Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8407
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳維婷(Wei-Ting Chen)
dc.contributor.authorYu-Hung Changen
dc.contributor.author張宇泓zh_TW
dc.date.accessioned2021-05-20T00:53:44Z-
dc.date.available2020-08-04
dc.date.available2021-05-20T00:53:44Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-27
dc.identifier.citationAndreae, M. O. 2009. Correlation between Cloud Condensation Nuclei Concentration and Aerosol Optical Thickness in Remote and Polluted Regions. Atmospheric Chemistry and Physics 9(2): 543–556. https://doi.org/10.5194/acp-9-543-2009
Avissar, R., and C. A. Nobre. 2002. Preface to special issue on the Large‐Scale Biosphere‐Atmosphere Experiment in Amazonia (LBA). Journal of Geophysical Research: Atmospheres 107(D20): 8034. https://doi.org/10.1029/2002JD002507
Chen, C.-S., C.-L. Liu, M.-C. Yen, C.-Y. Chen, P.-L. Lin, C.-Y. Huang, and J.-H. Teng. 2010. Terrain Effects on an Afternoon Heavy Rainfall Event, Observed over Northern Taiwan on 20 June 2000 during Monsoon Break. Journal of the Meteorological Society of Japan 88(4): 649–671. https://doi.org/10.2151/jmsj.2010-403
Chen, F., and J. Dudhia. 2001. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review 129(4): 569–585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Chen, F., K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q. Y. Duan, M. Ek, and A. Betts. 1996. Modeling of Land Surface Evaporation by Four Schemes and Comparison with FIFE Observations. Journal of Geophysical Research: Atmospheres 101(D3): 7251–7268. https://doi.org/10.1029/95JD02165
Chen, G. T.-J., H.-C. Chou, P.-C. Liao, and J.-S. Yang. 2009. Study on the Warm Season Afternoon Convection over Northern and Central Taiwan. Atmospheric Sciences 37(2): 155–194. (In Chinese with English abstract)
Chien M.-H., and C.-M. Wu. 2016. Representation of Topography by Partial Steps Using the Immersed Boundary Method in a Vector Vorticity Equation Model (VVM). Journal of Advances in Modeling Earth Systems 8(1): 212–223. https://doi.org/10.1002/2015MS000514
Deardorff, J. W. 1972. Parameterization of the Planetary Boundary Layer for Use in General Circulation Models. Monthly Weather Review 100(2): 93–106. https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2
Fan J., Y. Wang, D. Rosenfeld, and X. Liu. 2016. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. Journal of the Atmospheric Sciences 73(11): 4221–4252. https://doi.org/10.1175/JAS-D-16-0037.1
Grabowski, W. W. 2018. Can the Impact of Aerosols on Deep Convection be Isolated from Meteorological Effects in Atmospheric Observations? Journal of the Atmospheric Sciences 75(10): 3347–3363. https://doi.org/10.1175/JAS-D-18-0105.1
Grabowski, W. W, P. Bechtold, A. Cheng, R. Forbes, C. Halliwell, M. Khairoutdinov, S. Lang, T. Nasuno, J. Petch, W.‐K. Tao, R. Wong, X. Wu, and K.‐M. Xu. 2006. Daytime Convective Development over Land: A Model Intercomparison Based on LBA Observations. Quarterly Journal of the Royal Meteorological Society 132(615): 317–344. https://doi.org/10.1256/qj.04.147
Grabowski, W. W, and H. Morrison. 2016. Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology. Part II: Double-Moment Microphysics. Journal of the Atmospheric Sciences 73(9): 3749–3770. https://doi.org/10.1175/JAS-D-15-0367.1
Hodzic, A., and J. P. Duvel. 2018. Impact of Biomass Burning Aerosols on the Diurnal Cycle of Convective Clouds and Precipitation over a Tropical Island. Journal of Geophysical Research: Atmospheres 123(2): 1017–1036. https://doi.org/10.1002/2017JD027521
Hsieh, M.-K. 2019. Effects of Orographically Induced Low-Level Moisture Convergence and Inversion Strength on Upslope Fog: A Case Study at Xitou. Master’s thesis, Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan. https://doi.org/10.6342/NTU201900872
Huang, J.-D., and C.-M. Wu. 2020. Effects of Microphysical Processes on the Precipitation Spectrum in a Strongly Forced Environment. Earth and Space Science 7: e2020EA001190. https://doi.org/10.1029/2020EA001190
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins. 2008. Radiative Forcing by Long‐Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. Journal of Geophysical Research: Atmospheres 113(D13): D13103. https://doi.org/10.1029/2008JD009944
Jung, J.-H., and A. Arakawa. 2008. A Three-Dimensional Anelastic Model Based on the Vorticity Equation. Monthly Weather Review 136(1): 276–294. https://doi.org/10.1175/2007MWR2095.1
Khvorostyanov, V. I., and J. A. Curry. 2006. Aerosol Size Spectra and CCN Activity Spectra: Reconciling the Lognormal, Algebraic, and Power Laws. Journal of Geophysical Research: Atmospheres 111(D12): D12202. https://doi.org/10.1029/2005JD006532
Krueger, S. K. 1988. Numerical Simulation of Tropical Cumulus Clouds and Their Interaction with the Subcloud Layer. Journal of the Atmospheric Sciences 45(16): 2221–2250. https://doi.org/10.1175/1520-0469(1988)045<2221:NSOTCC>2.0.CO;2
Kuo, K.-T., and C.-M. Wu. 2019. The Precipitation Hotspots of Afternoon Thunderstorms over the Taipei Basin: Idealized Numerical Simulations. Journal of the Meteorological Society of Japan 97(2): 501–517. https://doi.org/10.2151/jmsj.2019-031
Lee, H.-H., and C. Wang. 2020. The Impacts of Biomass Burning Activities on Convective Systems over the Maritime Continent. Atmospheric Chemistry and Physics 20(4): 2533–2548. https://doi.org/10.5194/acp-20-2533-2020
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts. 2011. Warm Season Afternoon Thunderstorm Characteristics under Weak Synoptic-Scale Forcing over Taiwan Island. Weather and Forecasting 26(1): 44–60. https://doi.org/10.1175/2010WAF2222386.1
Lin, W.-T. 2012. A Study of the Cloud Condensation Nuclei (CCN) Activity for Urban Ambient Aerosols. Master’s thesis, Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan. https://doi.org/10.6342/NTU.2012.01002
Miao, J.-E., and M.-J. Yang. 2020. A Modeling Study of the Severe Afternoon Thunderstorm Event at Taipei on 14 June 2015: The Roles of Sea Breeze, Microphysics, and Terrain. Journal of the Meteorological Society of Japan 98(1): 129–152. https://doi.org/10.2151/jmsj.2020-008
Morrison, H., and J. A. Milbrandt. 2015. Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. Journal of the Atmospheric Sciences 72(1): 287–311. https://doi.org/10.1175/JAS-D-14-0065.1
Morrison, H., and W. W. Grabowski. 2007. Comparison of Bulk and Bin Warm-Rain Microphysics Models Using a Kinematic Framework. Journal of the Atmospheric Sciences 64(8): 2839–2861. https://doi.org/10.1175/JAS3980
Morrison, H., and W. W. Grabowski. 2008. Modeling Supersaturation and Subgrid-scale Mixing with Two-moment Bulk Warm Microphysics. Journal of the Atmospheric Sciences 65(3): 792–812. https://doi.org/10.1175/2007JAS2374.1
Moseley, C., P. Berg, and J. O. Haerter. 2013. Probing the Precipitation Life Cycle by Iterative Rain Cell Tracking. Journal of Geophysical Research: Atmospheres 118(24): 13361–13370. https://doi.org/10.1002/2013JD020868
Moseley, C., O. Henneberg, and J. O. Haerter. 2019. A Statistical Model for Isolated Convective Precipitation Events. Journal of Advances in Modeling Earth Systems 11(1): 360–375. https://doi.org/10.1029/2018MS001383
Nugent, A. D., C. D. Watson, G. Thompson, and R. B. Smith. 2016. Aerosol Impacts on Thermally Driven Orographic Convection. Journal of the Atmospheric Sciences, 73(8): 3115–3132. https://doi.org/10.1175/JAS-D-15-0320.1
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld. 2001. Aerosols, Climate, and the Hydrological Cycle. Science 294(5549): 2119–2124. https://doi.org/10.1126/science.1064034
Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll. 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society 85(3): 381–394. https://doi.org/10.1175/BAMS-85-3-381
Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae. 2008. Flood or Drought: How Do Aerosols Affect Precipitation? Science 321(5894): 1309–1313. https://doi.org/10.1126/science.1160606
Seo, J. M., H. Lee, S. Moon, and J.-J. Baik. 2020. How Mountain Geometry Affects Aerosol-Cloud-Precipitation Interactions: Part I. Shallow Convective Clouds. Journal of the Meteorological Society of Japan 98(1): 43–60. https://doi.org/10.2151/jmsj.2020-003
Shutts, G. J., and M. E. B. Gray. 1994. A Numerical Modelling Study of the Geostrophic Adjustment Process Following Deep Convection. Quarterly Journal of the Royal Meteorological Society 120(519): 1145–1178. https://doi.org/10.1002/qj.49712051903
Smith, R. B., J. R. Minder, A. D. Nugent, T. Storelvmo. D. J. Kirshbaum, R. Warren, N. Lareau, P. Palany, A. James, and J. French. 2012. Orographic Precipitation in the Tropics: The Dominica Experiment. Bulletin of the American Meteorological Society 93(10): 1567–1579. https://doi.org/10.1175/BAMS-D-11-00194.1
Stevens, B., and G. Feingold. 2009. Untangling Aerosol Effects on Clouds and Precipitation in a Buffered System. Nature 461: 607–613. https://doi.org/10.1038/nature08281
Su, S.-H., J.‐L. Chu, T.‐S. Yo, and L.‐Y. Lin. 2018. Identification of Synoptic Weather Types over Taiwan Area with Multiple Classifiers. Atmospheric Science Letters 19(12): e861. https://doi.org/10.1002/asl.861
Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang. 2012. Impact of Aerosols on Convective Clouds and Precipitation. Reviews of Geophysics 50(2): RG2001. https://doi.org/10.1029/2011RG000369
Tsai, W.-M., and C.-M. Wu. 2017. The Environment of Aggregated Deep Convection. Journal of Advances in Modeling Earth Systems 9(5): 2061–2078. https://doi.org/10.1002/2017MS000967
Whitby, K. T. 1978. The Physical Characteristics of Sulfur Aerosols. Atmospheric Environment 12(1–3): 135–139. https://doi.org/10.1016/0004-6981(78)90196-8
Wu, C.-M., and A. Arakawa. 2011. Inclusion of Surface Topography into the Vector Vorticity Equation Model (VVM). Journal of Advances in Modeling Earth Systems 3(2): M04002. https://doi.org/10.1029/2011MS000061
Wu, C.-M., H.-C. Lin, F.-Y. Cheng, and M.-H. Chien. 2019. Implementation of the Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Study its Impact on Afternoon Thunderstorms over Complex Topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences 55: 701–717. https://doi.org/10.1007/s13143-019-00116-x
Yang, Y., J. Fan, L. R. Leung, C. Zhao, Z. Li, and D. Rosenfeld. 2016. Mechanisms Contributing to Suppressed Precipitation in Mt. Hua of Central China. Part I: Mountain Valley Circulation. Journal of the Atmospheric Sciences 73(3): 1351–1366. https://doi.org/10.1175/JAS-D-15-0233.1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8407-
dc.description.abstract由於與日俱增的人為活動,氣膠作為雲凝結核對於雲及降水的影響成為近年來受重視的研究議題。前人研究指出,氣膠、雲、降水交互作用的結果取決於環境型態。在本研究中,我們將環境型態聚焦於綜觀天氣影響較弱時、臺灣複雜地形之上的日夜降水系統。為了解析細微尺度的大氣物理過程,我們利用具有高解析度臺灣地形的渦度向量方程雲解析模式(TaiwanVVM)進行半真實大渦流模擬。我們從弱西南風或弱綜觀的天氣型態當中選取13個個案,並以其簡化之觀測探空資料作為模擬的初始條件。在控制組(乾淨環境)中,氣膠數量混合比為每公斤3×108;而在實驗組(一般環境)中,氣膠數量混合比增加至每公斤3×1010。13個個案的合成降水模擬結果顯示,阿里山山脈區域是臺灣島上最顯著的降水熱點,此現象與前人的觀測分析相符。我們以阿里山山脈的區域平均降水率時序變化,分辨出兩種不同的降水型態:強降水型及弱降水型;並利用「雲物件連結」及「降水系統追蹤」方法,從對流發展生命期的觀點,檢驗雲、雨特性。對於強降水型而言,雲凝結核濃度上升的影響更為顯著:有能力製造強降水的系統出現頻率提高,且其對總降雨量的貢獻增加;降水系統開始與結束的時間延後;降水系統成熟期的降雨率、降雨面積、雲厚、雲體積皆增加,並伴隨更集中且更強的雲內上升區。因此,雲凝結核濃度增加會讓複雜地形之上的夏季日夜降水系統出現「強者愈強」的反應。進一步討論兩種降水型態的差異與局部環流的關係,發現強降水型在降雨發生前有較弱的近岸底層風場。本研究呈現,半真實大渦流模擬及系統追蹤分析,對於瞭解雲凝結核濃度如何影響複雜地形之上的日夜降水,足以提供實用而嶄新的分析觀點。zh_TW
dc.description.abstractThe influence of aerosols, serving as cloud condensation nuclei (CCN), on clouds and precipitation becomes a highlighted research topic in recent years due to increasing human activities. Previous studies have suggested that the results of aerosol-cloud-precipitation interaction are regime-dependent. In this study, the regime of interest is focused on the diurnal precipitation over complex topography in Taiwan with weak synoptic-scale weather forcing. Semi-realistic large-eddy simulations (LESs) were carried out using the vector vorticity equation model with high-resolution Taiwan topography (TaiwanVVM) to resolve fine-scale atmospheric processes. The simulations of 13 cases were driven by the simplified observational soundings, selected under weak southwesterly flow or weak synoptic weather events. In the control groups (clean scenarios), the aerosol concentration was fixed at 3×108 kg-1 in the entire domain, while in the experimental groups (normal scenarios), the value was 100 times higher. The composite of the simulated results reveals a precipitation hotspot around Alishan Mountain Range (AMR), which is consistent with the observed climatology. Two different types of precipitation patterns by the AMR regional-averaged rain rate evolution are identified: the STRONG type and the WEAK type. By performing cloud object connecting and rain cell tracking analyses, the properties of cloud and precipitation are examined from the perspective of the life cycle of convection. Several responses due to increasing CCN are highlighted especially for the STRONG type. First, the diurnal precipitating systems with a greater ability to produce heavy rain rates occur more frequently and contribute more to the total precipitation. Also, the initiation and the ending time of the diurnal precipitating systems are delayed. Moreover, the maximum rain rate, rain area, cloud depth, and cloud size become stronger with a more concentrated and vigorous updraft in the clouds during the mature stage of the diurnal precipitating systems. An overall “strong get stronger” response to the diurnal precipitating systems over complex topography is identified with increasing CCN. The relationship between the intensity of local circulation and the precipitation patterns in the AMR region is discussed, with the STRONG type having weaker near-coast low-level southwesterly before the initiation of precipitation. This research shows that semi-realistic LES and tracking of precipitating systems provide novel and useful insights to the understanding of the responses to diurnal precipitation resulting from increasing CCN under relatively weak synoptic weather regime over complex topography.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:53:44Z (GMT). No. of bitstreams: 1
U0001-2407202014523100.pdf: 4320228 bytes, checksum: 32509d0a2e6f67394a20642b852bd7ab (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
目錄 Contents v
Figure Captions vi
Table Captions xi
1. Introduction 1
2. Model Description and Semi-Realistic Experiment Setup 6
2.1. Model Description and General Setup 6
2.2. Experiment Design of Semi-Realistic Simulations 7
3. Simulation Results 10
3.1. Overall Results 11
3.2. Object-based Tracking Analyses 12
4. Summary and Discussion 19
References 24
Figures 29
Tables 47
Appendices 49
Appendix A. Predicted Particle Property Microphysics Scheme 49
Appendix B. Case Selection for Semi-Realistic Simulations 50
Appendix C. Six-Connected Segmentation Method 52
Appendix D. Iterative Rain Cell Tracking 54
Appendix E. Co-Locate Rain Cells with Cloud Objects 55
dc.language.isoen
dc.title以系統追蹤分析探討雲凝結核對於臺灣複雜地形夏季日夜降雨之影響zh_TW
dc.titleTracking the Influence of Cloud Condensation Nuclei on Summer Diurnal Precipitating Systems over Complex Topography in Taiwanen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳健銘(Chien-Ming Wu),蘇世顥(Shih-Hao Su),陳正平(Jen-Ping Chen),Christopher Moseley(Christopher Moseley)
dc.subject.keyword氣膠數量濃度,複雜地形,日夜降水系統,局部環流,半真實大渦流模擬,系統追蹤分析,zh_TW
dc.subject.keywordaerosol number concentration,complex topography,diurnal precipitating systems,local circulation,semi-realistic large-eddy simulation,object-based tracking analyses,en
dc.relation.page56
dc.identifier.doi10.6342/NTU202001826
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-2407202014523100.pdf4.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved