請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84082完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍(Hsueh-Ping Chu) | |
| dc.contributor.author | Mei-Chieh Huang | en |
| dc.contributor.author | 黃玫潔 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:04:35Z | - |
| dc.date.copyright | 2022-07-27 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-20 | |
| dc.identifier.citation | Aubert, G. and P.M. Lansdorp, Telomeres and aging. Physiol Rev, 2008. 88(2): p. 557-79. Moyzis, R.K., et al., A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A, 1988. 85(18): p. 6622-6. Blackburn, E.H., Switching and signaling at the telomere. Cell, 2001. 106(6): p. 661-73. Aubert, G., et al., Collapse of Telomere Homeostasis in Hematopoietic Cells Caused by Heterozygous Mutations in Telomerase Genes. PLOS Genetics, 2012. 8(5): p. e1002696. Enomoto, S., L. Glowczewski, and J. Berman, MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Molecular biology of the cell, 2002. 13(8): p. 2626-2638. Levy, M.Z., et al., Telomere end-replication problem and cell aging. J Mol Biol, 1992. 225(4): p. 951-60. Zou, Y., et al., Does a sentinel or a subset of short telomeres determine replicative senescence? Molecular biology of the cell, 2004. 15(8): p. 3709-3718. Xu, Z., et al., The length of the shortest telomere as the major determinant of the onset of replicative senescence. Genetics, 2013. 194(4): p. 847-857. Britt-Compton, B., et al., Structural stability and chromosome-specific telomere length is governed by cis-acting determinants in humans. Hum Mol Genet, 2006. 15(5): p. 725-33. Grigorev, K., et al., Haplotype diversity and sequence heterogeneity of human telomeres. Genome Res, 2021. 31(7): p. 1269-79. Allshire, R.C., M. Dempster, and N.D. Hastie, Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic acids research, 1989. 17(12): p. 4611-4627. Armanios, M., Telomeres and age-related disease: how telomere biology informs clinical paradigms. The Journal of clinical investigation, 2013. 123(3): p. 996-1002. Mangaonkar, A.A. and M.M. Patnaik, Short Telomere Syndromes in Clinical Practice: Bridging Bench and Bedside. Mayo Clin Proc, 2018. 93(7): p. 904-916. McNally, E.J., P.J. Luncsford, and M. Armanios, Long telomeres and cancer risk: the price of cellular immortality. The Journal of clinical investigation, 2019. 129(9): p. 3474-3481. Montpetit, A.J., et al., Telomere length: a review of methods for measurement. Nursing research, 2014. 63(4): p. 289-299. Blinova, E.A., et al., Telomere Length of Individual Chromosomes in Patients with Rheumatoid Arthritis. Bull Exp Biol Med, 2016. 160(6): p. 779-82. Xing, J., et al., Constitutive short telomere length of chromosome 17p and 12q but not 11q and 2p is associated with an increased risk for esophageal cancer. Cancer prevention research (Philadelphia, Pa.), 2009. 2(5): p. 459-465. Delmonico, L., et al., Measuring Telomere Length: A Timeline Review on the State-of-Art Techniques, in Encyclopedia of Infection and Immunity, N. Rezaei, Editor. 2022, Elsevier: Oxford. p. 259-275. Alter, B.P., et al., Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood, 2007. 110(5): p. 1439-47. Baerlocher, G.M. and P.M. Lansdorp, Telomere length measurements in leukocyte subsets by automated multicolor flow-FISH. Cytometry A, 2003. 55(1): p. 1-6. Baird, D.M., et al., Extensive allelic variation and ultrashort telomeres in senescent human cells. Nature genetics, 2003. 33(2): p. 203-207. Stong, N., et al., Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline. Genome Res, 2014. 24(6): p. 1039-50. Sholes, S.L., et al., Chromosome-specific telomere lengths and the minimal functional telomere revealed by nanopore sequencing. Genome Res, 2022. 32(4): p. 616-628. Kahl, V.F.S., et al., Telomere Length Measurement by Molecular Combing. Frontiers in Cell and Developmental Biology, 2020. 8. Stephens, Z., et al., Telogator: a method for reporting chromosome-specific telomere lengths from long reads. Bioinformatics, 2022. 38(7): p. 1788-1793. Miga, K.H., et al., Telomere-to-telomere assembly of a complete human X chromosome. Nature, 2020. 585(7823): p. 79-84. Nurk, S., et al., The complete sequence of a human genome. bioRxiv, 2021: p. 2021.05.26.445798. Tan, K.-T., et al., Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres. bioRxiv, 2022: p. 2022.01.11.475254. De Coster, W., et al., NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 2018. 34(15): p. 2666-2669. Gao, Y., et al., TideHunter: efficient and sensitive tandem repeat detection from noisy long-reads using seed-and-chain. Bioinformatics, 2019. 35(14): p. i200-i207. Xu, L. and E.H. Blackburn, Human cancer cells harbor T-stumps, a distinct class of extremely short telomeres. Molecular cell, 2007. 28(2): p. 315-327. Jain, M., et al., Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature biotechnology, 2018. 36(4): p. 338-345. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10. Li, H., Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018. 34(18): p. 3094-3100. Li, H., New strategies to improve minimap2 alignment accuracy. Bioinformatics, 2021. 37(23): p. 4572-4. Danecek, P., et al., Twelve years of SAMtools and BCFtools. GigaScience, 2021. 10(2): p. giab008. Structural Genomics, C., et al., Protein production and purification. Nature methods, 2008. 5(2): p. 135-146. Froger, A. and J.E. Hall, Transformation of plasmid DNA into E. coli using the heat shock method. Journal of visualized experiments : JoVE, 2007(6): p. 253-253. Spriestersbach, A., et al., Chapter One - Purification of His-Tagged Proteins, in Methods in Enzymology, J.R. Lorsch, Editor. 2015, Academic Press. p. 1-15. Chen, L.-Y., S. Redon, and J. Lingner, The human CST complex is a terminator of telomerase activity. Nature, 2012. 488(7412): p. 540-544. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84082 | - |
| dc.description.abstract | 端粒長度與端粒功能障礙有關的衰老和遺傳疾病有相關聯,因此被視為一種生物標記。目前已經建立的實驗方法著重於平均端粒長度的測量,它們在特定染色體的端粒長度(chromosome-specific telomere length)評估上仍存在一些限制。然而少數端粒長度的缺陷就足以對細胞產生危害甚至引發疾病,所以迫切地需要一個可信賴的方法能夠分析單端粒長度。在此,我以第三代DNA序列定序技術——牛津奈米孔定序(Oxford Nanopore sequencing)為基礎建立一套實驗方法,包含樣本中端粒的富集與單端粒長度的測量。 在執行奈米孔定序前,透過限制酶HinfI與RsaI消化基因組DNA,再將其碎片通過AMPure XP磁珠進行純化,來富集樣本中端粒DNA的含量。獲得序列資料後,我利用BLAST演算法識別檔案中含有端粒序列的測序片段(TSCRs),並同時測量TSCRs的端粒長度。因為端粒重複序列TTAGGG與CCCTAA在奈米孔定序的鹼基識別(base-calling)中,被分別地錯誤判讀成TTAAAA與TGGCC,所以我將上述之非典型的重複序列納入考量,校正對端粒長度的測量結果。除此之外,我構思了兩個標準——AR比例(AR ratio)與端粒重複序列樣式百分比(Pattern percentage),來提升我的程式對判定TSCR的準確度。 我的實驗結果顯示,這套方法能夠有效的富集樣本中的端粒DNA含量,以及識別不同細胞株或者多重樣本定序(multiplex sequencing)資料中的TSCRs。最重要的是,它可以測定單個TSCR的端粒長度,有助益於未來對特定染色體的端粒以及端粒表觀遺傳學的探索。 | zh_TW |
| dc.description.abstract | Telomere length is a biomarker for aging and genetic disorders associated with telomere dysfunction. Established methods for assessing telomere length focus on the average telomere length among a pool of cells, which have some limitations on determining chromosome-specific telomere length. Given that defects in a few telomeres are sufficient to cause cellular effects or diseases, a reliable approach for single telomere analysis is sorely needed. Therefore, I established a method to enrich telomeres and to conduct single telomere length analysis based on third-generation DNA sequencing technology, Oxford Nanopore. Telomeric DNA for Nanopore sequencing was enriched by digesting genomic DNA with HinfI and RsaI and then subjecting it to AMPure XP Beads-based purification. Using a custom BLAST program, telomere sequence-containing reads (TSCRs) in the sequence data could be identified and measured their telomere length. Moreover, telomere lengths were calibrated by including the atypical repeats TTAAAA and TGGCC, which were Nanopore base-calling errors from TTAGGG and CCCTAA repeats, respectively. Additionally, I devised two criteria to improve the accuracy of telomeric read identification, namely the AR ratio and Pattern percentage. My results indicated that this method could effectively enrich telomeric fragments and identify TSCRs from different cell lines or even from multiplex sequencing. Moreover, I determined telomere length for individual TSCRs, which might be a useful approach for future explorations of chromosome-specific telomeres and telomere epigenetics. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:04:35Z (GMT). No. of bitstreams: 1 U0001-1807202214380900.pdf: 9820277 bytes, checksum: a86c3987d9619835ae167c4c87f8a420 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv Content v List of figures vii List of tables viii Chapter 1 Introduction 1 Chapter 2 Results 5 2.1 Preparation of telomeric DNA for Nanopore sequencing 5 2.2 Process of Nanopore sequencing 7 2.2.1 Library preparation 7 2.2.2 Summary statistics of general features after sequencing 7 2.3 Primary identification of telomere sequence-containing reads 9 2.3.1 Base-calling and primary sample cleaning 9 2.3.2 Identification of telomere sequence containing reads (TSCRs) 10 2.3.3 The outliers of primary TSCRs 10 2.4 Analysis of primary TSCRs 12 2.4.1 Atypical repetitive sequences are present in the TSCRs of various cell lines 12 2.4.2 The atypical repetitive sequences are artefacts only observed in CHM13 Nanopore sequence data 12 2.4.3 TTAAAA and TGGCC are calling errors from long telomeric reads during the Nanopore base-calling process 13 2.4.4 Calibrating telomere length of TSCRs by including atypical repeats 14 2.5 Optimizing the identification of TSCRs 15 2.5.1 Improving the accuracy of telomeric read identification by AR ratio and Pattern percentage 15 2.5.2 Reducing the number of mid-chromosome reads to improve telomere length determination 16 2.5.3 Improved measurement of telomere length for cell lines 17 Chapter 3 Discussion 18 Chapter 4 Materials and Methods 22 Figures 29 Tables 58 Supplementary Data 67 References 71 | |
| dc.language.iso | en | |
| dc.subject | 端粒 | zh_TW |
| dc.subject | 牛津奈米孔定序 | zh_TW |
| dc.subject | 單端粒長度 | zh_TW |
| dc.subject | telomere | en |
| dc.subject | single telomere length | en |
| dc.subject | Nanopore sequencing | en |
| dc.title | 以牛津奈米孔定序技術分析單端粒DNA | zh_TW |
| dc.title | Single Telomere DNA Analysis by Oxford Nanopore Sequencing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳律佑(Liuh-Yow Chen) | |
| dc.contributor.oralexamcommittee | 陳淑華(Shu-Hwa Chen) | |
| dc.subject.keyword | 牛津奈米孔定序,端粒,單端粒長度, | zh_TW |
| dc.subject.keyword | Nanopore sequencing,telomere,single telomere length, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU202201526 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-27 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1807202214380900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
