Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84127
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林宗賢(Tsung-Hsien Lin)
dc.contributor.authorJan Tzengen
dc.contributor.author曾展zh_TW
dc.date.accessioned2023-03-19T22:05:06Z-
dc.date.copyright2022-07-19
dc.date.issued2022
dc.date.submitted2022-07-13
dc.identifier.citation[1]J. Li and F. C. Lee, 'New Modeling Approach for Current-Mode Control,' Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 305-311, Mar. 2009. [2]S. Bari, Q. Li, and F. C. Lee, 'A New Current Mode Constant On-Time Control with Ultrafast Load Transient Response' IEEE APEC, pp. 3259-3265, May, 2016. [3]M. K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters, 2nd Edition, Oct. 2015. [4]S. Bari, Q. Li and F. C. Lee, 'High Frequency Small Signal Model for Inverse Charge Constant On-Time (IQCOT) Control,' IEEE Energy Conversion Congress and Exposition (ECCE), pp. 6000-6007, Sept. 2018. [5]S. Bari, Q. Li and F. C. Lee, 'Inverse Charge Constant On-Time Control with Ultrafast Transient Performance,' IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 68-78, Feb. 2021. [6]J. Li and F. C. Lee, 'Modeling of 'V' ^'2' Current-Mode Control,' Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 298-304, Feb. 2009. [7]Y. Yan, F. C. Lee, P. Mattavelli and S. Tian, 'Small Signal Analysis of 'V' ^'2' Control Using Equivalent Circuit Model of Current Mode Controls,' IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5344-5353, July 2016. [8]S. Tian, F. C. Lee, Q. Li and Y. Yan, 'Unified Equivalent Circuit Model and Optimal Design of 'V' ^'2' Controlled Buck Converters,' IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1734-1744, Feb. 2016. [9]K. H. Chen, Power Management Techniques for Integrated Circuit Design, Wiley, 2016. [10]R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics 2/e, Springer, 2001. [11]Y. Qiu, M. Xu, K. Yao, J. Sun and F. C. Lee, 'Multifrequency Small-Signal Model for Buck and Multiphase Buck Converters,' IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1185-1192, Sept. 2006. [12]Y. Yan, F. C. Lee and P. Mattavelli, 'Unified Three-Terminal Switch Model for Current Mode Controls,' IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 4060-4070, Sept. 2012. [13]H. P. Forghani-zadeh and G. A. Rincon-Mora, 'Current-Sensing Techniques for DC-DC Converters,' The 2002 45th Midwest Symposium on Circuits and Systems, Aug. 2002. [14]C. Lee and P. K. T. Mok, 'A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique,' IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004. [15]P. E. Allen, and D. R. Holberg, CMOS Analog Circuit Design, 3/e, Oxford University, 2012. [16]B. Razavi, Design of Analog CMOS Integrated Circuits, 2/e, McGraw-Hill College, 2017. [17]Y. Gao, S. Wang, H. Li, L. Chen, S. Fan and L. Geng, 'A Novel Zero-Current-Detector for DCM Operation in Synchronous Converter,' IEEE International Symposium on Industrial Electronics, pp. 99-104, May 2012. [18]W. Chen et al., 'Pseudo-Constant Switching Frequency in On-Time Controlled Buck Converter with Predicting Correction Techniques,' IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3650-3662, May 2016. [19]RD0004 datasheet, “Richtek Load Transient Tool User Manual,” Dec. 2016, Available on http://www.richtek.com. [20]Five steps to a great PCB layout for a step-down converter, Texas Instruments, Available on https://www.ti.com. [21]M. L. Chiu, T. H. Yang and T. H. Lin, 'A Transient-Enhanced Constant On-Time Buck Converter with Light-Load Efficiency Optimization,' IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 169-170, Nov. 2018. [22]W. H. Yang et al., 'A Constant-On-Time Control DC–DC Buck Converter with the Pseudowave Tracking Technique for Regulation Accuracy and Load Transient Enhancement,' IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 6187-6198, Jul. 2018. [23]I. C. Wei, D. Chen, Y. C. Lin and C. J. Chen, 'The Stability Modeling of Ripple-Based Constant On-Time Control Schemes Used in the Converters Operating in DCM,' International Conference on Renewable Energy Research and Applications, Nov. 2012. [24]Y. Yan, P. Liu, F. Lee, Q. Li and S. Tian, ''V' ^'2' Control with Capacitor Current Ramp Compensation Using Lossless Capacitor Current Sensing,' IEEE Energy Conversion Congress and Exposition, pp. 117-124, Sept. 2013. [25]Q. Khan et al., 'A 10–25MHz, 600mA Buck Converter Using Time-Based PID Compensator with 2µA/MHz Quiescent Current, 94% Peak Efficiency, and 1MHz BW,' Symposium on VLSI Circuits, Jun. 2014. [26]S. J. Kim et al., 'High Frequency Buck Converter Design Using Time-Based Control Techniques,' IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 990-1001, Apr. 2015. [27]J. Kang, M. Jeong, J. Park and C. Yoo, 'A 10MHz Time-Domain-Controlled Current-Mode Buck Converter with 8.5% to 93% Switching Duty Cycle,' IEEE International Solid-State Circuits Conference, Feb. 2018. [28]J. Kang, J. Park, M. Jeong and C. Yoo, 'A Time-Domain-Controlled Current-Mode Buck Converter with Wide Output Voltage Range,' IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 865-873, Mar. 2019. [29]P. Liu, Y. Yan, F. C. Lee and P. Mattavelli, 'Universal Compensation Ramp Auto-Tuning Technique for Current Mode Controls of Switching Converters,' IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 970-974, Feb. 2018. [30]P. H. Liu, 'Advanced Control Schemes for High-Bandwidth Multiphase Voltage Regulators,' Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering, Apr. 2015. [31]W. Chen, J. Chen, T. Liang, L. Wei, J. Huang and W. Ting, 'A Novel Quick Response of RBCOT With VIC Ripple for Buck Converter,' IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4299-4307, Sept. 2013. [32]P. L. Wong, F. C. Lee, P. Xu and K. Yao, 'Critical Inductance in Voltage Regulator Modules,' IEEE Transactions on Power Electronics, vol. 17, no. 4, pp. 485-492, Jul. 2002. [33]C. Huang, C. Wang, J. Wang and C. Tsai, 'A Fast-Transient Quasi-'V' ^'2' Switching Buck Regulator Using AOT Control,' IEEE Asian Solid-State Circuits Conference, Nov. 2011. [34]I. F. Lo, 'Design of A Current-Mode Buck Converter with Time-Charge-Based Control,' Graduate Institute of Electronics Engineering, National Taiwan University, Jun. 2021. [35]S. J. Kim, R. K. Nandwana, Q. Khan, R. Pilawa-Podgurski and P. K. Hanumolu, 'A 1.8V 30-to-70MHz 87% Peak-Efficiency 0.32mm2 4-phase Time-Based Buck Converter Consuming 3μA/MHz Quiescent Current in 65nm CMOS,' IEEE International Solid-State Circuits Conference, Mar. 2015. [36]S. J. Kim et al., 'A 1.8V 30-to-70MHz 87% Peak-Efficiency 0.32mm2 4-Phase Time-Based Buck Converter Consuming 3μA/MHz Quiescent Current in 65nm CMOS,' IEEE International Solid-State Circuits Conference, Feb. 2015. [37]D. Jung et al., '0.293-mm2 Fast Transient Response Hysteretic Quasi-V2 DC–DC Converter with Area-Efficient Time-Domain-Based Controller in 0.35-μm CMOS,' IEEE Journal of Solid-State Circuits, June 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84127-
dc.description.abstract近年來隨著手持式裝置與電腦設備需求遽增,對於電源管理式晶片之要求也越來越嚴苛。如何設計出具有大功率密度、快速動態響應、廣泛輸入輸出範圍等優點,為現今開發電源管理式晶片所追尋的目標,而本論文將針對兩種不同的直流壓降式電路進行探討。 第一種架構主要針對漣波控制固定導通時間壓降轉換器進行實驗。實作方式為參考既有之架構,利用文獻中提及之小訊號模型進行模擬,並於回授路徑中,加入解決穩定度並改善抽載暫態響應的技巧。當抽載暫態響應發生時,其輸出電壓下降不超過50豪伏特/安培,並於低抽載時進入不連續導通模式,降低切換所耗,晶片使用台積電180奈米製程,尺寸為1.2×1.0平方毫米,最高效率為83.4%。 第二種架構改善了時間電荷控制法實現時域式降壓轉換器,此架構支援大範圍的輸入與輸出電壓,並可在不同操作範圍下維持固定的品質因子,以維持系統穩定性。本次實驗透過堆疊式電容實現被動元件,使晶片面積有效下降,並利用輸出電壓回授,使低抽載時能完成不連續導通模式,並有效降頻,完成高功率密度之設計。由於高增益電壓回授路徑,使電路整體之電源電壓調整率及負載調整率各自小於1毫伏特/伏特及1毫伏特/安培,晶片使用台積電180奈米製程,尺寸為0.9×1.1平方毫米,最高效率為94.9%。zh_TW
dc.description.abstractWith the strong demand for handheld devices and computer equipment in recent years, the requirements for power management ICs are becoming more and more stringent. The design of power management ICs with high power density, fast dynamic response, and wide input and output range are the main goals of today's power management IC development. Two different types of DC-DC converters are discussed in this thesis. The first architecture focuses on a ripple-based constant on-time buck converter. The purpose is to solve the stability problem and to improve the load transient response by analyzing the small signal model mentioned in the reference. A proposed technique applying to the feedback path is the main research content in this work. The converter can regulate the output voltage with less than 50 mV/A undershoot/overshoot when the load transient occurs. The converter with discontinuous conduction mode (DCM) condition can reduce the switching loss at light load condition. The chip is fabricated in TSMC 180-nm CMOS process and occupies 1.2 x 1.0 mm2. Peak efficiency is 83.4%. The second architecture improves a time-charge-based control buck converter, which has a fixed quality factors to maintain system stability under wide input and output operation range. In this work, the passive components are implemented by stacked capacitors to reduce the chip area. The feedback output voltage is used to realize the DCM operation at light load condition. Owing to the above two reasons, a high power density design can be achieved. Due to the high-gain voltage loop, the line regulation and the load regulation of the circuit are less than 1 mV/V and 1 mV/A respectively. The chip is fabricated in TSMC 180-nm CMOS process and occupies 0.9×1.1 mm2. Peak efficiency is 94.9%.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:05:06Z (GMT). No. of bitstreams: 1
U0001-1207202219433600.pdf: 10165362 bytes, checksum: 78c837d0c4b65defc2d61c802167c2c2 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents中文審定書 i 英文審定書 ii 摘要 iv Abstract v List of Figures ix List of Tables xiv Chapter 1 Introduction 1 1.1 Background and Motivation: DC-DC Converter for handheld Device 1 1.2 Step load Response 2 1.3 Control Operation of Voltage Converter 4 1.3.1 Current-Mode Constant On-Time Control (CMCOT) 4 1.3.2 Inverse Charge Constant On-Time Control (IQCOT) 6 1.3.3 Ripple-Based Constant On-Time Control (RBCOT) 8 1.3.4 RBCOT: Solution for eliminating the sub-harmonic oscillation 11 (1) Adding the inductor current ramp 11 (2) Adding the inductor current ramp with the high-pass filter 13 1.4 Thesis Overview 16 Chapter 2 Proposed Compensation Type of RBCOT 17 2.1 Introduction of Proposed Compensation Type of RBCOT 17 2.2 Small-Signal Model Analysis 18 2.2.1 Simplification of Small Signal Model 18 2.2.2 Control-to-Output Transfer Function Analysis 22 2.2.3 Output Impedance Analysis 25 2.2.4 Architecture Comparison in SIMPLIS 29 Chapter 3 Circuit Implementation 32 3.1 Current Sensing with GM stage (CSGM) 33 3.1.1 DCR current sensing 33 3.1.2 Differential GM stage 34 3.2 Comparator 35 3.3 Zero Current Detector (ZCD) and Level Shifter 37 3.4 Dead-Time and Driver 38 3.5 Low-Pass Filter 40 Chapter 4 Simulation and Experimental Results 42 4.1 Simulation Results 42 4.1.1 Steady State simulation 42 4.1.2 Load Transient simulation 43 4.1.3 Load Transient simulation Comparison 44 4.2 Die Photo 45 4.3 Measurement Environment Setup 45 4.4 Measurement Results 47 4.5 Comparison Table 52 4.6 Conclusions 54 4.7 Future Works 54 Chapter 5 Introduction of Time -Based Control Buck converter 56 5.1 Introduction 56 5.2 Introduction Time-Based Control 57 (1)Voltage-mode time-based control 57 (2)Current-mode time-based control 58 Chapter 6 Proposed Analog Time-Charge-Based Control Buck converter 60 6.1 Block Diagram of Proposed Control Scheme 60 6.2 Small Signal Analysis 63 6.2.1 Control-to-Output Transfer function and stability criterion 63 6.2.2 Fixed Quality Factor Implementation 64 6.3 Behavior Model 65 6.4 Fast transient mode 68 Chapter 7 Circuit implementation of Proposed Analog Time-Charge-Based Control Buck Converter 71 7.1 Circuit Implementation and Specification 71 7.2 Current Sensing with GM Stage (CSGM) 73 7.2.1 On-Die Capacitor 73 7.2.2 DCR Current Sensing 75 7.2.3 Differential GM stage 76 7.3 Current Control Oscillator (CCO) 78 7.4 Modulation Pulse Generator 80 7.5 Error Amplifier GM Stage (EAGM) 82 7.6 Quiescent Current Saving Methods 84 Chapter 8 Simulation and Experimental Results of Proposed Analog Time-Charge-Based Control Buck Converter 88 8.1 Simulation Results 88 8.1.1 Wide Input / Output Range of Steady State simulation 88 8.1.2 Wide Input / Output Range of Load Transient simulation 89 8.2 Die Photo 91 8.3 Measurement Environment Setup 92 8.4 Measurement Results 93 8.5 Comparison Table 105 8.6 Conclusions 108 8.7 Future Works 108 Chapter 9 Summary of The Research 110 9.1 Summary 110 References 112
dc.language.isoen
dc.subject不連續導通模式zh_TW
dc.subject適應性導通時間zh_TW
dc.subject時域式控制zh_TW
dc.subject漣波式控制zh_TW
dc.subject降壓轉換器zh_TW
dc.subjectbuck converteren
dc.subjectadaptive on-time controlen
dc.subjecttime-based controlen
dc.subjectripple-based controlen
dc.subjectDCMen
dc.titleDC-DC 轉換器之進階恆定導通時間控制系統zh_TW
dc.titleAdvanced Constant On-Time Control Scheme for DC-DC Converteren
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭盛裕(Sheng-Yu Peng),李泰成(Tai-Cheng Lee),劉深淵(Shen-Iuan Liu),陳景然(Ching-Jan Chen)
dc.subject.keyword降壓轉換器,漣波式控制,時域式控制,適應性導通時間,不連續導通模式,zh_TW
dc.subject.keywordbuck converter,ripple-based control,time-based control,adaptive on-time control,DCM,en
dc.relation.page116
dc.identifier.doi10.6342/NTU202201431
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
dc.date.embargo-lift2022-07-19-
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
U0001-1207202219433600.pdf
Access limited in NTU ip range
9.93 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved