Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84084
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳維婷(Wei-Ting Chen)
dc.contributor.authorShao-Yu Tsengen
dc.contributor.author曾少禹zh_TW
dc.date.accessioned2023-03-19T22:04:36Z-
dc.date.copyright2022-07-22
dc.date.issued2022
dc.date.submitted2022-07-20
dc.identifier.citationAdames, Á. F., & Ming, Y. (2018). Interactions between Water Vapor and Potential Vorticity in Synoptic-Scale Monsoonal Disturbances: Moisture Vortex Instability. Journal of the atmospheric sciences, 75(6), 2083-2106. https://doi.org/10.1175/jas-d-17-0310.1 Arakane, S., & Hsu, H.-H. (2020). A tropical cyclone removal technique based on potential vorticity inversion to better quantify tropical cyclone contribution to the background circulation. Climate Dynamics, 54(5), 3201-3226. https://doi.org/10.1007/s00382-020-05165-x Arakane, S., & Hsu, H.-H. (2021). Tropical Cyclone Footprints in Long-Term Mean State and Multiscale Climate Variability in the Western North Pacific as Seen in the JRA-55 Reanalysis. Journal of Climate, 34(18), 7443-7460. https://doi.org/10.1175/jcli-d-20-0887.1 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., & Yoshida, R. (2016). An Introduction to Himawari-8/9&mdash; Japan&rsquo;s New-Generation Geostationary Meteorological Satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. https://doi.org/10.2151/jmsj.2016-009 Feng, T., Yang, X.-Q., Sun, X., Yang, D., & Chu, C. (2020). Reexamination of the Climatology and Variability of the Northwest Pacific Monsoon Trough Using a Daily Index. Journal of Climate, 33(14), 5919-5938. https://doi.org/10.1175/jcli-d-19-0459.1 (Journal of Climate) Fiolleau, T., & Roca, R. (2013). An Algorithm for the Detection and Tracking of Tropical Mesoscale Convective Systems Using Infrared Images From Geostationary Satellite. IEEE Transactions on Geoscience and Remote Sensing, 51(7), 4302-4315. https://doi.org/10.1109/TGRS.2012.2227762 Fore, A. G., Stiles, B. W., Chau, A. H., Williams, B. A., Dunbar, R. S., & Rodríguez, E. (2014). Point-Wise Wind Retrieval and Ambiguity Removal Improvements for the QuikSCAT Climatological Data Set. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 51-59. https://doi.org/10.1109/TGRS.2012.2235843 Hayden, L., Liu, C., & Liu, N. (2021). Properties of Mesoscale Convective Systems Throughout Their Lifetimes Using IMERG, GPM, WWLLN, and a Simplified Tracking Algorithm. Journal of Geophysical Research: Atmospheres, 126(20), e2021JD035264. https://doi.org/10.1029/2021JD035264 Huffman, G.J. et al. (2020). Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In: Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J. (eds) Satellite Precipitation Measurement. Advances in Global Change Research, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-24568-9_19 Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., & Roundy, P. E. (2009). Convectively coupled equatorial waves. Reviews of Geophysics, 47(2). https://doi.org/https://doi.org/10.1029/2008RG000266 Levina, G. V. (2021). Turbulent vortex dynamo in the Earth’s atmosphere and the emerging opportunity to affect tropical cyclogenesis. Journal of Physics: Conference Series, 2028(1), 012017. https://doi.org/10.1088/1742-6596/2028/1/012017 Machado, L. A. T., Rossow, W. B., Guedes, R. L., & Walker, A. W. (1998). Life Cycle Variations of Mesoscale Convective Systems over the Americas. Monthly Weather Review, 126(6), 1630-1654. https://doi.org/10.1175/1520-0493(1998)126<1630:Lcvomc>2.0.Co;2 Mapes, B., Tulich, S., Lin, J., & Zuidema, P. (2006). The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dynamics of Atmospheres and Oceans, 42(1), 3-29. https://doi.org/https://doi.org/10.1016/j.dynatmoce.2006.03.003 Montgomery, M. T., Nicholls, M. E., Cram, T. A., & Saunders, A. B. (2006). A Vortical Hot Tower Route to Tropical Cyclogenesis. Journal of the atmospheric sciences, 63(1), 355-386. https://doi.org/10.1175/jas3604.1 (Journal of the Atmospheric Sciences) Moseley, C., Berg, P., & Haerter, J. O. (2013). Probing the precipitation life cycle by iterative rain cell tracking. Journal of Geophysical Research: Atmospheres, 118(24), 13,361-313,370. https://doi.org/https://doi.org/10.1002/2013JD020868 (Journal of Geophysical Research: Atmospheres) Moseley, C., Henneberg, O., & Haerter, J. O. (2019). A Statistical Model for Isolated Convective Precipitation Events. Journal of Advances in Modeling Earth Systems, 11(1), 360-375. https://doi.org/https://doi.org/10.1029/2018MS001383 Raymond, D. J., & Jiang, H. (1990). A Theory for Long-Lived Mesoscale Convective Systems. Journal of Atmospheric Sciences, 47(24), 3067-3077. https://doi.org/10.1175/1520-0469(1990)047<3067:Atfllm>2.0.Co;2 Su, C.-Y., Wu, C.-M., Chen, W.-T., & Chen, J.-H. (2019). Object-based precipitation system bias in grey zone simulation: the 2016 South China Sea summer monsoon onset. Climate Dynamics, 53(1), 617-630. https://doi.org/10.1007/s00382-018-04607-x (Climate Dynamics) Takahashi, H., Lebsock, M., Luo, Z. J., Masunaga, H., & Wang, C. (2021). Detection and Tracking of Tropical Convective Storms Based on Globally Gridded Precipitation Measurements: Algorithm and Survey over the Tropics. Journal of Applied Meteorology and Climatology, 60(3), 403-421. https://doi.org/10.1175/jamc-d-20-0171.1 (Journal of Applied Meteorology and Climatology) Takenaka, H., Sakashita, T., Higuchi, A., & Nakajima, T. (2020). Geolocation Correction for Geostationary Satellite Observations by a Phase-Only Correlation Method Using a Visible Channel. Remote Sensing, 12(15), 2472. https://www.mdpi.com/2072-4292/12/15/2472 Tao, W.-K., Lang, S., Iguchi, T., & Song, Y. (2022). Goddard Latent Heating Retrieval Algorithm for TRMM and GPM. Journal of the Meteorological Society of Japan. Ser. II, 100(2), 293-320. https://doi.org/10.2151/jmsj.2022-015 Ueda, H., Ohba, M., & Xie, S.-P. (2009). Important Factors for the Development of the Asian–Northwest Pacific Summer Monsoon. Journal of Climate, 22(3), 649-669. https://doi.org/10.1175/2008jcli2341.1 Wang, B., & LinHo. (2002). Rainy Season of the Asian–Pacific Summer Monsoon. Journal of Climate, 15(4), 386-398. https://doi.org/10.1175/1520-0442(2002)015<0386:Rsotap>2.0.Co;2 Williams, M., & Houze, R. A. (1987). Satellite-Observed Characteristics of Winter Monsoon Cloud Clusters. Monthly Weather Review, 115(2), 505-519. https://doi.org/10.1175/1520-0493(1987)115<0505:Socowm>2.0.Co;2 Yamamoto, Y., Ichii, K., Higuchi, A., & Takenaka, H. (2020). Geolocation Accuracy Assessment of Himawari-8/AHI Imagery for Application to Terrestrial Monitoring. Remote Sensing, 12(9), 1372. https://www.mdpi.com/2072-4292/12/9/1372
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84084-
dc.description.abstract本研究透過追蹤衛星降水技術統計對流系統的生命期及其結構特徵,探討長生命期對流系統與西北太平洋季風槽的關係。我們提出長生命期系統的數量與季風槽的強度存在正回饋機制的假設:季風槽提供低層渦度促使更多的渦度熱塔形成,透過渦度熱塔的合併得以延長對流系統的生命期;而長生命期系統可以透過在中層大氣的非絕熱加熱使低層位渦增加,並進一步透過跨尺度過程來維持季風槽的強度。為了驗證上述假設,我們首先結合多衛星反演的網格化降水資料(IMERG)、向日葵八號(Himawari-8)觀測的亮度溫度、以及歐洲中期天氣預報中心的第五版再分析資料(ERA5)定義出在2001到2019年間16個季風槽事件中的對流系統及潛在渦度熱塔結構,並且統計其生命期、降水、系統尺寸大小在季風槽發生時的變化。結果顯示,相較於季風槽建立前的時期,在季風槽建立後,生命期在兩天以上的長生命期對流系統數量增加了兩倍,且水平尺度在500公里以上的系統其發生機率有明顯提升;透過數量及尺寸的增加讓長生命期系統的降水貢獻從16.9%提升至34.7%,而降水熱區主要集中在菲律賓東北側向西南延伸的區域,與季風槽發生區域高度重疊。具有潛在渦度熱塔結構的長生命期系統在季風槽建立後的數量增加最為明顯,而短生命期或是對流結構不同的長生命期系統的增加則較少。上述統計結果確認了季風槽建立後長生命期系統數量的增加與渦度熱塔的增加有關,未來希望可以進一步檢驗渦度熱塔的合併與對流系統生命期的關係,並探討不同生命期對流系統的非絕熱作用對於底層位渦的效果,以及維持季風槽強度的跨尺度過程,以完成正回饋機制的驗證。zh_TW
dc.description.abstractThis study investigates the relationship between the long-lived convective systems and the northwest Pacific monsoon trough by tracking the satellite precipitation product to analyze the lifetime and the convective structure of the convective systems. Here we hypothesize positive feedback between the formation of the long-lived systems and the maintenance of the monsoon trough intensity. The positive vorticity provided by the monsoon trough promotes the formation of vortical hot towers (VHTs), and the merging of the VHTs enhances the lifetime of the convective systems. The long-lived systems can increase the low-level potential vorticity through diabatic heating at the mid-level troposphere. The increase of the low-level potential vorticity might maintain the intensity of the monsoon trough possibly through the upscale process. To verify the above hypothesis, the precipitation from Integrated Multi-satellitE Retrievals for GPM, the brightness temperature from Himawari-8, and the vorticity fields from the ECMWF reanalysis version 5 are used to identify the convective systems and the potential vortical hot tower (PVHT) structures in 16 monsoon trough events from 2001 to 2019. By contrasting the 20-day periods before and after the establishment of the monsoon trough, the number of the long-lived (≥ 2 days) systems increases by 2 folds; among them, the systems with horizontal sizes larger than 500 km increase most significantly. The precipitation contribution of the long-lived system grows from 16.9% to 34.7% owing to both the increasing system number and the horizontal size, and their precipitation hotspots aggregate significantly from the northeast of the Philippines extending to the southeast, which is highly consistent with the location of the monsoon trough. The long-lived systems with PVHTs structures have the largest increase in number after the monsoon trough establishes, compared to the systems with shorter lifetimes or with different structures. The current confirms that, when the monsoon trough is present, the increasing number of long-lived systems is related to the increasing number of PVHTs. In the future, the relationship between the merging of the VHTs and the systems’ lifetimes will be investigated, and the effects of increasing low-level potential vorticity from diabatic heating released by different systems and the upscale process of maintenance of the monsoon trough will be further examined.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:04:36Z (GMT). No. of bitstreams: 1
U0001-2007202210175500.pdf: 5080651 bytes, checksum: ca712448cba52686c2e789c736b87a92 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝................................... i 摘要................................... ii Abstract............................... iii Contents............................... v Figure Captions........................ vi 1. Introduction........................ 1 2. Data and Method..................... 5 a. Tracking of the convective systems over the northwest Pacific..... 5 b. Potential vortical hot tower structures of convective systems..... 7 c. The monsoon trough periods and the statistics periods............. 9 3. Results............................. 11 a. Characteristics of the convective systems......................... 11 b. Vortical hot tower in convective systems.......................... 13 4. Discussions......................... 15 a. The identification of the vortical hot towers and their merging... 15 b. The diabatic heating of the long-lived systems and their potential upscale effects... 16 5. Conclusions and Future Works........ 18 References............................. 20 Figures................................ 25 Appendices............................. 42 a.The sensitivity test for the criteria of the precipitation systems.. 42 b.The monsoon trough establishment from TC-removed JRA55.............. 45
dc.language.isoen
dc.subject降水系統物件zh_TW
dc.subjectIMERG衛星降水zh_TW
dc.subject渦度熱塔zh_TW
dc.subject西北太平洋季風槽zh_TW
dc.subjectobject of precipitation systemen
dc.subjectvortical hot toweren
dc.subjectNorthwest Pacific monsoon troughen
dc.subjectIMERGen
dc.title長生命期對流系統與西北太平洋季風槽間的多重尺度交互作用:從衛星觀測資料的觀點zh_TW
dc.titleThe Multi-scale Interactions between the Long-lived Convective Systems and the Northwest Pacific Monsoon Trough: Satellite Observation Perspectivesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳健銘(Chien-Ming Wu),黃彥婷(Yen-Ting Huang),蘇世顥(Shih-Hao Su)
dc.subject.keywordIMERG衛星降水,降水系統物件,渦度熱塔,西北太平洋季風槽,zh_TW
dc.subject.keywordIMERG,object of precipitation system,vortical hot tower,Northwest Pacific monsoon trough,en
dc.relation.page48
dc.identifier.doi10.6342/NTU202201564
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
dc.date.embargo-lift2022-07-22-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-2007202210175500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved