Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84080
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡孟勳(Mong-Hsun Tsai)
dc.contributor.authorLi-Yi Tsaoen
dc.contributor.author曹立儀zh_TW
dc.date.accessioned2023-03-19T22:04:33Z-
dc.date.copyright2022-07-28
dc.date.issued2022
dc.date.submitted2022-07-20
dc.identifier.citation[1] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer Journal for Clinicians, 71(3), 209-249. [2] Lagergren, J., Smyth, E., Cunningham, D., & Lagergren, P. (2017). Oesophageal cancer. The Lancet, 390(10110), 2383-2396. [3] Santos, L. M., Jacomelli, M., Scordamaglio, P. R., Cardoso, P. F. G., & Figueiredo, V. R. (2019). Endobronchial ultrasound in esophageal cancer-when upper gastrointestinal endoscopy is not enough. Jornal Brasileiro de Pneumologia, 45. [4] Zhang, Y. (2013). Epidemiology of esophageal cancer. World Journal of Gastroenterology, 19(34), 5598. [5] Grille, V. J., Campbell, S., Gibbs, J. F., & Bauer, T. L. (2021). Esophageal cancer: the rise of adenocarcinoma over squamous cell carcinoma in the Asian belt. Journal of Gastrointestinal Oncology, 12(Suppl 2), S339. [6] Pennathur, A., Gibson, M. K., Jobe, B. A., & Luketich, J. D. (2013). Oesophageal carcinoma. Lancet, 381(9864), 400-412. [7] Freedman, N. D., Abnet, C. C., Leitzmann, M. F., Mouw, T., Subar, A. F., Hollenbeck, A. R., & Schatzkin, A. (2007). A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. American journal of epidemiology, 165(12), 1424-1433. [8] Wheeler, J. B., & Reed, C. E. (2012). Epidemiology of esophageal cancer. Surgical Clinics, 92(5), 1077-1087. [9] Iribarren, C., Tekawa, I. S., Sidney, S., & Friedman, G. D. (1999). Effect of cigar smoking on the risk of cardiovascular disease, chronic obstructive pulmonary disease, and cancer in men. New England Journal of Medicine, 340(23), 1773-1780. [10] Randi, G., Scotti, L., Bosetti, C., Talamini, R., Negri, E., Levi, F., . . . La Vecchia, C. (2007). Pipe smoking and cancers of the upper digestive tract. International journal of cancer, 121(9), 2049-2051. [11] Yang, C., Matsuo, K., Ito, H., Hirose, K., Wakai, K., Saito, T., . . . Tajima, K. (2005). Esophageal cancer risk by ALDH2 and ADH2 polymorphisms and alcohol consumption: exploration of gene-environment and gene-gene interactions. Asian Pacific Journal of Cancer Prevention, 6(3), 256. [12] Prabhu, A., Obi, K. O., & Rubenstein, J. H. (2014). The synergistic effects of alcohol and tobacco consumption on the risk of esophageal squamous cell carcinoma: a meta-analysis. Official Journal of the American College of Gastroenterology, 109(6), 822-827. [13] Akhtar, S. (2013). Areca nut chewing and esophageal squamous-cell carcinoma risk in Asians: A meta-analysis of case–control studies. Cancer Causes & Control, 24(2), 257-265. [14] Liu, J., Wang, J., Leng, Y., & Lv, C. (2013). Intake of fruit and vegetables and risk of esophageal squamous cell carcinoma: A meta‐analysis of observational studies. International journal of cancer, 133(2), 473-485. [15] Chen, Y., Tong, Y., Yang, C., Gan, Y., Sun, H., Bi, H., . . . Lu, Z. (2015). Consumption of hot beverages and foods and the risk of esophageal cancer: a meta-analysis of observational studies. BMC cancer, 15(1), 1-13. [16] Blaydon, D. C., Etheridge, S. L., Risk, J. M., Hennies, H.-C., Gay, L. J., Carroll, R., . . . Spurr, N. K. (2012). RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. The American Journal of Human Genetics, 90(2), 340-346. [17] Souza, R. F., Krishnan, K., & Spechler, S. J. (2008). Acid, bile, and CDX: the ABCs of making Barrett's metaplasia. American Journal of Physiology-Gastrointestinal and Liver Physiology, 295(2), G211-G218. [18] Hoyo, C., Cook, M. B., Kamangar, F., Freedman, N. D., Whiteman, D. C., Bernstein, L., . . . Sharp, L. (2012). Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON consortium. International journal of epidemiology, 41(6), 1706-1718. [19] Kroep, S., Lansdorp-Vogelaar, I., Rubenstein, J. H., de Koning, H. J., Meester, R., Inadomi, J. M., & van Ballegooijen, M. (2015). An accurate cancer incidence in Barrett's esophagus: a best estimate using published data and modeling. Gastroenterology, 149(3), 577-585. e574. [20] Coleman, H. G., Bhat, S., Johnston, B. T., McManus, D., Gavin, A. T., & Murray, L. J. (2012). Tobacco smoking increases the risk of high-grade dysplasia and cancer among patients with Barrett's esophagus. Gastroenterology, 142(2), 233-240. [21] Anderson, L. A., Cantwell, M. M., Watson, R. P., Johnston, B. T., Murphy, S. J., Ferguson, H. R., . . . Murray, L. J. (2009). The association between alcohol and reflux esophagitis, Barrett's esophagus, and esophageal adenocarcinoma. Gastroenterology, 136(3), 799-805. [22] Ajani, J. A., D’Amico, T. A., Bentrem, D. J., Chao, J., Corvera, C., Das, P., . . . Farjah, F. (2019). Esophageal and esophagogastric junction cancers, version 2.2019, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network, 17(7), 855-883. [23] Rice, T. W., Ishwaran, H., Ferguson, M. K., Blackstone, E. H., & Goldstraw, P. (2017). Cancer of the esophagus and esophagogastric junction: an eighth edition staging primer. Journal of Thoracic Oncology, 12(1), 36-42. [24] Pech, O., May, A., Manner, H., Behrens, A., Pohl, J., Weferling, M., . . . Gossner, L. (2014). Long-term efficacy and safety of endoscopic resection for patients with mucosal adenocarcinoma of the esophagus. Gastroenterology, 146(3), 652-660. e651. [25] Guo, H.-M., Zhang, X.-Q., Chen, M., Huang, S.-L., & Zou, X.-P. (2014). Endoscopic submucosal dissection vs endoscopic mucosal resection for superficial esophageal cancer. World Journal of Gastroenterology, 20(18), 5540. [26] Napier, K. J., Scheerer, M., & Misra, S. (2014). Esophageal cancer: A review of epidemiology, pathogenesis, staging workup and treatment modalities. World journal of gastrointestinal oncology, 6(5), 112. [27] Ardalan, B., Spector, S. A., Livingstone, A. S., Franceschi, D., Mezentsev, D., Lima, M., . . . Sapp, M. (2007). Neoadjuvant, surgery and adjuvant chemotherapy without radiation for esophageal cancer. Japanese journal of clinical oncology, 37(8), 590-596. [28] Oppedijk, V., van der Gaast, A., van Lanschot, J. J., van Hagen, P., van Os, R., van Rij, C. M., . . . Spruit, P. H. (2014). Patterns of recurrence after surgery alone versus preoperative chemoradiotherapy and surgery in the CROSS trials. Journal of Clinical Oncology, 32(5), 385-391. [29] Seiwert, T. Y., Salama, J. K., & Vokes, E. E. (2007). The concurrent chemoradiation paradigm—general principles. Nature clinical practice Oncology, 4(2), 86-100. [30] Lordick, F., Mariette, C., Haustermans, K., Obermannová, R., & Arnold, D. (2016). Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 27, v50-v57. [31] van Hagen, P., Hulshof, M., Van Lanschot, J., Steyerberg, E., Henegouwen, M. V. B., Wijnhoven, B., . . . Bonenkamp, J. (2012). Preoperative chemoradiotherapy for esophageal or junctional cancer. New England Journal of Medicine, 366(22), 2074-2084. [32] Shapiro, J., Van Lanschot, J. J. B., Hulshof, M. C., van Hagen, P., van Berge Henegouwen, M. I., Wijnhoven, B. P., . . . Bonenkamp, J. J. (2015). Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. The lancet oncology, 16(9), 1090-1098. [33] Allum, W. H., Stenning, S. P., Bancewicz, J., Clark, P. I., & Langley, R. E. (2009). Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. Journal of Clinical Oncology, 27(30), 5062-5067. [34] Martinho, N., Santos, T. C., Florindo, H. F., & Silva, L. C. (2019). Cisplatin-membrane interactions and their influence on platinum complexes activity and toxicity. Frontiers in physiology, 1898. [35] Kelland, L. (2007). The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, 7(8), 573-584. [36] Brozovic, A., Ambriović-Ristov, A., & Osmak, M. (2010). The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Critical reviews in toxicology, 40(4), 347-359. [37] Florea, A.-M., & Büsselberg, D. (2011). Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 3(1), 1351-1371. [38] Saad, S. Y., Najjar, T. A., & Alashari, M. (2004). Role of non‐selective adenosine receptor blockade and phosphodiesterase inhibition in cisplatin‐induced nephrogonadal toxicity in rats. Clinical and experimental pharmacology and physiology, 31(12), 862-867. [39] Martindale, J. L., & Holbrook, N. J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. Journal of cellular physiology, 192(1), 1-15. [40] Reed, J. C. (2002). Apoptosis-based therapies. Nature reviews Drug discovery, 1(2), 111-121. [41] Rebillard, A., Lagadic-Gossmann, D., & Dimanche-Boitrel, M.-T. (2008). Cisplatin cytotoxicity: DNA and plasma membrane targets. Current medicinal chemistry, 15(26), 2656-2663. [42] Petrović, M., & Todorović, D. (2016). Biochemical and molecular mechanisms of action of cisplatin in cancer cells. Medicine & Biology, 18(1). [43] Hayakawa, J., Ohmichi, M., Kurachi, H., Kanda, Y., Hisamoto, K., Nishio, Y., . . . Murata, Y. (2000). Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer research, 60(21), 5988-5994. [44] Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, 740, 364-378. [45] Tsang, R. Y., Al-Fayea, T., & Au, H.-J. (2009). Cisplatin overdose. Drug safety, 32(12), 1109-1122. [46] Sheth, S., Mukherjea, D., Rybak, L. P., & Ramkumar, V. (2017). Mechanisms of cisplatin-induced ototoxicity and otoprotection. Frontiers in cellular neuroscience, 11, 338. [47] Crawford, J. (2018). Cancer cachexia: Are we ready to take a step forward? Cancer, 124(3), 456-458. [48] Kamimura, K., Matsumoto, Y., Zhou, Q., Moriyama, M., & Saijo, Y. (2016). Myelosuppression by chemotherapy in obese patients with gynecological cancers. Cancer chemotherapy and pharmacology, 78(3), 633-641. [49] Brabec, V., & Kasparkova, J. (2005). Modifications of DNA by platinum complexes: relation to resistance of tumors to platinum antitumor drugs. Drug resistance updates, 8(3), 131-146. [50] Kartalou, M., & Essigmann, J. M. (2001). Mechanisms of resistance to cisplatin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 478(1-2), 23-43. [51] Sedletska, Y., Giraud-Panis, M.-J., & Malinge, J.-M. (2005). Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Current Medicinal Chemistry-Anti-Cancer Agents, 5(3), 251-265. [52] Boshuizen, J., & Peeper, D. S. (2020). Rational cancer treatment combinations: an urgent clinical need. Molecular cell, 78(6), 1002-1018. [53] Nakamura, K., & Smyth, M. J. (2020). Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cellular & molecular immunology, 17(1), 1-12. [54] Mariette, C., Dahan, L., Mornex, F., Maillard, E., Thomas, P.-A., Meunier, B., . . . Bosset, J. (2014). Surgery alone versus chemoradiotherapy followed by surgery for stage I and II esophageal cancer: final analysis of randomized controlled phase III trial FFCD 9901. Journal of Clinical Oncology, 32(23). [55] Kocot, J., Luchowska-Kocot, D., Kiełczykowska, M., Musik, I., & Kurzepa, J. (2017). Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients, 9(7), 659. [56] Sunil Kumar, B., Singh, S., & Verma, R. (2017). Anticancer potential of dietary vitamin D and ascorbic acid: A review. Critical reviews in food science and nutrition, 57(12), 2623-2635. [57] Pinnell, S. R., Yang, H., Omar, M., Riviere, N. M., Debuys, H. V., Walker, L. C., . . . Levine, M. (2001). Topical L‐ascorbic acid: percutaneous absorption studies. Dermatologic surgery, 27(2), 137-142. [58] Mastrangelo, D., Massai, L., Fioritoni, G., & Coco, F. L. (2017). Vitamin C against cancer. Vitamin C, 1, 648. [59] Bouayed, J., & Bohn, T. (2010). Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative medicine and cellular longevity, 3(4), 228-237. [60] Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews Drug discovery, 8(7), 579-591. [61] Yun, J., Mullarky, E., Lu, C., Bosch, K. N., Kavalier, A., Rivera, K., . . . Rago, C. (2015). Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science, 350(6266), 1391-1396. [62] Bánhegyi, G., Benedetti, A., Margittai, É., Marcolongo, P., Fulceri, R., Németh, C. E., & Szarka, A. (2014). Subcellular compartmentation of ascorbate and its variation in disease states. Biochimica et Biophysica Acta, 1843(9), 1909-1916. [63] Naidu, K. A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition journal, 2(1), 1-10. [64] Vollbracht, C., Schneider, B., Leendert, V., Weiss, G., Auerbach, L., & Beuth, J. (2011). Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare: results of a retrospective, multicentre, epidemiological cohort study in Germany. in vivo, 25(6), 983-990. [65] Stephenson, C. M., Levin, R. D., Spector, T., & Lis, C. G. (2013). Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer chemotherapy and pharmacology, 72(1), 139-146. [66] Cimmino, L., Neel, B. G., & Aifantis, I. (2018). Vitamin C in stem cell reprogramming and cancer. Trends in cell biology, 28(9), 698-708. [67] Monti, D. A., Mitchell, E., Bazzan, A. J., Littman, S., Zabrecky, G., Yeo, C. J., . . . Levine, M. (2012). Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PloS one, 7(1), e29794. [68] Chen, Y.-K., Chang, W.-S. W., Wu, I.-C., Li, L.-H., Yang, S.-F., Chen, J. Y.-F., . . . Lee, J.-M. (2010). Molecular characterization of invasive subpopulations from an esophageal squamous cell carcinoma cell line. Anticancer research, 30(3), 727-736. [69] Peng, S.-Y., Tang, J.-Y., Li, R.-N., Huang, H.-W., Wu, C.-Y., Chiu, C.-C., . . . Sheu, J.-H. (2021). Oxidative stress-dependent synergistic antiproliferation, apoptosis, and DNA damage of ultraviolet-C and coral-derived sinularin combined treatment for oral cancer cells. Cancers, 13(10), 2450. [70] Chou, T.-C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer research, 70(2), 440-446. [71] Wu, Y., Ma, J., Sun, Y., Tang, M., & Kong, L. (2020). Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles. Chemosphere, 255, 126913. [72] Wang, X., Simpson, E. R., & Brown, K. A. (2015). p53: protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer research, 75(23), 5001-5007. [73] Zhang, Q., Lenardo, M. J., & Baltimore, D. (2017). 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell, 168(1-2), 37-57. [74] Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews Molecular cell biology, 15(1), 49-63. [75] HIRONO, I. (1961). Mechanism of natural and acquired resistance to methyl-bis-(β-chlorethyl)-amine N-oxide in ascites tumors. GANN Japanese Journal of Cancer Research 52(1), 39-48. [76] Harris, I. S., & DeNicola, G. M. (2020). The complex interplay between antioxidants and ROS in cancer. Trends in cell biology, 30(6), 440-451. [77] Hatem, E., Azzi, S., El Banna, N., He, T., Heneman-Masurel, A., Vernis, L., . . . Loew, D. (2019). Auranofin/vitamin C: a novel drug combination targeting triple-negative breast cancer. Journal of the National Cancer Institute, 111(6), 597-608. [78] Chen, Q., Espey, M. G., Sun, A. Y., Pooput, C., Kirk, K. L., Krishna, M. C., . . . Levine, M. (2008). Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Sciences, 105(32), 11105-11109. [79] Chen, Q., Espey, M. G., Krishna, M. C., Mitchell, J. B., Corpe, C. P., Buettner, G. R., . . . Levine, M. (2005). Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proceedings of the National Academy of Sciences, 102(38), 13604-13609. [80] Chen, Q., Espey, M. G., Sun, A. Y., Lee, J.-H., Krishna, M. C., Shacter, E., . . . Buettner, G. R. (2007). Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proceedings of the National Academy of Sciences, 104(21), 8749-8754. [81] Chen, H. H., & Kuo, M. T. (2010). Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy. Metal-based drugs, 2010. [82] Huang, F.-L., & Yu, S.-J. (2018). Esophageal cancer: risk factors, genetic association, and treatment. Asian journal of surgery, 41(3), 210-215. [83] Ma, Y., Chapman, J., Levine, M., Polireddy, K., Drisko, J., & Chen, Q. (2014). High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Science translational medicine, 6(222), 222ra218-222ra218. [84] Schoenfeld, J. D., Sibenaller, Z. A., Mapuskar, K. A., Wagner, B. A., Cramer-Morales, K. L., Furqan, M., . . . Hejleh, T. A. (2017). O2⋅− and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer cell, 31(4), 487-500. e488. [85] Du, J., Cieslak, J. A., Welsh, J. L., Sibenaller, Z. A., Allen, B. G., Wagner, B. A., . . . Button, A. M. (2015). Pharmacological ascorbate radiosensitizes pancreatic cancer. Cancer research, 75(16), 3314-3326. [86] Oka, N., Komuro, A., Amano, H., Dash, S., Honda, M., Ota, K., . . . Okada, H. (2020). Ascorbate sensitizes human osteosarcoma cells to the cytostatic effects of cisplatin. Pharmacology research & perspectives, 8(4), e00632. [87] Ghavami, G., & Sardari, S. (2020). Synergistic effect of vitamin C with cisplatin for inhibiting proliferation of gastric cancer cells. Iranian Biomedical Journal, 24(2), 119. [88] Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free radical biology and medicine, 49(11), 1603-1616. [89] Lenaz, G. (2012). Mitochondria and reactive oxygen species. Which role in physiology and pathology? Advances in mitochondrial medicine, 93-136. [90] Martin, K., & Barrett, J. (2002). Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Human & experimental toxicology, 21(2), 71-75. [91] Kotamraju, S., Chitambar, C. R., Kalivendi, S. V., Joseph, J., & Kalyanaraman, B. (2002). Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. Journal of Biological Chemistry 277(19), 17179-17187. [92] Kim, S. J., Kim, H. S., & Seo, Y. R. (2019). Understanding of ROS-inducing strategy in anticancer therapy. Oxidative medicine and cellular longevity, 2019. [93] Fulda, S., & Debatin, K.-M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 25(34), 4798-4811. [94] Husain, K., Morris, C., Whitworth, C., Trammell, G., Rybak, L., & Somani, S. (1998). Protection by ebselen against cisplatin-induced nephrotoxicity: antioxidant system. Molecular and cellular biochemistry, 178(1), 127-133. [95] Tudek, B., & Speina, E. (2012). Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 736(1-2), 82-92. [96] Eyler, C. E., & Rich, J. N. (2008). Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. Journal of Clinical Oncology, 26(17), 2839. [97] Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature medicine, 23(10), 1124-1134. [98] Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine, 3(7), 730-737. [99] Qian, X., Tan, C., Wang, F., Yang, B., Ge, Y., Guan, Z., & Cai, J. (2016). Esophageal cancer stem cells and implications for future therapeutics. OncoTargets and therapy, 9, 2247. [100] Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983-3988. [101] Nagano, O., Okazaki, S., & Saya, H. (2013). Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene, 32(44), 5191-5198. [102] Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F., & Lisanti, M. P. (2017). Cancer metabolism: a therapeutic perspective. Nature reviews Clinical oncology, 14(1), 11-31. [103] Branzei, D., & Foiani, M. (2007). Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA repair, 6(7), 994-1003. [104] Harrison, J. C., & Haber, J. E. (2006). Surviving the breakup: the DNA damage checkpoint. Annual Review of Genetics, 40, 209-235. [105] Kielbik, M., Krzyzanowski, D., Pawlik, B., & Klink, M. (2018). Cisplatin-induced ERK1/2 activity promotes G1 to S phase progression which leads to chemoresistance of ovarian cancer cells. Oncotarget, 9(28), 19847. [106] Ogo, A., Miyake, S., Kubota, H., Higashida, M., Matsumoto, H., Teramoto, F., . . . Ueno, T. (2021). The mechanism of the synergistic anticancer effect of CDDP and EPA in the TE1 cell line. Anticancer research, 41(4), 1771-1778. [107] Kapoor, I., Bodo, J., Hill, B. T., Hsi, E. D., & Almasan, A. (2020). Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death & Disease, 11(11), 1-11. [108] Bock, F. J., & Tait, S. W. (2020). Mitochondria as multifaceted regulators of cell death. Nature reviews Molecular cell biology, 21(2), 85-100. [109] Datta, S. R., Brunet, A., & Greenberg, M. E. (1999). Cellular survival: a play in three Akts. Genes & development, 13(22), 2905-2927. [110] Shaw, R. J., & Cantley, L. C. (2006). Ras, PI (3) K and mTOR signalling controls tumour cell growth. Nature, 441(7092), 424-430. [111] Chen, Y. L., Law, P.-Y., & Loh, H. H. (2005). Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Current Medicinal Chemistry-Anti-Cancer Agents, 5(6), 575-589. [112] Yue, X., Zhao, Y., Xu, Y., Zheng, M., Feng, Z., & Hu, W. (2017). Mutant p53 in cancer: accumulation, gain-of-function, and therapy. Journal of molecular biology, 429(11), 1595-1606. [113] Pires, B. R., Silva, R. C., Ferreira, G. M., & Abdelhay, E. (2018). NF-kappaB: two sides of the same coin. Genes, 9(1), 24. [114] Taniguchi, K., & Karin, M. (2018). NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology, 18(5), 309-324. [115] Izzo, J. G., Correa, A. M., Wu, T.-T., Malhotra, U., Chao, C. K., Luthra, R., . . . Hittelman, W. N. (2006). Pretherapy nuclear factor-κB status, chemoradiation resistance, and metastatic progression in esophageal carcinoma. Molecular cancer therapeutics, 5(11), 2844-2850.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84080-
dc.description.abstract食道癌(Esophageal cancer, EC)目前在全球最致命的癌症之一,主要因為食道癌的預後和生存率都很差。目前食道癌治療方法包括外科手術,放射線和化學療法的複合性治療。順鉑(Cisplatin, CDDP)是用於食道癌治療常見的化學藥物之一,CDDP的細胞毒性是通過形成活性氧化物(Reactive oxygen species, ROS)與形成順鉑-DNA加合物導致無法修復的DNA損傷。然而,高副作用和抗藥性的產生成為食道癌治療的障礙。近年來研究指出藥理濃度的抗壞血酸(Ascorbic acid, AA)可以殺死癌症細胞而不會傷害正常的細胞。在本研究中,將找出一種可能增強食道癌對化療敏感性的新藥物組合策略。我們的目標是1)評估CDDP和AA聯合治療鱗狀食道細胞癌(ESCC)的效果; 2)了解CDDP和AA聯合治療ESCC的作用機制。首先,使用MTT(3-(4,5-二甲基噻唑-2-基) -2,5-二苯基四唑-溴化物)評估CDDP和AA組合對細胞存活和菌落形成的協同作用。數據顯示,高劑量AA治療可以殺死ESCC,並且CDDP和AA協同殺死ESCC和降低ESCC的菌落形成能力。接下來,我們觀察到CDDP-AA組合會造成鱗狀食道癌細胞週期sub G1積累並且導致更多的細胞凋亡。藉由流式細胞儀分析結果,可以證實CDDP-AA組合誘導鱗狀食道癌細胞中的氧化壓力和粒線體功能下降,例如ROS上升和粒線體膜電位的下降。然而,經過活性氧化物清除劑N-acetylcysteine (NAC)前處理,結果證實CDDP-AA組合所誘導鱗狀食道癌細胞的變化都是由氧化壓力造成。在基因表現的部分,CDDP-AA聯合治療調控在細胞凋亡途徑上與粒線體相關的Bcl2蛋白質家族,降低抗凋亡基因並增加凋亡基因的表現,通過了解CDDP-AA聯合治療對鱗狀食道癌細胞的作用和機制,CDDP-AA聯合治療將成為提高清除鱗狀食道癌的治療效果有潛力的候選者。zh_TW
dc.description.abstractEsophageal cancer (EC) is one of the most lethal cancers worldwide with poor prognosis and survival rate. The treatment of EC patients includes surgery, followed by radiotherapy and chemotherapy. Cisplatin (CDDP) is one of the common chemical drugs used in the treatment of EC, and the cytotoxicity of CDDP is through the formation of reactive oxygen species (ROS) and the formation of cisplatin-DNA adducts leading to irreparable DNA damage. However, serious side effects and drug resistance stand as a barrier to the therapeutic efficacy of EC. Many studies had pointed out that pharmacological ascorbic acid (AA) can kill cancer cells without injured to normal cells. In this study, we wanted to identify a novel drug combination strategy that could increase the sensitivity of EC to chemotherapy. I aimed to 1) evaluate the effects of CDDP and AA treatment in esophageal squamous cell carcinoma (ESCC); 2) understand the mechanism of CDDP and AA combine treatment in ESCC. First, the synergistic effect of the CDDP and AA combination was evaluated using MTT assay and colony formation assay. The data showed that high-dose AA treatment could kill ESCC cells, and that CDDP and AA synergistically killed ESCC cells and reduced the colony-forming ability of ESCC cells. Next, we observed that the CDDP-AA combination caused ESCC sub G1 arrest and led to more apoptosis. By flow cytometry analysis of the results, it was confirmed that the CDDP-AA combination induced oxidative stress and decreased mitochondrial function in ESCC cells, such as increased ROS level and decreased mitochondrial membrane potential. However, the results of after pretreatment with the reactive oxide scavenger N-acetylcysteine (NAC) in cells validated that all CDDP-AA combination induced changes in ESCC cells were triggered by oxidative stress. Finally, CDDP-AA combination therapy regulated the mitochondria-related Bcl2 protein family in the apoptosis pathway, reduced anti-apoptotic genes and increased the expression of apoptotic genes. By understanding the role and mechanism of ESCC cells, CDDP-AA combination therapy will be a promising candidate to improve therapy efficacy for eliminating esophageal cancer.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:04:33Z (GMT). No. of bitstreams: 1
U0001-1907202216141700.pdf: 4400665 bytes, checksum: 7725994e6f6cf43bb58b538aef799e41 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 I 中文摘要 II ABSTRACT III 目錄 V 縮寫 X Chapter 1 背景介紹(Introduction) 1 1.1 食道癌(Esophageal cancer) 1 1.1.1. 食道癌的介紹 1 1.1.2. 鱗狀食道癌的風險因素 1 1.1.3. 食道腺癌的風險因素 2 1.1.4. 食道癌的分期與治療 2 1.2 順鉑(Cisplatin, CDDP) 5 1.2.1. 順鉑的介紹 5 1.2.2. 順鉑藥理的分子機制 5 1.2.3. 順鉑副作用與抗藥性 6 1.3 聯合治療(Combined treatment) 8 1.3.1. 聯合治療的介紹 8 1.4 抗壞血酸(Ascorbic acid, AA) 9 1.4.1. 抗壞血酸的介紹 9 1.4.2. 抗壞血酸的抗癌作用 9 1.5 假說和研究目標(Research purpose) 11 Chapter 2 實驗材料及方法(Materials and Methods) 13 2.1 細胞培養 13 2.1.1. 細胞株(Cell lines) 13 2.1.2. 培養液配製(Medium preparation) 13 2.1.3. 細胞培養與繼代(Cell culture and subculture) 14 2.2 試劑製備(Reagent preparation) 15 2.2.1. 試劑 15 2.2.2. Ascorbic acid製備 15 2.2.3. N-acetyl-L-cysteine製備 15 2.2.4. Cisplatin製備 15 2.3 細胞存活率分析(MTT assay) 15 2.3.1. MTT溶液製備 16 2.4 細胞群落形成試驗(Colony formation assay) 17 2.5 RNA表現分析(RNA analysis) 17 2.5.1. RNA萃取(RNA extraction) 17 2.5.2. DNA去除(DNA removal) 18 2.5.3. 酒精沉澱(Ethanol precipitation) 18 2.5.4. RNA定量(RNA quantification) 18 2.5.5. 反轉錄聚合酶鏈鎖反應(Reverse transcription PCR, RT-PCR) 18 2.5.6. 即時聚合酶鏈鎖反應(Real-time PCR, qPCR) 19 2.6 分析蛋白質表現(Protein analysis) 19 2.6.1. 試劑製備(Reagent preparation) 19 2.6.2. 細胞蛋白質萃取(Cellular protein extraction) 22 2.6.3. 蛋白質定量(Protein quantification) 22 2.6.4. SDS-PAGE製備(SDS-PAGE preparation) 22 2.6.5. 西方墨點法(Western blot) 23 2.7 流式細胞儀分析(Flow cytometric analysis) 24 2.7.1. 細胞凋亡分析(Apoptosis assay) 24 2.7.2. 細胞週期分析(Cell cycle analysis) 24 2.7.3. 活性氧化物質表現分析(ROS assay) 25 2.7.4. 粒線體膜電位分析(JC1 assay) 25 2.8 藥物組合作用分析(Drug Combination analysis) 26 2.9 轉錄組定序分析(RNA-Seq analysis) 26 2.9.1. Libaray基因庫製備和定序(Libaray preparation & Sequencing) 26 2.9.2. 生物資訊分析(Bioinformatics Analysis) 26 2.10 統計方法(Statistical analysis) 27 Chapter 3 實驗結果(Results) 28 3.1 CDDP抑制鱗狀食道癌細胞的存活率 28 3.2 AA抑制鱗狀食道癌細胞的存活率 28 3.3 CDDP和AA聯合治療具降低鱗狀食道癌細胞存活率之協同作用 28 3.4 CDDP和AA聯合治療降低鱗狀食道癌細胞的集落形成能力 29 3.5 CDDP和AA聯合治療造成鱗狀食道癌細胞週期變化 29 3.6 CDDP和AA聯合治療造成鱗狀食道癌細胞細胞凋亡 29 3.7 CDDP和AA聯合治療造成鱗狀食道癌細胞活性氧化物含量上升 30 3.8 CDDP和AA聯合治療造成鱗狀食道癌細胞粒線體膜電位下降 30 3.9 CDDP和AA聯合治療對鱗狀食道癌細胞基因表現的改變 31 3.10 CDDP和AA聯合治療對鱗狀食道癌細胞凋亡基因的改變 31 Chapter 4 討論(Discussion) 33 4.1 抗氧化劑-AA治療鱗狀食道癌的效果 33 4.2 CDDP治療鱗狀食道癌效果的差異 33 4.3 CDDP和AA聯合治療的效果 33 4.4 ROS在CDDP和AA聯合治療中的角色 34 4.5 CDDP和AA聯合治療可能對癌症幹細胞造成影響 35 4.6 CDDP和AA聯合治療細胞週期的影響 36 4.7 Bcl2蛋白質家族在CDDP和AA聯合治療中扮演的角色 36 4.8 PI3K/AKT/mTOR路徑在CDDP和AA聯合治療中扮演的角色 36 4.9 p53和NFκB在CDDP和AA聯合治療中扮演的角色 37 Chapter 5 結論(Summary) 38 Chapter 6 參考文獻(References) 39 Figure I. 第八版TNM類別 4 Figure II. 順鉑在癌症治療中的分子機制概述 6 Figure III. 抗壞血酸在細胞中作用的分子機制概述 10 Figure IV. 順鉑和抗壞血酸聯合治療殺死鱗狀食道癌細胞的機制與假說。 12 Table I. PBS配製 14 Table II. Trypsin配製 14 Table III. MTT溶液製備 16 Table IV. 細胞固定液製備 17 Table V. 75%酒精製備 18 Table VI. 3M醋酸鈉製備 18 Table VII. RT-PCR反應試劑製備 19 Table VIII. qPCR反應試劑製備 19 Table IX. Modified RIPA buffer製備 20 Table X. 1M (pH6.8)和1.5M (pH8.8) Tris製備 20 Table XI. 4X loading dye製備 20 Table XII. 10% APS製備 21 Table XIII. 1X Running buffer製備 21 Table XIV. 10X TBS和1X TBST製備 21 Table XV. 10X Transfer buffer和20% Transfer buffer製備 22 Table XVI. Resolving gel和Stacking gel製備 23 結果圖/表 46 Table 1. Primer 序列表 46 Table 2. 抗體表 47 Table 3. CDDP和AA聯合治療對細胞存活度影響的組合指數 48 Table 4. CDDP和AA聯合治療對菌落形成能力影響的組合指數 49 Table 5. CE81T A1C5 Networks 50 Table 6. KYSE410 A1C5 Networks 51 Figure 1. CDDP抑制鱗狀食道癌細胞的存活率 52 Figure 2. AA抑制鱗狀食道癌細胞的存活率 54 Figure 3. CDDP和AA聯合治療增強對鱗狀食道癌細胞的抗癌作用 56 Figure 4. CDDP和AA聯合治療降低鱗狀食道癌細胞的集落形成能力 57 Figure 5. CDDP和AA聯合治療造成鱗狀食道癌細胞週期變化 58 Figure 6. CDDP和AA聯合治療造成鱗狀食道癌細胞細胞凋亡 59 Figure 7. CDDP和AA聯合治療造成鱗狀食道癌細胞活性氧化物含量上升 61 Figure 8. CDDP和AA聯合治療造成鱗狀食道癌細胞粒線體膜電位(MMP)下降 63 Figure 9. CDDP和AA聯合治療對鱗狀食道癌細胞基因表現的改變 64 Figure 10. CDDP和AA聯合治療對鱗狀食道癌細胞凋亡基因表現的改變 66
dc.language.isozh-TW
dc.title探討抗壞血酸(維他命C)與順鉑聯合治療對人類食道鱗狀細胞癌之抗癌活性zh_TW
dc.titleTo study the anticancer activity of ascorbic acid (vitamin C) and cisplatin combined treatment in human esophageal squamous cell carcinomaen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴亮全(Liang-Chuan Lai),陳立涵(Li-Han Chen)
dc.subject.keyword鱗狀食道癌,順鉑,抗壞血酸,聯合治療,活性氧化物,zh_TW
dc.subject.keywordEsophageal squamous cell carcinoma,Cisplatin,Ascorbic acid,Combination therapy,Reactive oxygen species,en
dc.relation.page67
dc.identifier.doi10.6342/NTU202201551
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
dc.date.embargo-lift2027-07-20-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-1907202216141700.pdf
  目前未授權公開取用
4.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved