請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84130完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李篤中(Duu-Jong Lee) | |
| dc.contributor.author | Jun-Bo Liao | en |
| dc.contributor.author | 廖俊博 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:05:09Z | - |
| dc.date.copyright | 2022-07-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-13 | |
| dc.identifier.citation | Reference [1] B. Lukose, A. Kuc, and T. Heine, “The structure of layered covalent‐organic frameworks,” Chemistry–A European Journal, vol. 17, no. 8, pp. 2388-2392, 2011. [2] A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, and O. M. Yaghi, “Porous, crystalline, covalent organic frameworks,” science, vol. 310, no. 5751, pp. 1166-1170, 2005. [3] S.-Y. Ding, and W. Wang, “Covalent organic frameworks (COFs): from design to applications,” Chemical Society Reviews, vol. 42, no. 2, pp. 548-568, 2013. [4] H. Furukawa, and O. M. Yaghi, “Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications,” Journal of the American Chemical Society, vol. 131, no. 25, pp. 8875-8883, 2009. [5] C. R. DeBlase, K. E. Silberstein, T.-T. Truong, H. D. Abruña, and W. R. Dichtel, “β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage,” Journal of the American Chemical Society, vol. 135, no. 45, pp. 16821-16824, 2013. [6] Y. Yusran, H. Li, X. Guan, Q. Fang, and S. Qiu, “Covalent organic frameworks for catalysis,” EnergyChem, vol. 2, no. 3, pp. 100035, 2020. [7] A. Mellah, S. P. Fernandes, R. Rodríguez, J. Otero, J. Paz, J. Cruces, D. D. Medina, H. Djamila, B. Espiña, and L. M. Salonen, “Adsorption of pharmaceutical pollutants from water using covalent organic frameworks,” Chemistry–A European Journal, vol. 24, no. 42, pp. 10601-10605, 2018. [8] X. Feng, X. Ding, and D. Jiang, “Covalent organic frameworks,” Chemical Society Reviews, vol. 41, no. 18, pp. 6010-6022, 2012. [9] X. Wu, X. Han, Y. Liu, Y. Liu, and Y. Cui, “Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning,” Journal of the American Chemical Society, vol. 140, no. 47, pp. 16124-16133, 2018. [10] A. M. Evans, I. Castano, A. Brumberg, L. R. Parent, A. R. Corcos, R. L. Li, N. C. Flanders, D. J. Gosztola, N. C. Gianneschi, and R. D. Schaller, “Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks,” Journal of the American Chemical Society, vol. 141, no. 50, pp. 19728-19735, 2019. [11] B. J. Smith, N. Hwang, A. D. Chavez, J. L. Novotney, and W. R. Dichtel, “Growth rates and water stability of 2D boronate ester covalent organic frameworks,” Chemical Communications, vol. 51, no. 35, pp. 7532-7535, 2015. [12] L. Grunenberg, G. k. Savasci, M. W. Terban, V. Duppel, I. Moudrakovski, M. Etter, R. E. Dinnebier, C. Ochsenfeld, and B. V. Lotsch, “Amine-Linked Covalent Organic Frameworks as a Platform for Postsynthetic Structure Interconversion and Pore-Wall Modification,” Journal of the American Chemical Society, vol. 143, no. 9, pp. 3430-3438, 2021. [13] E. Vitaku, and W. R. Dichtel, “Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions,” Journal of the American Chemical Society, vol. 139, no. 37, pp. 12911-12914, 2017. [14] F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, and O. M. Yaghi, “Crystalline covalent organic frameworks with hydrazone linkages,” Journal of the American Chemical Society, vol. 133, no. 30, pp. 11478-11481, 2011. [15] C. Zhao, H. Lyu, Z. Ji, C. Zhu, and O. M. Yaghi, “Ester-linked crystalline covalent organic frameworks,” Journal of the American Chemical Society, vol. 142, no. 34, pp. 14450-14454, 2020. [16] B. Zhang, M. Wei, H. Mao, X. Pei, S. A. Alshmimri, J. A. Reimer, and O. M. Yaghi, “Crystalline dioxin-linked covalent organic frameworks from irreversible reactions,” Journal of the American Chemical Society, vol. 140, no. 40, pp. 12715-12719, 2018. [17] P.-F. Wei, M.-Z. Qi, Z.-P. Wang, S.-Y. Ding, W. Yu, Q. Liu, L.-K. Wang, H.-Z. Wang, W.-K. An, and W. Wang, “Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis,” Journal of the American Chemical Society, vol. 140, no. 13, pp. 4623-4631, 2018. [18] Y. Su, Y. Wan, H. Xu, K.-i. Otake, X. Tang, L. Huang, S. Kitagawa, and C. Gu, “Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions,” Journal of the American Chemical Society, vol. 142, no. 31, pp. 13316-13321, 2020. [19] C. Zhao, C. S. Diercks, C. Zhu, N. Hanikel, X. Pei, and O. M. Yaghi, “Urea-linked covalent organic frameworks,” Journal of the American Chemical Society, vol. 140, no. 48, pp. 16438-16441, 2018. [20] K. Wang, Z. Jia, Y. Bai, X. Wang, S. E. Hodgkiss, L. Chen, S. Y. Chong, X. Wang, H. Yang, and Y. Xu, “Synthesis of stable thiazole-linked covalent organic frameworks via a multicomponent reaction,” Journal of the American Chemical Society, vol. 142, no. 25, pp. 11131-11138, 2020. [21] Y. Zhao, 'Emerging applications of metal–organic frameworks and covalent organic frameworks,' 22, ACS Publications, 2016, pp. 8079-8081. [22] Y. Zhi, Z. Wang, H. L. Zhang, and Q. Zhang, “Recent progress in metal‐free covalent organic frameworks as heterogeneous catalysts,” Small, vol. 16, no. 24, pp. 2001070, 2020. [23] Y. Yusran, H. Li, X. Guan, D. Li, L. Tang, M. Xue, Z. Zhuang, Y. Yan, V. Valtchev, and S. Qiu, “Exfoliated mesoporous 2D covalent organic frameworks for high‐rate electrochemical double‐layer capacitors,” Advanced Materials, vol. 32, no. 8, pp. 1907289, 2020. [24] Z.-C. Guo, Z.-Q. Shi, X.-Y. Wang, Z.-F. Li, and G. Li, “Proton conductive covalent organic frameworks,” Coordination Chemistry Reviews, vol. 422, pp. 213465, 2020. [25] S. J. Flora, and V. Pachauri, “Chelation in metal intoxication,” International journal of environmental research and public health, vol. 7, no. 7, pp. 2745-2788, 2010. [26] W. Huang, Y. Jiang, X. Li, X. Li, J. Wang, Q. Wu, and X. Liu, “Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures,” ACS Applied Materials & Interfaces, vol. 5, no. 18, pp. 8845-8849, 2013. [27] J. Medinger, M. Nedyalkova, and M. Lattuada, “Solvothermal synthesis combined with design of experiments—optimization approach for magnetite nanocrystal clusters,” Nanomaterials, vol. 11, no. 2, pp. 360, 2021. [28] A. A. Hernández-Hernández, G. A. Álvarez-Romero, A. Castañeda-Ovando, Y. Mendoza-Tolentino, E. Contreras-López, C. A. Galán-Vidal, and M. E. Páez-Hernández, “Optimization of microwave-solvothermal synthesis of Fe3O4 nanoparticles. Coating, modification, and characterization,” Materials Chemistry and Physics, vol. 205, pp. 113-119, 2018. [29] T. Tsuzuki, and P. G. McCormick, “Mechanochemical synthesis of nanoparticles,” Journal of materials science, vol. 39, no. 16, pp. 5143-5146, 2004. [30] B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, and R. Banerjee, “Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks,” Journal of the American Chemical Society, vol. 135, no. 14, pp. 5328-5331, 2013. [31] Y. Yang, W. Zhao, H. Niu, and Y. Cai, “Mechanochemical Construction 2D/2D Covalent Organic Nanosheets Heterojunctions Based on Substoichiometric Covalent Organic Frameworks,” ACS Applied Materials & Interfaces, vol. 13, no. 35, pp. 42035-42043, 2021. [32] K. Preet, G. Gupta, M. Kotal, S. K. Kansal, D. B. Salunke, H. K. Sharma, S. Chandra Sahoo, P. Van Der Voort, and S. Roy, “Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye,” Crystal Growth & Design, vol. 19, no. 5, pp. 2525-2530, 2019. [33] D. B. Shinde, H. B. Aiyappa, M. Bhadra, B. P. Biswal, P. Wadge, S. Kandambeth, B. Garai, T. Kundu, S. Kurungot, and R. Banerjee, “A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte,” Journal of Materials Chemistry A, vol. 4, no. 7, pp. 2682-2690, 2016. [34] N. L. Campbell, R. Clowes, L. K. Ritchie, and A. I. Cooper, “Rapid microwave synthesis and purification of porous covalent organic frameworks,” Chemistry of Materials, vol. 21, no. 2, pp. 204-206, 2009. [35] H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei, and L. Wang, “The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO 2 capacity,” Chemical Communications, vol. 51, no. 61, pp. 12178-12181, 2015. [36] A. P. Cote, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, and O. M. Yaghi, “Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks,” Journal of the American Chemical Society, vol. 129, no. 43, pp. 12914-12915, 2007. [37] E. L. Spitler, B. T. Koo, J. L. Novotney, J. W. Colson, F. J. Uribe-Romo, G. D. Gutierrez, P. Clancy, and W. R. Dichtel, “A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking,” Journal of the American Chemical Society, vol. 133, no. 48, pp. 19416-19421, 2011. [38] C. Feriante, A. M. Evans, S. Jhulki, I. Castano, M. J. Strauss, S. Barlow, W. R. Dichtel, and S. R. Marder, “New mechanistic insights into the formation of imine-linked two-dimensional covalent organic frameworks,” Journal of the American Chemical Society, vol. 142, no. 43, pp. 18637-18644, 2020. [39] Q. Gao, X. Li, G.-H. Ning, K. Leng, B. Tian, C. Liu, W. Tang, H.-S. Xu, and K. P. Loh, “Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing,” Chemical Communications, vol. 54, no. 19, pp. 2349-2352, 2018. [40] S. Dalapati, E. Jin, M. Addicoat, T. Heine, and D. Jiang, “Highly emissive covalent organic frameworks,” Journal of the American Chemical Society, vol. 138, no. 18, pp. 5797-5800, 2016. [41] X. Li, C. Zhang, S. Cai, X. Lei, V. Altoe, F. Hong, J. J. Urban, J. Ciston, E. M. Chan, and Y. Liu, “Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks,” Nature communications, vol. 9, no. 1, pp. 1-8, 2018. [42] R. A. Maia, F. L. Oliveira, M. Nazarkovsky, and P. M. Esteves, “Crystal engineering of covalent organic frameworks based on hydrazine and hydroxy-1, 3, 5-triformylbenzenes,” Crystal Growth & Design, vol. 18, no. 9, pp. 5682-5689, 2018. [43] Y. Li, W. Chen, R. Gao, Z. Zhao, T. Zhang, G. Xing, and L. Chen, “2D covalent organic frameworks with built-in amide active sites for efficient heterogeneous catalysis,” Chemical Communications, vol. 55, no. 96, pp. 14538-14541, 2019. [44] S. Ma, Z. Li, J. Jia, Z. Zhang, H. Xia, H. Li, X. Chen, Y. Xu, and X. Liu, “Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water,” Chinese Journal of Catalysis, vol. 42, no. 11, pp. 2010-2019, 2021. [45] S. Chandra, T. Kundu, K. Dey, M. Addicoat, T. Heine, and R. Banerjee, “Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks,” Chemistry of Materials, vol. 28, no. 5, pp. 1489-1494, 2016. [46] Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo, and D. Zhao, “Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation,” Chemistry of Materials, vol. 28, no. 5, pp. 1277-1285, 2016. [47] F. Xu, S. Yang, X. Chen, Q. Liu, H. Li, H. Wang, B. Wei, and D. Jiang, “Energy-storage covalent organic frameworks: improving performance via engineering polysulfide chains on walls,” Chemical science, vol. 10, no. 23, pp. 6001-6006, 2019. [48] Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, and Y. Mu, “A 2D azine-linked covalent organic framework for gas storage applications,” Chemical Communications, vol. 50, no. 89, pp. 13825-13828, 2014. [49] H. Xu, S. Tao, and D. Jiang, “Proton conduction in crystalline and porous covalent organic frameworks,” Nature materials, vol. 15, no. 7, pp. 722-726, 2016. [50] Y. Li, C. Wang, S. Ma, H. Zhang, J. Ou, Y. Wei, and M. Ye, “Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions,” ACS applied materials & interfaces, vol. 11, no. 12, pp. 11706-11714, 2019. [51] W.-R. Cui, W. Jiang, C.-R. Zhang, R.-P. Liang, J. Liu, and J.-D. Qiu, “Regenerable carbohydrazide-linked fluorescent covalent organic frameworks for ultrasensitive detection and removal of mercury,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 1, pp. 445-451, 2019. [52] Y. Jiang, C. Liu, and A. Huang, “EDTA-functionalized covalent organic framework for the removal of heavy-metal ions,” ACS applied materials & interfaces, vol. 11, no. 35, pp. 32186-32191, 2019. [53] D.-G. Wang, T. Qiu, W. Guo, Z. Liang, H. Tabassum, D. Xia, and R. Zou, “Covalent organic framework-based materials for energy applications,” Energy & Environmental Science, vol. 14, no. 2, pp. 688-728, 2021. [54] R. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, and D. Jiang, “Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications,” Chemical Society Reviews, vol. 50, no. 1, pp. 120-242, 2021. [55] X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang, L. Mao, M. Qiu, B. Hu, H. Yang, and X. Wang, “Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions,” The Innovation, vol. 2, no. 1, pp. 100076, 2021. [56] G. Bian, J. Yin, and J. Zhu, “Recent advances on conductive 2D covalent organic frameworks,” Small, vol. 17, no. 22, pp. 2006043, 2021. [57] Q. Xu, S. Tao, Q. Jiang, and D. Jiang, “Ion conduction in polyelectrolyte covalent organic frameworks,” Journal of the American Chemical Society, vol. 140, no. 24, pp. 7429-7432, 2018. [58] X. Zhao, Y. Chen, Z. Wang, and Z. Zhang, “Design and application of covalent organic frameworks for ionic conduction,” Polymer Chemistry, 2021. [59] Z. Xie, B. Wang, Z. Yang, X. Yang, X. Yu, G. Xing, Y. Zhang, and L. Chen, “Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction,” Angewandte Chemie International Edition, vol. 58, no. 44, pp. 15742-15746, 2019. [60] H. Ma, B. Liu, B. Li, L. Zhang, Y.-G. Li, H.-Q. Tan, H.-Y. Zang, and G. Zhu, “Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction,” Journal of the American Chemical Society, vol. 138, no. 18, pp. 5897-5903, 2016. [61] X. Zhang, G. Li, D. Wu, B. Zhang, N. Hu, H. Wang, J. Liu, and Y. Wu, “Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing,” Biosensors and Bioelectronics, vol. 145, pp. 111699, 2019. [62] X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, and M. Zhang, “Recent advances in covalent organic frameworks (COFs) as a smart sensing material,” Chemical Society Reviews, vol. 48, no. 20, pp. 5266-5302, 2019. [63] H. Yuan, N. Li, J. Linghu, J. Dong, Y. Wang, A. Karmakar, J. Yuan, M. Li, P. J. S. Buenconsejo, and G. Liu, “Chip-level integration of covalent organic frameworks for trace benzene sensing,” ACS sensors, vol. 5, no. 5, pp. 1474-1481, 2020. [64] S. Jhulki, A. M. Evans, X.-L. Hao, M. W. Cooper, C. H. Feriante, J. Leisen, H. Li, D. Lam, M. C. Hersam, and S. Barlow, “Humidity sensing through reversible isomerization of a covalent organic framework,” Journal of the American Chemical Society, vol. 142, no. 2, pp. 783-791, 2020. [65] L. Ascherl, E. W. Evans, J. Gorman, S. Orsborne, D. Bessinger, T. Bein, R. H. Friend, and F. Auras, “Perylene-based covalent organic frameworks for acid vapor sensing,” Journal of the American Chemical Society, vol. 141, no. 39, pp. 15693-15699, 2019. [66] R. Iqbal, G. Yasin, M. Hamza, S. Ibraheem, B. Ullah, A. Saleem, S. Ali, S. Hussain, T. A. Nguyen, and Y. Slimani, “State of the art two-dimensional covalent organic frameworks: prospects from rational design and reactions to applications for advanced energy storage technologies,” Coordination Chemistry Reviews, vol. 447, pp. 214152, 2021. [67] M. Li, J. Liu, Y. Li, G. Xing, X. Yu, C. Peng, and L. Chen, “Skeleton engineering of isostructural 2D covalent organic frameworks: orthoquinone redox-active sites enhanced energy storage,” CCS Chemistry, vol. 3, no. 2, pp. 696-706, 2021. [68] X. Kong, S. Zhou, M. Strømme, and C. Xu, “Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device,” Carbon, vol. 171, pp. 248-256, 2021. [69] L. Zhou, S. Jo, M. Park, L. Fang, K. Zhang, Y. Fan, Z. Hao, and Y. M. Kang, “Structural engineering of covalent organic frameworks for rechargeable batteries,” Advanced Energy Materials, vol. 11, no. 27, pp. 2003054, 2021. [70] H. Zhang, Z. Qu, H. Tang, X. Wang, R. Koehler, M. Yu, C. Gerhard, Y. Yin, M. Zhu, and K. Zhang, “On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized Zn–Air Battery with High Energy Density,” ACS Energy Letters, vol. 6, no. 7, pp. 2491-2498, 2021. [71] H. S. Sasmal, S. Bag, B. Chandra, P. Majumder, H. Kuiry, S. Karak, S. Sen Gupta, and R. Banerjee, “Heterogeneous C–H Functionalization in Water via Porous Covalent Organic Framework Nanofilms: A Case of Catalytic Sphere Transmutation,” Journal of the American Chemical Society, vol. 143, no. 22, pp. 8426-8436, 2021. [72] N. Wang, F. Wang, F. Pan, S. Yu, and D. Pan, “Highly efficient silver catalyst supported by a spherical covalent organic framework for the continuous reduction of 4-nitrophenol,” ACS Applied Materials & Interfaces, vol. 13, no. 2, pp. 3209-3220, 2021. [73] Y. Zhu, D. Zhu, Q. Yan, G. Gao, J. Xu, Y. Liu, S. B. Alahakoon, M. M. Rahman, P. M. Ajayan, and E. Egap, “Metal Oxide Catalysts for the Synthesis of Covalent Organic Frameworks and One-Step Preparation of Covalent Organic Framework-Based Composites,” Chemistry of Materials, vol. 33, no. 15, pp. 6158-6165, 2021. [74] E. A. Gendy, J. Ifthikar, J. Ali, D. T. Oyekunle, Z. Elkhlifia, I. I. Shahib, A. I. Khodair, and Z. Chen, “Removal of heavy metals by covalent organic frameworks (COFs): A review on its mechanism and adsorption properties,” Journal of Environmental Chemical Engineering, vol. 9, no. 4, pp. 105687, 2021. [75] A. R. Bagheri, N. Aramesh, F. Sher, and M. Bilal, “Covalent organic frameworks as robust materials for mitigation of environmental pollutants,” Chemosphere, vol. 270, pp. 129523, 2021. [76] Z. Ma, F. Liu, N. Liu, W. Liu, and M. Tong, “Facile synthesis of sulfhydryl modified covalent organic frameworks for high efficient Hg (II) removal from water,” Journal of Hazardous Materials, vol. 405, pp. 124190, 2021. [77] W. Wang, Z. Zhou, H. Shao, S. Zhou, G. Yu, and S. Deng, “Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution,” Chemical Engineering Journal, vol. 412, pp. 127509, 2021. [78] R. Zhu, P. Zhang, X. Zhang, M. Yang, R. Zhao, W. Liu, and Z. Li, “Fabrication of synergistic sites on an oxygen-rich covalent organic framework for efficient removal of Cd (II) and Pb (II) from water,” Journal of Hazardous Materials, vol. 424, pp. 127301, 2022. [79] T. Feng, D. Streater, B. Sun, K. Duisenova, D. Wang, Y. Liu, J. Huang, and J. Zhang, “Tuning Photoexcited Charge Transfer in Imine-Linked Two-Dimensional Covalent Organic Frameworks,” The Journal of Physical Chemistry Letters, vol. 13, no. 6, pp. 1398-1405, 2022. [80] F. Zhang, H. Hao, X. Dong, X. Li, and X. Lang, “Olefin-linked covalent organic framework nanotubes based on triazine for selective oxidation of sulfides with O2 powered by blue light,” Applied Catalysis B: Environmental, vol. 305, pp. 121027, 2022. [81] H. Shan, D. Cai, X. Zhang, Q. Zhu, P. Qin, and J. Baeyens, “Donor-acceptor type two-dimensional porphyrin-based covalent organic framework for visible-light-driven heterogeneous photocatalysis,” Chemical Engineering Journal, vol. 432, pp. 134288, 2022. [82] S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, and R. Banerjee, “Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route,” Journal of the American Chemical Society, vol. 134, no. 48, pp. 19524-19527, 2012. [83] Y. Yue, H. Li, H. Chen, and N. Huang, “Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity,” Journal of the American Chemical Society, vol. 144, no. 7, pp. 2873-2878, 2022. [84] R. Van Der Jagt, A. Vasileiadis, H. Veldhuizen, P. Shao, X. Feng, S. Ganapathy, N. C. Habisreutinger, M. A. van der Veen, C. Wang, and M. Wagemaker, “Synthesis and Structure–Property Relationships of Polyimide Covalent Organic Frameworks for Carbon Dioxide Capture and (Aqueous) Sodium-Ion Batteries,” Chemistry of Materials, vol. 33, no. 3, pp. 818-833, 2021. [85] P. Zhang, S. Chen, C. Zhu, L. Hou, W. Xian, X. Zuo, Q. Zhang, L. Zhang, S. Ma, and Q. Sun, “Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation,” Nature communications, vol. 12, no. 1, pp. 1-7, 2021. [86] X. Liu, J. Li, B. Gui, G. Lin, Q. Fu, S. Yin, X. Liu, J. Sun, and C. Wang, “A crystalline three-dimensional covalent organic framework with flexible building blocks,” Journal of the American Chemical Society, vol. 143, no. 4, pp. 2123-2129, 2021. [87] K. Guo, X. Zhu, L. Peng, Y. Fu, R. Ma, X. Lu, F. Zhang, W. Zhu, and M. Fan, “Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles,” Chemical Engineering Journal, vol. 405, pp. 127011, 2021. [88] Y. Zhang, J. Guo, G. Han, Y. Bai, Q. Ge, J. Ma, C. H. Lau, and L. Shao, “Molecularly soldered covalent organic frameworks for ultrafast precision sieving,” Science Advances, vol. 7, no. 13, pp. eabe8706, 2021. [89] Z. Dai Li, H. Q. Zhang, X. H. Xiong, and F. Luo, “U (VI) adsorption onto covalent organic frameworks-TpPa-1,” Journal of Solid State Chemistry, vol. 277, pp. 484-492, 2019. [90] J. L. Sheng, H. Dong, X. B. Meng, H. L. Tang, Y. H. Yao, D. Q. Liu, L. L. Bai, F. M. Zhang, J. Z. Wei, and X. J. Sun, “Effect of different functional groups on photocatalytic hydrogen evolution in covalent‐organic frameworks,” ChemCatChem, vol. 11, no. 9, pp. 2313-2319, 2019. [91] S. He, T. Zeng, S. Wang, H. Niu, and Y. Cai, “Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets,” ACS Applied Materials & Interfaces, vol. 9, no. 3, pp. 2959-2965, 2017. [92] X. Zhong, Z. Lu, W. Liang, and B. Hu, “The magnetic covalent organic framework as a platform for high-performance extraction of Cr (VI) and bisphenol a from aqueous solution,” Journal of Hazardous Materials, vol. 393, pp. 122353, 2020. [93] W. Jiang, W.-R. Cui, R.-P. Liang, and J.-D. Qiu, “Difunctional covalent organic framework hybrid material for synergistic adsorption and selective removal of fluoroquinolone antibiotics,” Journal of Hazardous Materials, vol. 413, pp. 125302, 2021. [94] H. Dong, X.-B. Meng, X. Zhang, H.-L. Tang, J.-W. Liu, J.-H. Wang, J.-Z. Wei, F.-M. Zhang, L.-L. Bai, and X.-J. Sun, “Boosting visible-light hydrogen evolution of covalent-organic frameworks by introducing Ni-based noble metal-free co-catalyst,” Chemical Engineering Journal, vol. 379, pp. 122342, 2020. [95] Y. Zhang, W. Zhang, Q. Li, C. Chen, and Z. Zhang, “Design and fabrication of a novel humidity sensor based on ionic covalent organic framework,” Sensors and Actuators B: Chemical, vol. 324, pp. 128733, 2020. [96] C.-C. Li, M.-Y. Gao, X.-J. Sun, H.-L. Tang, H. Dong, and F.-M. Zhang, “Rational combination of covalent-organic framework and nano TiO2 by covalent bonds to realize dramatically enhanced photocatalytic activity,” Applied Catalysis B: Environmental, vol. 266, pp. 118586, 2020. [97] S. Chandra, D. Roy Chowdhury, M. Addicoat, T. Heine, A. Paul, and R. Banerjee, “Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials,” Chemistry of Materials, vol. 29, no. 5, pp. 2074-2080, 2017. [98] Y. Chang, J.-Y. Lai, and D.-J. Lee, “Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters: Research updated,” Bioresource technology, vol. 222, pp. 513-516, 2016. [99] X. Liu, and D.-J. Lee, “Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters,” Bioresource technology, vol. 160, pp. 24-31, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84130 | - |
| dc.description.abstract | 此研究中,第一次利用溶劑熱法成功合成新穎的2D共價有機框架TpBu。TpBu的主架有著胺基鍵結與羰基。TpBu被設計為可允許局部性氮原子周圍單鍵轉動,所以該共價有機框架於結構上有能力形成更多氫鍵。在pH -0.2的環境下,即使承受質子攻擊,TpBu仍然維持完整的堆疊層狀結構。TpBu吸附銅離子的同時也吸熱,於pH 7下(分別於25、35與45度C有23.4、29.2與37.9 mg/g)及於pH -0.2下(分別於25、35與45度C有17.1、21.0與31.2 mg/g)。於pH -0.2下僅有稍微減少的Langmuir 吸附量(與於pH 7下相比),可推估出競爭吸附伴隨著吸熱減少。質子攻擊影響了外層TpBu,但堆疊層並未剝落。 於此研究中仍是首次將TpPa(OH)2 作為pH-響應吸附材料應用於銅離子移除。Langmuir吸附量分別於25、35與45度C為56.2、84.8、109.9 mg/g,為吸熱吸附過程。於pH -0.2下,35度C時的吸附量為11.3mg/g,減少了86.7%。堆堆疊的層狀結構於pH -0.2下被質子攻擊而毀壞,且無法於pH 7下恢復層狀結構。於pH-swing(7, -0.2, then 7)的實驗中35度C時的吸附量升至114.9mg/g,與原先的TpPa(OH)2相比有著35.5%的增加。這表示該層狀結構於極酸性環境下不被破壞,但是堆疊層會剝落,而增加了銅離子的可吸附點位。重複試驗得出,TpPa(OH)2可用作為pH-響應吸附材料,於pH 7下吸附了109.5±3.2 mg Cu(II)/g,並於pH -0.2下釋放90.5±4.6 mg Cu(II)/g | zh_TW |
| dc.description.abstract | Abstract We synthesized a novel two-dimensional covalent organic framework (COF) TpBu via solvothermal method in this study. The TpBu possesses amine linkages and carbonyl functional groups on the backbone, and it is designed to permit local rotations of bonds around the nitrogen atoms on amine linkages; therefore, the yielded two-dimensional COF layers are flexible in structure. This design allows excess formation of the H-bonds between the neighboring layers. Upon proton attacks at pH -0.2, the so-synthesized TpBu remains intact in stacked structure. The TpBu can endothermically adsorb Cu(II) ions from water at both pH 7 (23.4, 29.2, and 37.9 mg/g, at 25, 35 and 45 oC, respectively) and pH -0.2 (17.1, 21.0, and 31.2 mg/g, at 25, 35 and 45 oC, respectively) by complexation reactions. At pH -0.2, compared to pH 7, excess protons only mildly reduce the Langmuir adsorption capacities of Cu(II) by TpBu. It can be attributable to competitive adsorption with decreased changes in adsorption enthalpy. The proton attacks affect the outer layers of TpBu, but cannot exfoliate the stacked layers. In this study, also for the first time, applied the covalent organic framework (COF) TpPa(OH)2 as a pH-responsive adsorbent for Cu(II) ions removal from waters. The Langmuir adsorption capacities at 25 oC, 35 oC, and 45 oC are 56.2 mg/g, 84.8 mg/g, and 109.9 mg/g, respectively. The