請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84089完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維(Shi-Wei Chu) | |
| dc.contributor.author | Min-Hsiang Kao | en |
| dc.contributor.author | 高敏翔 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:04:39Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-26 | |
| dc.identifier.citation | 1. Renz, M. (2013). 'Fluorescence microscopy—A historical and technical perspective.' Cytometry Part A, 83(9): 767-779. 2. Minsky, M. (1988). 'Memoir on inventing the confocal scanning microscope.' Scanning, 10(4): 128-138. 3. Jonkman, J., et al. (2020). 'Tutorial: guidance for quantitative confocal microscopy.' Nature Protocols, 15(5): 1585-1611. 4. Denk, W., et al. (1990). 'Two-Photon Laser Scanning Fluorescence Microscopy.' Science, 248(4951): 73-76. 5. Carter, M. and J. Shieh (2015). Chapter 5 - Microscopy. Guide to Research Techniques in Neuroscience (Second Edition), Academic Press: 117-144. 6. Coons, A. H. (1961). 'The Beginnings of Immunofluorescence.' The Journal of Immunology, 87(5): 499-503 7. Süel, G. (2011). Chapter thirteen - Use of Fluorescence Microscopy to Analyze Genetic Circuit Dynamics. Methods in Enzymology. C. Voigt, Academic Press. 497: 275-293. 8. Shimomura, O. (2009). Discovery of green fluorescent protein (GFP) (Nobel Lecture), 48(31), 5590–5602. 9. Chalfie, M. (2009). 'GFP: Lighting up life.' Proceedings of the National Academy of Sciences, 106(25): 10073-10080. 10. Heim, R., et al. (1995). 'Improved green fluorescence.' Nature, 373(6516): 663-664. 11. Matz, M. V., et al. (1999). 'Fluorescent proteins from nonbioluminescent Anthozoa species.' Nature Biotechnology, 17(10): 969-973. 12. Shaner, N. C. (2013). The mFruit collection of monomeric fluorescent proteins. Clinical chemistry, 59(2), 440–441. 13. Ai, H. W., et al. (2006). 'Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging.' Biochemical Journal, 400(3): 531-540. 14. Merzlyak, E. M., et al. (2007). 'Bright monomeric red fluorescent protein with an extended fluorescence lifetime.' Nature Methods, 4(7): 555-557. 15. Wiedenmann, J., et al. (2002). 'A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria).' Proceedings of the National Academy of Sciences, 99(18): 11646-11651 16. Shaner, N. C., et al. (2007). “Advances in fluorescent protein technology.” J Cell Sci., 120(Pt 24):4247-60. 17. Jung, G. (2016). “ Fluorescent Proteins: The Show Must go on! Fluorescent Analogues of Biomolecular Building Blocks: Design and Applications” : 55-90. 18. Rodriguez, E. A., et al. (2017), “The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins.” Trends Biochem Sci., 42(2):111-129. 19. Contreras, X., et al. (2021). 'A genome-wide library of MADM mice for single-cell genetic mosaic analysis.' Cell Reports, 35(12): 109274. 20. Feinberg, E. H., et al. (2008). “GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems.” Neuron, 57(3), 353–363. 21. Livet, J., et al. (2007). 'Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system.' Nature 450(7166): 56-62. 22. Cai, D., et al. (2013). “Improved tools for the Brainbow toolbox.” Nat Methods,10(6):540-7. 23. Hadjieconomou, D., et al. (2011). 'Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster.' Nature Methods, 8(3): 260-266. 24. Pan, Y. A., et al. (2013). 'Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. ' Development, 140(13), 2835–2846. 25. Loulier, K., et al. (2014). 'Multiplex Cell and Lineage Tracking with Combinatorial Labels.' Neuron, 81(3): 505-520. 26. Snippert, H. J., et al. (2010). 'Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. ' Cell, 143(1), 134–144. 27. Sakaguchi, R., et al. (2018). 'Bright multicolor labeling of neuronal circuits with fluorescent proteins and chemical tags.' eLife, 7: e40350. 28. Figueres-Oñate, M., et al. (2016). 'UbC-StarTrack, a clonal method to target the entire progeny of individual progenitors.' Scientific Reports, 6(1): 33896 29. García-Moreno, F., et al. (2014). 'CLoNe is a new method to target single progenitors and study their progeny in mouse and chick.' Development, 141(7): 1589-1598. 30. Au - Dumas, L., et al. (2020). 'In Utero Electroporation of Multiaddressable Genome-Integrating Color (MAGIC) Markers to Individualize Cortical Mouse Astrocytes.' JoVE, (159): e61110. 31. Herz, J., et al. (2010). 'Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. ' Biophysical journal, 98(4), 715–723. 32. Entenberg, D., et al. (2011). 'Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging.' Nature Protocols, 6(10): 1500-1520. 33. Mahou, P., et al. (2012). 'Multicolor two-photon tissue imaging by wavelength mixing.' Nature Methods, 9(8): 815-818. 34. Wang, K., et al. (2012). 'Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy.' Biomedical Optics Express, 3(9): 1972-1977. 35. Hsiao, Y. T., et al. (2021). 'Single-laser-based simultaneous four-wavelength excitation source for femtosecond two-photon fluorescence microscopy,' Biomed. Opt. Express, 12, 4661-4679. 36. Li, K. C., (2016). 'Simple approach to three-color two-photon microscopy by a fiber-optic wavelength convertor.' Biomed. Opt. Express, 7, 4803-4815. 37. Perillo, E. P., et al. (2017). 'Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser.' Light: Science & Applications, 6(11): e17095-e17095. 38. Tillo, S. E., (2010). 'A new approach to dual-color two-photon microscopy with fluorescent proteins.' BMC biotechnology, 10, 6. 39. Sahai, E., et al. (2005). 'Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. ' BMC Biotechnol, 5, 14. 40. Kawano, H., et al. (2008). 'Two-photon dual-color imaging using fluorescent proteins.' Nature Methods, 5(5): 373-374. 41. Hontani, Y., et al. (2021). 'Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain.' Science Advances, 7(12): eabf3531. 42. Oketani, R., et al. (2019). 'Visible-wavelength two-photon excitation microscopy with multifocus scanning for volumetric live-cell imaging.' Journal of Biomedical Optics, 25(1): 014502. 43. Cormack, B. P., et al. (1996). 'FACS-optimized mutants of the green fluorescent protein (GFP).' Gene, 173(1): 33-38. 44. Dos Santos, N. V., et al. (2019). 'Revealing a new fluorescence peak of the enhanced green fluorescent protein using three-dimensional fluorescence spectroscopy.' RSC Advances, 9(40): 22853-22858. 45. Arpino, J. A., et al. (2012). 'Crystal structure of enhanced green fluorescent protein to 1.35 Å resolution reveals alternative conformations for Glu222. ' PloS one, 7(10), e47132. 46. Yang, F., et al., (1996). 'The molecular structure of green fluorescent protein. ' Nature biotechnology, 14(10), 1246–1251. 47. Visser, N. V., et al. (2005). 'Direct observation of resonance tryptophan-to-chromophore energy transfer in visible fluorescent proteins.' Biophysical Chemistry, 116(3): 207-212. 48. Piston, D. W. and G. J. Kremers (2007). 'Fluorescent protein FRET: the good, the bad and the ugly.' Trends in Biochemical Sciences, 32(9): 407-414. 49. Ormö, M., et al. (1996). 'Crystal Structure of the Aequorea victoria Green Fluorescent Protein.' Science, 273(5280): 1392-1395. 50. Dale, R. E., et al. (1979). 'The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer.' Biophysical Journal, 26(2): 161-193. 51. Chen, R. F. (1967). 'Fluorescence Quantum Yields of Tryptophan and Tyrosine.' Analytical Letters, 1(1): 35-42. 52. Jaffe, H. H. and A. L. Miller (1966). 'The fates of electronic excitation energy.' Journal of Chemical Education, 43(9): 469. 53. Kumar, S., et al. (2016). 'Saturation Dynamics Measures Absolute Cross Section and Generates Contrast within a Neuron.' Biophysical Journal, 111: 1328-1336. 54. Ghisaidoobe, A. B. T. and S. J. Chung (2014). 'Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques.' International Journal of Molecular Sciences, 15(12): 22518-22538. 55. Jyothikumar, V., et al. (2013). 'Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy.' J Biomed Opt, 18(6): 060501. 56. Cheng, L.-C., et al. (2014). 'Measurements of multiphoton action cross sections for multiphoton microscopy.' Biomedical Optics Express, 5(10): 3427-3433. 57. Drobizhev, M., et al. (2011). 'Two-photon absorption properties of fluorescent proteins.' Nature Methods, 8(5): 393-399. 58. Borah, B. J., et al. (2021). 'Nyquist-exceeding high voxel rate acquisition in mesoscopic multiphoton microscopy for full-field submicron resolution resolvability.' iScience, 24(9): 103041. 59. N. Keshava and J. F. Mustard (2022). 'Spectral unmixing,' IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 44-57 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84089 | - |
| dc.description.abstract | 人類和其他靈長類一樣,是仰賴視覺的生物。我們藉由雙眼來理解這個世界。 因此,生命科學研究的一大核心在於發展組織成像的技術和工具。自從雷文霍克在西元1673年第一次由顯微鏡觀察到微生物後, 光學顯微鏡就一直是生物組織成像上的重要工具。尤其是在神經科學領域,神經的成像幫助我們了解大腦如何運作。 光學顯微鏡發展的一大突破是多光子顯微鏡的發明。多光子激發所具備的光學切片能力,讓我們能夠在不切片組織的條件下,觀察到大腦表層以下幾百甚至幾千個微米深的影像,而且影像不會因為大腦組織的散射特性而變得過於模糊,依然能夠維持亞細胞等級的分辨率。與此同時,螢光蛋白的開發,讓組織能夠在活體並且完整的情況下,藉由基因工程將標的細胞染上我們所想要的顏色。多光子顯微鏡和螢光蛋白科技的結合是當前最主流的生物組織成像工具,應用範圍包含活體和體外的功能性和結構性影像, 目前的螢光顯微鏡技術能夠清楚的追蹤單一標的細胞的型態和行為,但是大腦功能的運作通常是由好幾種不同細胞或分子所交互作用而成。即便最先進的螢光標記技術有能力將組織內各個標的物染上不同的顏色,因為各個顏色的螢光蛋白所需要的激發波長都不相同,為了達成即時的多色影像,目前的多光子顯微鏡主要仰賴用光參數震盪器來延展飛秒雷射的波長。這種雷射系統的價格非常昂貴,導致它很難普及於各個實驗室。我們希望能夠找到一個相對較為低價的解決辦法。 我們從文獻中發現許多螢光蛋白在紫外光的波長內都有一個共同的吸收高峰。這個吸收高峰已經被證明是來自於色胺酸,而這種胺基酸存在於任何一種螢光蛋白。因此,藉由激發色胺酸,我們期望能夠激發所有螢光蛋白。由於考量到紫外光對生物組織的光毒性質,我們巧妙地藉由一道740 nm的雷射,來三光子激發螢光蛋白內的色胺酸。 在這篇論文裡,我們成功的用這道雷射,在合理的雷射功率內,激發了六種不同顏色的螢光蛋白。並且在標有兩種顏色 -青色和黃色螢光蛋白-的老鼠腦片內,完成即時的多色多光子成像。這兩種顏色在過去從來沒有被單一一道740 nm的近紅外光同時激發且取像過。 因為740 nm 這個雷射波長可以由摻鈦藍寶石雷射所產生,而摻鈦藍寶石雷射又剛好是多光子顯微鏡中最常見的雷射源。因此,我們的發現為眾多使用多光子顯微鏡作為成像工具的實驗室,提供一個便宜而且方便的即時多色成像方法。 | zh_TW |
| dc.description.abstract | Humans, like all other primates, are highly visual creatures. We comprehend the world mainly through our eyes. Therefore, the essence of life science relies heavily on the construction of visualization techniques and apparatus. Not surprisingly, since van Leeuwenhoek’s observation of living animalcules in 1673, optical microscopy has played a crucial role in visualization in the field of bioimaging, especially neuroscience where imaging neuronal structure is the core of understanding how the brain operates. One of the major breakthroughs in optical imaging is multiphoton microscopy. The intrinsic optical sectioning ability of multiphoton excitation provides neuroscientists to see through the scattering brain tissue for hundred to thousands of micrometers deep with subcellular resolution. Furthermore, the introduction of fluorescent protein, a contrast agent that enables tissue labeling while keeping it intact via genetic fusion, greatly enhanced signal specificity amid non-fluorescing background. The incorporation of multiphoton microscopy and fluorescent protein technology is the mainstream for structural and functional imaging of brain tissues, fixed or alive. Although fluorescence imaging systems nowadays succeed in tracking the morphology and movement of individual neuron cells, the mysterious brain function often involves interactions between several components. State-of-the-art multicolor labeling strategies successfully labeled multiple targets with a large collection of fluorescent protein spectral variants. However, the discrete absorption peaks of these spectral variants pose a challenge to multiphoton microscopy. Current multiphoton microscopy usually depends on an excitation source that assembles a femtosecond second laser and an optical parametric oscillator for simultaneous multicolor imaging. These kinds of systems are expensive and prevent the widespread of multicolor multiphoton imaging. Hence, we aim to find a different strategy to reduce laser system complexity and expense. From various reports on fluorescent protein absorption spectrum measurement, an absorption peak in the deep ultraviolet region was found universal among spectral variants. This peak has been proven to originate from the absorption of Tryptophan, an autofluorescence amino acid that exists in every fluorescent protein. Therefore, we propose the possibility to excite all of the fluorescent protein spectral variants by a single wavelength. Since Tryptophan absorbs ultraviolet light, to avoid photo-toxicity, a 740 nm excitation wavelength is used for three-photon excitation. Based on our theory, in this study, we demonstrated simultaneous multicolor multiphoton imaging by a single 740 nm laser. We efficiently excite six different colors of fluorescent proteins separately within reasonable pulse energy and achieve simultaneous multicolor imaging of a cyan and yellow-colored mouse brain slice that was previously inaccessible with a 740 nm laser. Since the Ti:Sapphire laser is the most common laser source for two-photon microscopy, our technique provides a convenient way to accomplish simultaneous multicolor imaging without an additional wavelength conversion apparatus. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:04:39Z (GMT). No. of bitstreams: 1 U0001-2609202213285100.pdf: 3355297 bytes, checksum: b6b3fba49e359abdb6ea8280b6b07f22 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝…………………………………………………………………………………….. ii 中文摘要……………………………………………………………………………...... v ABSTRACT………………………………………………………………………....... vii Contents………………………………………………………………………...……... vii List of Figures………………………………………………………………………..... xii List of Tables……………………………………………………………...…………... xiv Chapter 1. Introduction……………………………………………………………. 1 1.1. Fluorescence microscopy history…………………………………………….. 2 1.2. Fluorescent protein…………………………………………………………… 4 1.3. Multicolor labeling techniques……………………………………………….. 6 1.4. Challenge: Optical system for multicolor imaging…………………………… 8 1.5. Current approach for multiphoton multicolor microscopy…………………… 9 1.5.1 Laser source medication………………………………………………. 