang, X.; Rheinecker, J.; Harding, L.; Bowman, J. M., The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 2004, 306 (5699), 1158-1161. 2. Houston, P. L.; Moore, C. B., Formaldehyde photochemistry: Appearance rate, vibrational relaxation, and energy distribution of the CO product. The Journal of Chemical Physics 1976, 65 (2), 757-770. 3. van Zee, R. D.; Foltz, M. F.; Moore, C. B., Evidence for a second molecular channel in the fragmentation of formaldehyde. The Journal of chemical physics 1993, 99 (3), 1664-1673. 4. Houston, P.; Kable, S., Photodissociation of acetaldehyde as a second example of the roaming mechanism. Proceedings of the National Academy of Sciences 2006, 103 (44), 16079-16082. 5. Rubio-Lago, L.; Amaral, G.; Arregui, A.; Izquierdo, J.; Wang, F.; Zaouris, D.; Kitsopoulos, T.; Banares, L., Slice imaging of the photodissociation of acetaldehyde at 248 nm. Evidence of a roaming mechanism. Physical Chemistry Chemical Physics 2007, 9 (46), 6123-6127. 6. Shepler, B. C.; Braams, B. J.; Bowman, J. M., “Roaming” dynamics in CH3CHO photodissociation revealed on a global potential energy surface. The Journal of Physical Chemistry A 2008, 112 (39), 9344-9351. 7. Heazlewood, B. R.; Jordan, M. J.; Kable, S. H.; Selby, T. M.; Osborn, D. L.; Shepler, B. C.; Braams, B. J.; Bowman, J. M., Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation. Proceedings of the National Academy of Sciences 2008, 105 (35), 12719-12724. 8. Han, Y.-C.; Shepler, B. C.; Bowman, J. M., Quasiclassical trajectory calculations of the dissociation dynamics of CH3CHO at high energy yield many products. The Journal of Physical Chemistry Letters 2011, 2 (14), 1715-1719. 9. Rubio-Lago, L.; Amaral, G.; Arregui, A.; Gonzalez-Vazquez, J.; Banares, L., Imaging the molecular channel in acetaldehyde photodissociation: roaming and transition state mechanisms. Physical Chemistry Chemical Physics 2012, 14 (17), 6067-6078. 10. Lee, K. L. K.; Quinn, M. S.; Maccarone, A. T.; Nauta, K.; Houston, P. L.; Reid, S. A.; Jordan, M. J.; Kable, S. H., Two roaming pathways in the photolysis of CH 3 CHO between 328 and 308 nm. Chemical Science 2014, 5 (12), 4633-4638. 11. Li, H.-K.; Tsai, P.-Y.; Hung, K.-C.; Kasai, T.; Lin, K.-C., Communication: Photodissociation of CH3CHO at 308 nm: Observation of H-roaming, CH3-roaming, and transition state pathways together along the ground state surface. The Journal of Chemical Physics 2015, 142 (4), 041101. 12. Toulson, B. W.; Kapnas, K. M.; Fishman, D. A.; Murray, C., Competing pathways in the near-UV photochemistry of acetaldehyde. Physical Chemistry Chemical Physics 2017, 19 (22), 14276-14288. 13. Yang, C.-H.; Bhattacharyya, S.; Liu, L.; Fang, W.-h.; Liu, K., Real-time tracking of the entangled pathways in the multichannel photodissociation of acetaldehyde. Chemical science 2020, 11 (25), 6423-6430. 14. Hung, K.-C.; Tsai, P.-Y.; Li, H.-K.; Lin, K.-C., Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: verification of roaming and triple fragmentation. The Journal of Chemical Physics 2014, 140 (6), 064313. 15. Lin, K.-C., Regulation of nonadiabatic processes in the photolysis of some carbonyl compounds. Physical Chemistry Chemical Physics 2016, 18 (10), 6980-6995. 16. Goncharov, V.; Herath, N.; Suits, A. G., Roaming dynamics in acetone dissociation. The Journal of Physical Chemistry A 2008, 112 (39), 9423-9428. 17. Tsai, P.-Y.; Hung, K.-C.; Li, H.-K.; Lin, K.-C., Photodissociation of propionaldehyde at 248 nm: Roaming pathway as an increasingly important role in large aliphatic aldehydes. The Journal of Physical Chemistry Letters 2014, 5 (1), 190-195. 18. Chao, M.-H.; Tsai, P.-Y.; Lin, K.-C., Molecular elimination of methyl formate in photolysis at 234 nm: roaming vs. transition state-type mechanism. Physical Chemistry Chemical Physics 2011, 13 (15), 7154-7161. 19. Lombardi, A.; Palazzetti, F.; Aquilanti, V.; Li, H.-K.; Tsai, P.-Y.; Kasai, T.; Lin, K.-C., Rovibrationally excited molecules on the verge of a triple breakdown: molecular and roaming mechanisms in the photodecomposition of methyl formate. The Journal of Physical Chemistry A 2016, 120 (27), 5155-5162. 20. Tsai, P.-Y.; Chao, M.-H.; Kasai, T.; Lin, K.-C.; Lombardi, A.; Palazzetti, F.; Aquilanti, V., Roads leading to roam. Role of triple fragmentation and of conical intersections in photochemical reactions: experiments and theory on methyl formate. Physical Chemistry Chemical Physics 2014, 16 (7), 2854-2865. 21. Bowman, J. M., Roaming. Molecular Physics 2014, 112 (19), 2516-2528. 22. Grubb, M. P.; Warter, M. L.; Suits, A. G.; North, S. W., Evidence of roaming dynamics and multiple channels for molecular elimination in NO3 photolysis. The Journal of Physical Chemistry Letters 2010, 1 (16), 2455-2458. 23. Grubb, M. P.; Warter, M. L.; Xiao, H.; Maeda, S.; Morokuma, K.; North, S. W., No straight path: roaming in both ground-and excited-state photolytic channels of NO3→ NO+ O2. Science 2012, 335 (6072), 1075-1078. 24. Ma, Y.; Liu, J.; Li, F.; Wang, F.; Kitsopoulos, T. N., Roaming dynamics in the photodissociation of formic acid at 230 nm. The Journal of Physical Chemistry A 2019, 123 (17), 3672-3677. 25. Che, D.-C.; Kanda, K.; Palazzetti, F.; Aquilanti, V.; Kasai, T., Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide: Rotational and orientational distributions. Chemical Physics 2012, 399, 180-192. 26. Curl Jr, R., Microwave spectrum, barrier to internal rotation, and structure of methyl formate. The Journal of Chemical Physics 1959, 30 (6), 1529-1536. 27. Foley, C. D.; Xie, C.; Guo, H.; Suits, A. G., Orbiting resonances in formaldehyde reveal coupling of roaming, radical, and molecular channels. Science 2021, 374 (6571), 1122-1127. 28. Farnum, J. D.; Zhang, X.; Bowman, J. M., Formaldehyde photodissociation: Dependence on total angular momentum and rotational alignment of the CO product. The Journal of chemical physics 2007, 126 (13), 134305. 29. Terentis, A. C.; Waugh, S. E.; Metha, G. F.; Kable, S. H., HCO (N, K a, K c, J) distributions from near-threshold photolysis of H 2 CO (J, K a, K c). The Journal of chemical physics 1998, 108 (8), 3187-3198. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84166 | - |
dc.description.abstract | 此論文分為三部分,第一以及第二分別為 (S)-1-溴-2-甲基丁烷以及 (R)-3溴樟腦在方位化下的條件進行光分解反應,並透過離子影像判斷產生之光分解碎片之向量關聯;三為模擬在光分解方位化的甲酸甲酯分子來探討漫遊機制。在此研究中,我們開發了一套時間切片離子影像結合六極柱能階選擇器之實驗系統,並針對兩實驗個別需求進行些微改裝。藉由此系統所產生之光分解碎片的離子影像可以用來探討多原子分子在光分解反應中複雜的向量關聯性。在第一個以及第二個實驗中,我們分別將 (S)-1-溴-2-甲基丁烷以及 (R)-3-溴樟腦通過加熱系統而產生之氣體分子導入脈衝閥中產生分子束,再藉由六極柱對氣體分子進行方位化,在光分解之後,通過分析獲得的Br以及Br* 離子影像,我們可以得出anisotropy parameter、離子的能量分布以及速率分布。同時,在調整極化光方向之後,我們可以得出光分解過程中永久偶極矩、過渡偶極矩以及離子飛行方向這三個向量的關聯性。此外也討論了在光分解掌性化合物過程中,無法從離子影像分辨出不同掌性化合物的原因。第三部分的研究為模擬利用2+1共振增強多光子離子化在230奈米中解離能階選擇後之甲酸甲酯分子,並且獲得CO(v=0)的離子影像,其中可以分辨出轉動能階在low-J的離子由光分解走漫遊機制所產生,另外轉動能階在high-J的離子則由經傳統的過渡態理論所產生。其中由low-J以及high-J所產生的比率可以用來和未經過方位化的甲酸甲酯分子所光分解而產生CO的比率來進行比較。進而得知六極柱進行方位化影響反應路徑的不同。 | zh_TW |
dc.description.abstract | This thesis is divided into three parts: I. Photodissociation of oriented (S)-1-bromo-2-methylbutane and study the stereodynamics from the ion image of photogragments. II. Photodissociation of oriented (R)-3-bromocamphor and study the stereodynamics from the ion image of photogragments. III. Roaming pathway determination by simulating the photodissociation of oriented methyl formate. In these research, we developed an experimental system which included the time-of-flight spectroscopy coupled with ion imaging and combined with hexapole state selector. Besides, we slightly improved the system based on the requirement of these two research. The ion image of photofragments was applied to realize the complicated vector correlation of polyatomic during photodissociation. In the first and second research, we induced (S)-1-bromo-2-methylbutane and the (R)-3-bromocamphor into the heating system to produce vapor and conducted it into pulsed valve, respectively. The hexapole would interact with the molecular beam to carry out the orientation of molecule. After the photodissociation, we analyzed the ion image of Br and Br* to obtain the anisotropy parameters, speed distributions and kinetic energy distributions. Furthermore, when we adjusted the polarization of laser in an appropriate degree, we could study the correlations between permanent dipole moment, transition dipole moment and recoil velocity. In addition, we also discussed the reason on the failure in chiral discrimination of enantiomer during the photodissociation. In the third research, we tried to simulate the application of (2+1) resonance-enhanced multiphoton ionization (REMPI) following photolysis of state-selected methyl formate at 230 nm and obtained the ion image of CO (v=0). The low-J and high-J components of bimodal rotational distributions are ascribed to roaming pathway and conventional transition state pathway, respectively. The hexapole plays the role to interfere the branching ratio of low-J and high-J components. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:05:39Z (GMT). No. of bitstreams: 1 U0001-2609202211225300.pdf: 7193181 bytes, checksum: 3e205f462bc4939b040e0e9a7a0de599 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Table of contents Chapter 1 Preface 1.1 Introduction 1 1.2 References 2 Chapter 2 Theory and Design 2.1 Hexapole State Selector 4 2.2 Symmetric Top Molecule 7 2.3 Asymmetric Top Molecule 11 2.2 Ion Image 18 2.3 References 25 Chapter 3 Stereodynamic Imaging of Bromine Atomic Photofragments Eliminated from 1-Bromo-2-Methylbutane Oriented via Hexapole State Selector 3.1 Introduction 30 3.2 Experimental Methods 34 3.3 Results and Discussion 38 A. Molecular Orientation 38 B. Vectorial imaging in characterization of stereodynamic photo-process 43 C. Two-laser experiments 56 3.4 Conclusion 60 3.5 References 62 Chapter 4 Photodissociation Study of Spatially Oriented (R)-3-Bromocamphor by the Hexapole State Selector 4.1 Introduction 67 4.2 Experimental Setup 71 4.3 Results and Discussions 76 A. The study of dissociation dynamic for the velocity mapping ion image 76 B. The hexapole state-selection and orientation of (R)-3-bromocamphor 83 C. Resolved the vector correlation during the photodissociation from slice ion images 89 4.4 Conclusion 94 4.5 References 96 Chapter 5 The Study of Roaming Mechanism on the state-selected methyl formate by the Hexapole State Selector 5.1 Introduction 102 5.2 Simulation of hexapole state selection toward methyl formate 111 A. Derivatives Calculation 112 B. Trajectory Simulation 114 5.3 Results and Discussion 115 5.4 Future Perspective 128 5.4 Conclusion 131 5.5 References 133 | |
dc.language.iso | en | |
dc.title | 利用六極柱對於空間中方位化的 (S)-1溴-2-甲基丁烷以及 (R)-3-溴樟腦進行光分解的分子動力學之研究以及利用六極柱對甲酸甲酯分子進行能階選擇之漫遊機制的模擬研究 | zh_TW |
dc.title | Photodissociation Study of Spatially Oriented (S)-1-bromo-2-methylbutane and (R)-3-Bromocamphor by a Hexapole State Selector and Simulation Study of Roaming Mechanism on the State-selected Methyl Formate by the Hexapole State Selector | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張元賓(Yuan-Pin Chan),楊崇鑫(Chung-Hsin Yang),笠井俊夫(Toshio Kasai),中村雅明(Masaaki Nakamura) | |
dc.subject.keyword | 光分解,立體動力學,方位化,掌性,漫遊機制, | zh_TW |
dc.subject.keyword | Photodissociation,Stereodynamics,orientation,chirality,roaming, | en |
dc.relation.page | 137 | |
dc.identifier.doi | 10.6342/NTU202204056 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-29 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2609202211225300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。