process is an endothermic, entropy-driven adsorption process. The adsorption capacity of TpPa(OH)2 on Cu(II) at pH -0.2 and 35 oC is reduced to 11.3 mg/g, with an 86.7% loss. The layered structures of TpPa(OH)2 are deteriorated by proton attacks at pH -0.2, which cannot be recovered as pH is resumed to neutral. Compared to the pristine TpPa(OH)2, the pH-swing (7, -0.2, then 7), conversely, increases the Langmuir capacity at 35oC to 114.9 mg/g, a 35.5% increase. The TpPa(OH)2 can remain in COF layers structures intact in the highly acidic environment, while the exfoliated layers lead to additional sites for Cu(II) adsorption. TpPa(OH)2 can also be used as a pH-responsive adsorbent, adsorbing 109.5±3.2 mg Cu(II)/g at pH 7, and releasing 90.5±4.6 mg Cu(II)/g at pH -0.2. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:05:09Z (GMT). No. of bitstreams: 1 U0001-1307202213103900.pdf: 6439828 bytes, checksum: 447bc1f2f84f40877e7d1db0f303a62f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Content Acknowledgement 1 摘要 2 Abstract 3 Content 5 List of Figures 7 List of Tables 9 Chapter 1 Introduction 10 Chapter 2 Literature Review 12 2.1 Synthesis of covalent organic frameworks 12 2.1.1 Solvothermal synthesis 12 2.1.2 Mechanochemical Synthesis 12 2.1.3 Microwave synthesis 14 2.2 Stability of covalent organic frameworks 14 2.2.1 B-O linkages 14 2.2.2 C=N linkages 16 2.2.3 C-N linkages 20 2.3 Application of covalent organic frameworks 22 2.3.1 Gas storage and energy storage 22 2.3.2 Conduction 23 2.3.3 Substance removal 24 2.3.4 Recent advancement of covalent organic frameworks 25 2.3.5 Application of TpPa-X COFs 28 Chapter 3 Experimental 30 3.1 Chemicals 30 3.2 Sample synthesis 31 3.2.1 Preparation of TpPa(OH)2 31 3.2.2 Preparation of TpBu 32 3.3 Preparation of solution 33 3.3.1 Preparation of Cu2+ solution with DI water 33 3.4 Charaterization of TpPa(OH)2 and TpBu 33 3.4.1 Fourier-Transform Infrared Spectroscopy (FTIR) 33 3.4.2 Powder X-Ray Diffraction (PXRD) 34 3.4.3 Nuclear Magnetic Resonance Spectroscopy (NMR) 34 3.4.4 X-Ray Photoelectron Spectroscopy (XPS) 34 3.4.5 Scanning Electron Microscopy (SEM) 34 3.4.6 Inductivity Coupled Plasma (ICP) 35 3.4.7 Zeta Potential 35 3.5 Batch Adsorption Isotherms of Cu2+ Adsorbed by TpPa(OH)2 and TpBu 35 Chapter 4 Results & Discussion 36 4.1 Characteristics of TpPa(OH)2 and TpBu 36 4.1.1 Fourier-Transform Infrared Spectroscopy (FTIR) 36 4.1.2 Powder X-Ray Diffraction (PXRD) 37 4.1.3 Nuclear Magnetic Resonance Spectroscopy (NMR) 39 4.1.4 X-Ray Photoelectron Spectroscopy (XPS) 42 4.1.5 Scanning Electron Microscopy (SEM) 43 4.1.6 Zeta Potential 44 4.2 Adsorption Performance 45 4.2.1 Adsorption Kinetics of TpPa(OH)2 45 4.2.2 Adsorption Isotherms of TpPa(OH)2 at pH 7 46 4.2.3 Adsorption Isotherms of TpPa(OH)2 at pH -0.2 48 4.2.4 Adsorption Isotherm (pH-swing TpPa(OH)2) 48 4.2.5 Adsorption Mechanism of TpPa(OH)2 49 4.3 Adsorption Performance of TpBu 50 4.3.1 Adsorption Kinetics of TpBu 50 4.3.2 Adsorption Isotherm of TpBu at pH 7 51 4.3.3 Adsorption Isotherm of TpBu at pH -0.2 52 4.3.4 Adsorption Isotherm (pH-swing TpBu) 53 4.3.5 Adsorption Mechanism of TpBu 54 4.3.6 The Yielded COF TpBu 55 Chapter 5 Conclusions 55 Reference 57 List of Figures Figure 1. Model homogeneous reaction (12 mM xBBA, 2 equiv. TCAT, 10 equiv. MeOH, 4 : 1 dioxane : mesitylene) and boronate ester formation monitored by NMR at 60 1C, contrasted with COF growth under similar conditions (8 mM HHTP, 1.5 equiv. xBBA, 15 equiv. MeOH) [11] 15 Figure 2. Hydrolytic digestion of COF suspensions at 25 1C, monitored by turbidity. Water is added at t = 0 min (final [H2O] = 0.7 M in 4 : 1 dioxane : mesitylene, B700 equiv. relative to HHTP) [11] 16 Figure 3. Scheme of proposed and previous COF formation mechanisms. [38] 17 Figure 4. Comparison of the synthesis of imine-linked 2D COFs from polyfunctional aryl amine monomers (left) and the corresponding benzophenone imines (right). [39] 19 Figure 5. Chemical stability of MF-1a and COF-1. PXRD patterns of MF-1a (a) and COF-1 (b) after treatment with 12M HCl at 50 °C for 8 h (green), 98% triflic acid at ambient temperature for 3 days (black), 14M NaOH in H2O/MeOH solution at 60 °C for 1 day (red), 5 equiv. of NaBH4 in MeOH at 65 °C for 1 day (blue), and 5 equiv. of KMnO4 in H2O/CH3CN solution at ambient temperature for 1 day (purple) [41] 19 Figure 6. The demonstration of the nucleation [42] 20 Figure 7. Adsorption capacity of the TpPa-NH2@EDTA for six representative heavy-metal ions [52] 25 Figure 8. Chelating groups of TpPa(OH)2 30 Figure 9. Chelating groups of TpBu 30 Figure 10. Structure of TpPa(OH)2 32 Figure 11. Structure of TpBu 33 Figure 12. FT-IR spectrum of TpPa(OH)2, Tp and Pa(OH)2 37 Figure 13. FT-IR spectrum of TpBu, Tp and Bu 37 Figure 14. PXRD patterns of TpPa(OH)2 as-synthesized, after acidic treatment for 24 hr, and after adsorbing Cu2+ in pH = -0.2 solution 38 Figure 15. PXRD patterns of TpBu as-synthesized, after acidic treatment for 24 hr, and after adsorbing Cu2+ in pH = -0.2 solution 39 Figure 16. C13 Solid-state NMR spectrum of TpPa(OH)2 39 Figure 17. Chemical structure and chelating groups (red squares) of the TpPa(OH)2. a-d: carbon labels. 40 Figure 18. C13 Solid-state NMR spectrum of TpBu 40 Figure 19. Chemical structure and potential chelating groups of the TpBu 41 Figure 20. The XPS spectra of (a) N1s, 400.01 eV for -NH- of TpPa(OH)2 as synthesized, (b) N1s, 400.27 eV for -NH- of TpPa(OH)2 after adsorption, (c) O1s, 533.19 for C-OH, 531.77 for C=O of TpPa(OH)2 as synthesized (d) O1s, 533.41 for C-OH, 532.01 for C=O of TpPa(OH)2 after adsorption (e) N1s, 399.51 eV for (C=O)-NH-(C=O), 398.82 eV for N-H of TpBu as synthesized (f) N1s, 401.36 eV for (C=O)-NH-(C=O), 399.65 eV for N-H of TpBu after adsorption (g) O1s, 532.84 eV for NH-(C=O)-NH, 530.84 eV for C=O of TpBu as synthesized (h) O1s, 533.37 eV for NH-(C=O)-NH, 531.38 eV for C=O of TpBu after adsorption 43 Figure 21. SEM image of TpPa(OH)2 44 Figure 22. SEM image of TpBu 44 Figure 23. Zeta Potential vs. pH-value plot of TpPa(OH)2 45 Figure 24. Zeta Potential vs. pH-value plot of TpBu 45 Figure 25. Adsorption kinetics of TpPa(OH)2 at 35oC 46 Figure 26. Adsorption isotherms of TpPa(OH)2 for Cu(II) 47 Figure 27. Adsorption isotherm for TpPa(OH)2 at 35oC, pH -0.2 48 Figure 28. Adsorption Isotherm of TpPa(OH)2 after pH-swing and as-synthesized 49 Figure 29. Adsorption kinetics of TpBu at 35oC 51 Figure 30. Adsorption isotherms of TpBu for Cu(II) 52 Figure 31. Adsorption isotherm for TpBu at 35 oC and 45oC, pH -0.2 53 Figure 32. Adsorption Isotherm of TpBu after pH-swing and as-synthesized 54 List of Tables Table 1. Chemicals used in this study 31 Table 2. Adsorption parameters for Cu(II) on TpPa(OH)2. 48 Table 3. XPS spectra analysis before and after adsorption of TpPa(OH)2 50 Table 4. Adsorption capacities and thermodynamic parameters for the Cu(II) ions adsorbed onto the COF TpBu. 52 Table 5. Adsorption capacities and thermodynamic parameters for the Cu(II) ions adsorbed onto the COF TpBu. 53 Table 6. XPS spectra analysis before and after adsorption of TpPa(OH)2 55 | |
| dc.language.iso | en | |
| dc.subject | 堆疊層狀結構 | zh_TW |
| dc.subject | 共價有機框架 | zh_TW |
| dc.subject | 吸附 | zh_TW |
| dc.subject | pH-響應 | zh_TW |
| dc.subject | 極酸性 | zh_TW |
| dc.subject | 化學穩定 | zh_TW |
| dc.subject | chemical stablilty | en |
| dc.subject | stacked-layers structure | en |
| dc.subject | Covalent Organic Frameworks | en |
| dc.subject | adsorption | en |
| dc.subject | pH-responsive | en |
| dc.subject | extremely acidic condition | en |
| dc.title | 以共價有機框架TpBu或TpPa(OH)2移除水中之銅離子並利用pH響應釋放銅離子 | zh_TW |
| dc.title | Using Covalent Organic Frameworks TpBu and TpPa(OH)2 as pH-responsive materials to remove Cu(II) from water | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐治平(Jyh-Ping Hsu),曾琇瑱(Shio-Jenn Tseng) | |
| dc.subject.keyword | 共價有機框架,吸附,pH-響應,極酸性,化學穩定,堆疊層狀結構, | zh_TW |
| dc.subject.keyword | Covalent Organic Frameworks,adsorption,pH-responsive,extremely acidic condition,chemical stablilty,stacked-layers structure, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU202201445 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-19 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1307202213103900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