10 1.5.2 Spectral overlap utilization……………………………………………. 12 1.6. Aim and structure of thesis………………………………………………….. 14 Chapter 2. General principle …………………………………………………….. 16 2.1 The universal absorption peak in the UV region of all fluorescent protein…. 16 2.2 Föster resonance energy transfer (FRET)…………………………………… 19 2.3 Two and Three photon microscopy………………………………………..... 23 2.3.1 Principle of multiphoton microscopy…….………………………. 23 2.3.2 Excitation power estimation……………………………………… 26 2.3.3 Two-photon/three-photon fluorescence mixing………………….. 30 Chapter 3. Method: optical system and sample preparation…………………… 34 3.1 Optical system……………………………………………………………..... 34 3.1.1 80MHz/5MHz Ti:Sapphire laser system…………………………. 34 3.1.2 1MHz Yb-doped fiber laser system……………………………..... 38 3.2 Sample preparation………………………………………………………….. 39 3.2.1 Fluorescent protein solution……………………………………… 40 3.2.2 EGFP-labeled mouse brain……………………………………….. 40 3.2.3 ECFP/EYFP-labeled plant……………………………………….. 40 3.2.4 mTFP1/EYFP-labeled mouse brain………………………………. 41 Chapter 4. Experimental protocol……………………………………………….. 42 4.1 80MHz/5MHz Ti:Sapphire laser system……………………………………. 42 4.1.1 System alignment………………………………………………… 42 4.1.2 Pulsepicker optimization…………………………………………. 44 4.1.3 Power dependency measurement………………………………… 45 4.1.4 Data acquisition and image reconstruction……………………….. 46 4.2 1MHz Yb-doped fiber laser system…………………………………………. 49 4.2.1 System alignment………………………………………………… 49 4.2.2 Data acquisition and reconstruction……………………………… 51 Chapter 5. Results and Discussion…………………………………………..…… 53 5.1 Fluorescent protein solution result………………………………………….. 53 5.1.1 Power dependency measurement………………………………… 54 5.1.2 Comparison of 5 MHz and 80 MHz results……………………… 55 5.1.3 Two-photon/three-photon fluorescence mixing………………….. 57 5.2 EGFP-labeled mouse brain result…………………………………………… 59 5.3 ECFP/EYFP-labeled plant result……………………………………………. 61 5.3.1 Dual-color imaging………………………………………………. 61 5.3.2 Two-photon/Three-photon fluorescence mixing in plant………… 63 5.4 mTFP1/EYFP-labeled mouse brain result…………………………………... 64 5.4.1 Simultaneous multi-color imaging……………………………….. 65 5.4.2 Autofluorescence excite upon 740 nm laser……………………… 66 Chapter 6. Conclusion and Perspectives………………………………………… 68 6.1 Conclusion……………………………………………………….. 68 6.2 Perspectives………………………………………………………. 70 References…………………………………………………………………………... 72 | |
| dc.language.iso | en | |
| dc.subject | 吸收光譜 | zh_TW |
| dc.subject | 多光子顯微鏡 | zh_TW |
| dc.subject | 多色成像 | zh_TW |
| dc.subject | 螢光蛋白 | zh_TW |
| dc.subject | 紫外光 | zh_TW |
| dc.subject | ultraviolet | en |
| dc.subject | absorption | en |
| dc.subject | contrast | en |
| dc.subject | fluorescent protein | en |
| dc.subject | multicolor imaging | en |
| dc.subject | multiphoton microscopy | en |
| dc.title | 單一近紅外光激發波長達成即時多色多光子成像 | zh_TW |
| dc.title | Simultaneous multicolor multiphoton imaging by a single NIR excitation wavelength | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹明哲(Ming-Che Chan),林詩舜(Shih-Shun Lin) | |
| dc.subject.keyword | 多光子顯微鏡,多色成像,螢光蛋白,紫外光,吸收光譜, | zh_TW |
| dc.subject.keyword | multiphoton microscopy,multicolor imaging,fluorescent protein,ultraviolet,contrast,absorption, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202204081 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-30 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2609202213285100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
