Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84063
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游文岳(Wen-Yueh Yu)
dc.contributor.authorTung-Ta Wuen
dc.contributor.author吳東達zh_TW
dc.date.accessioned2023-03-19T21:30:14Z-
dc.date.copyright2022-09-27
dc.date.issued2022
dc.date.submitted2022-09-23
dc.identifier.citation[1] R. D?bek. Novel catalysts for chemical CO2 utilization. Universit? Pierre et Marie Curie-Paris VI; AGH University of Science and Technology (Cracovie, Pologne), 2016. [2] A. Kalair, N. Abas, M.S. Saleem, A.R. Kalair, N. Khan. Role of energy storage systems in energy transition from fossil fuels to renewables, Energy Storage, 3 (2021) 27. http://doi.org/10.1002/est2.135 [3] P.J. Woolcock, R.C. Brown. A review of cleaning technologies for biomass-derived syngas, Biomass Bioenerg., 52 (2013) 54-84. http://doi.org/10.1016/j.biombioe.2013.02.036 [4] Q.Y. Lee, H. Li. Photocatalytic Degradation of Plastic Waste: A Mini Review, Micromachines, 12 (2021) 20. http://doi.org/10.3390/mi12080907 [5] D.A. Pittam, G. Pilcher. MEASUREMENTS OF HEATS OF COMBUSTION BY FLAME CALORIMETRY METHANE, ETHANE, PROPANE, N-BUTANE AND 2-METHYLPROPANE, Journal of the Chemical Society-Faraday Transactions I, 68 (1972) 2224-&. http://doi.org/10.1039/f19726802224 [6] S. Christy, A. Noschese, M. Lomeli-Rodriguez, N. Greeves, J.A. Lopez-Sanchez. Recent progress in the synthesis and applications of glycerol carbonate, Curr. Opin. Green Sustain. Chem., 14 (2018) 99-107. http://doi.org/10.1016/j.cogsc.2018.09.003 [7] B.A.V. Santos, V.M.T.M. Silva, J.M. Loureiro, A.E. Rodrigues. Review for the Direct Synthesis of Dimethyl Carbonate, ChemBioEng Reviews, 1 (2014) 214-229. http://doi.org/https://doi.org/10.1002/cben.201400020 [8] K. Shukla, V.C. Srivastava. Synthesis of organic carbonates from alcoholysis of urea: A review, Catal. Rev.-Sci. Eng., 59 (2017) 1-43. http://doi.org/10.1080/01614940.2016.1263088 [9] P. Rounce, A. Tsolakis, P. Leung, A.P.E. York. A Comparison of Diesel and Biodiesel Emissions Using Dimethyl Carbonate as an Oxygenated Additive, Energy Fuels, 24 (2010) 4812-4819. http://doi.org/10.1021/ef100103z [10] M. Rogulska, A. Kultys. Aliphatic polycarbonate-based thermoplastic polyurethane elastomers containing diphenyl sulfide units, J. Therm. Anal. Calorim., 126 (2016) 225-243. http://doi.org/10.1007/s10973-016-5420-z [11] C.H. Wu, L.Y. Chen, R.J. Jeng, S.H.A. Dai. 100% Atom-Economy Efficiency of Recycling Polycarbonate into Versatile Intermediates, ACS Sustain. Chem. Eng., 6 (2018) 8964-8975. http://doi.org/10.1021/acssuschemeng.8b01326 [12] Z. Hrdlicka, A. Kuta, R. Poreba, M. Spirkova. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties, Chem. Pap., 68 (2014) 233-238. http://doi.org/10.2478/s11696-013-0439-0 [13] M. Spirkova, R. Poreba, J. Pavlicevic, L. Kobera, J. Baldrian, M. Pekarek. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. I. The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly, J. Appl. Polym. Sci., 126 (2012) 1016-1030. http://doi.org/10.1002/app.36993 [14] H. Tanaka, M. Kunimura. Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures, Polym. Eng. Sci., 42 (2002) 1333-1349. http://doi.org/10.1002/pen.11035 [15] Y.L. Wang, J.M. Yi, X.H. Peng, X.F. Ma, S.S. Peng. Structure-property relationships of novel fluorinated polycarbonate polyurethane films with high transparency and thermal stability, Res. Chem. Intermed., 45 (2019) 845-862. http://doi.org/10.1007/s11164-018-3647-y [16] B.L. Liu, H.S. Tian, L.H. Zhu. Structures and properties of polycarbonate modified polyether-polyurethanes prepared by transurethane polycondensation, J. Appl. Polym. Sci., 132 (2015) 8. http://doi.org/10.1002/app.42804 [17] J.W. Xu, E. Feng, J. Song. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications, J. Appl. Polym. Sci., 131 (2014) 16. http://doi.org/10.1002/app.39822 [18] B.D. Ulery, L.S. Nair, C.T. Laurencin. Biomedical Applications of Biodegradable Polymers, J. Polym. Sci. Pt. B-Polym. Phys., 49 (2011) 832-864. http://doi.org/10.1002/polb.22259 [19] U. Edlund, A.C. Albertsson, Degradable polymer microspheres for controlled drug delivery. In Degradable Aliphatic Polyesters, Albertsson, A. C., Ed. Springer-Verlag Berlin: Berlin, 2002; Vol. 157, pp 67-112. [20] M. Honda, M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, K. Tomishige. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies, J. Catal., 318 (2014) 95-107. http://doi.org/10.1016/j.jcat.2014.07.022 [21] M. Honda, M. Tamura, Y. Nakagawa, S. Sonehara, K. Suzuki, K. Fujimoto, K. Tomishige. Ceria-Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2-Cyanopyridine, ChemSusChem, 6 (2013) 1341-1344. http://doi.org/10.1002/cssc.201300229 [22] Z.J. Gong, Y.R. Li, H.L. Wu, S.D. Lin, W.Y. Yu. Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst, Appl. Catal. B-Environ., 265 (2020) 12. http://doi.org/10.1016/j.apcatb.2019.118524 [23] G. Fiorani, A. Perosa, M. Selva. Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables, Green Chem., 20 (2018) 288-322. http://doi.org/10.1039/c7gc02118f [24] F. Nasirov, E. Nasirli, M. Ibrahimova. Cyclic carbonates synthesis by cycloaddition reaction of CO2 with epoxides in the presence of zinc-containing and ionic liquid catalysts, J. Iran Chem. Soc., 19 (2022) 353-379. http://doi.org/10.1007/s13738-021-02330-9 [25] P. Sabatier, J.B. Senderens. Direct hydrogenation of carbon oxides in the presence of various split metals, C. R. Hebd. Seances Acad. Sci., 134 (1902) 689-691. [26] C.F. Lv, L.L. Xu, M.D. Chen, Y. Cui, X.Y. Wen, Y.P. Li, C.E. Wu, B. Yang, Z.C. Miao, X. Hu, Q.H. Shou. Recent Progresses in Constructing the Highly Efficient Ni Based Catalysts With Advanced Low-Temperature Activity Toward CO2 Methanation, Front. Chem., 8 (2020) 32. http://doi.org/10.3389/fchem.2020.00269 [27] K.H. Delgado, L. Maier, S. Tischer, A. Zellner, H. Stotz, O. Deutschmann. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts, Catalysts, 5 (2015) 871-904. http://doi.org/10.3390/catal5020871 [28] M. Bowker. Methanol Synthesis from CO2 Hydrogenation, ChemCatChem, 11 (2019) 4238-4246. http://doi.org/10.1002/cctc.201900401 [29] S. Navarro-Jaen, A. Szego, L.F. Bobadilla, O.H. Laguna, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola. Operando Spectroscopic Evidence of the Induced Effect of Residual Species in the Reaction Intermediates during CO2 Hydrogenation over Ruthenium Nanoparticles, ChemCatChem, 11 (2019) 2063-2068. http://doi.org/10.1002/cctc.201900101 [30] S. Saeidi, S. Najari, V. Hessel, K. Wilson, F.J. Keil, P. Concepcion, S.L. Suib, A.E. Rodrigues. Recent advances in CO2 hydrogenation to value-added products - Current challenges and future directions, Prog. Energy Combust. Sci., 85 (2021) 64. http://doi.org/10.1016/j.pecs.2021.100905 [31] A. Solis-Garcia, J.C. Fierro-Gonzalez. Mechanistic Insights into the CO2 Methanation Catalyzed by Supported Metals: A Review, J. Nanosci. Nanotechnol., 19 (2019) 3110-3123. http://doi.org/10.1166/jnn.2019.16606 [32] M.A.A. Aziz, A.A. Jalil, S. Triwahyono, S.M. Sidika. Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles, Appl. Catal. A-Gen., 486 (2014) 115-122. http://doi.org/10.1016/j.apcata.2014.08.022 [33] X.Y. Jia, X.S. Zhang, N. Rui, X. Hu, C.J. Liu. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity, Appl. Catal. B-Environ., 244 (2019) 159-169. http://doi.org/10.1016/j.apcatb.2018.11.024 [34] S. Kattel, P. Liu, J.G.G. Chen. Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface, J. Am. Chem. Soc., 139 (2017) 9739-9754. http://doi.org/10.1021/jacs.7b05362 [35] A.L. Maulana, R.I.D. Putra, A.G. Saputro, M.K. Agusta, Nugraha, H.K. Dipojono. DFT and microkinetic investigation of methanol synthesis via CO2 hydrogenation on Ni(111)-based surfaces, Phys. Chem. Chem. Phys., 21 (2019) 20276-20286. http://doi.org/10.1039/c9cp02970b [36] J. Wambach, A. Baiker, A. Wokaun. CO2 hydrogenation over metal/zirconia catalysts CO, Phys. Chem. Chem. Phys., 1 (1999) 5071-5080. http://doi.org/10.1039/a904923a [37] T. Numpilai, S. Kahadit, T. Witoon, B.V. Ayodele, C.K. Cheng, N. Siri-Nguan, T. Sornchamni, C. Wattanakit, M. Chareonpanich, J. Limtrakul. CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalyst, Top. Catal., 64 (2021) 316-327. http://doi.org/10.1007/s11244-021-01412-5 [38] W. Deng, L. Shi, J. Yao, Z. Zhang. A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis, Carbon Resources Conversion, 2 (2019) 198-212. http://doi.org/https://doi.org/10.1016/j.crcon.2019.10.004 [39] M. Tamura, K. Ito, M. Honda, Y. Nakagawa, H. Sugimoto, K. Tomishige. Direct Copolymerization of CO2 and Diols, Sci Rep, 6 (2016) 9. http://doi.org/10.1038/srep24038 [40] M. Aresta, A. Dibenedetto, A. Angelini. Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2, Chem. Rev., 114 (2014) 1709-1742. http://doi.org/10.1021/cr4002758 [41] E. Leino, P. Maki-Arvela, V. Eta, D.Y. Murzin, T. Salmi, J.P. Mikkola. Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2, Appl. Catal. A-Gen., 383 (2010) 1-13. http://doi.org/10.1016/j.apcata.2010.05.046 [42] J. Bian, M. Xiao, S.J. Wang, Y.X. Lu, Y.Z. Meng. Graphite oxide as a novel host material of catalytically active Cu-Ni bimetallic nanoparticles, Catal. Commun., 10 (2009) 1529-1533. http://doi.org/10.1016/j.catcom.2009.04.009 [43] X.L. Wu, Y.Z. Meng, M. Xiao, Y.X. Lu. Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst, J. Mol. Catal. A-Chem., 249 (2006) 93-97. http://doi.org/10.1016/j.molcata.2006.01.007 [44] K. Almusaiteer. Synthesis of dimethyl carbonate (DMC) from methanol and CO2 over Rh-supported catalysts, Catal. Commun., 10 (2009) 1127-1131. http://doi.org/10.1016/j.catcom.2009.01.012 [45] Y.D. Chen, H. Wang, Z.X. Qin, S.T. Tian, Z.B. Ye, L. Ye, H. Abroshan, G. Li. TixCe1-xO2 nanocomposites: a monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate, Green Chem., 21 (2019) 4642-4649. http://doi.org/10.1039/c9gc00811j [46] J.C. Choi, L.N. He, H. Yasuda, T. Sakakura. Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol, Green Chem., 4 (2002) 230-234. http://doi.org/10.1039/b200623p [47] P. Unnikrishnan, P. Varhadi, D. Srinivas. Efficient, direct synthesis of dimethyl carbonate from CO2 using a solid, calcined zirconium phenylphosphonate phosphite catalyst, RSC Adv., 3 (2013) 23993-23996. http://doi.org/10.1039/c3ra44368j [48] P. Kumar, P. With, V.C. Srivastava, K. Shukla, R. Glaser, I.M. Mishra. Dimethyl carbonate synthesis from carbon dioxide using ceria-zirconia catalysts prepared using a templating method: characterization, parametric optimization and chemical equilibrium modeling, RSC Adv., 6 (2016) 110235-110246. http://doi.org/10.1039/c6ra22643d [49] D.C. Stoian, E. Taboada, J. Llorca, E. Molins, F. Medina, A.M. Segarra. Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg-Al hydrotalcite-silica lyogels, Chem. Commun., 49 (2013) 5489-5491. http://doi.org/10.1039/c3cc41298a [50] Y. Gu, M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, K. Tomishige. Direct synthesis of polycarbonate diols from atmospheric flow CO2 and diols without using dehydrating agents, Green Chem., 23 (2021) 5786-5796. http://doi.org/10.1039/d1gc01172c [51] M. Younas, L.L. Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi. Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2, Energy Fuels, 30 (2016) 8815-8831. http://doi.org/10.1021/acs.energyfuels.6b01723 [52] K.R. Thampi, J. Kiwi, M. Gratzel. METHANATION AND PHOTO-METHANATION OF CARBON-DIOXIDE AT ROOM-TEMPERATURE AND ATMOSPHERIC-PRESSURE, Nature, 327 (1987) 506-508. http://doi.org/10.1038/327506a0 [53] Y. Guo, S. Mei, K. Yuan, D.J. Wang, H.C. Liu, C.H. Yan, Y.W. Zhang. Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal-Support Interactions and H-Spillover Effect, ACS Catal., 8 (2018) 6203-6215. http://doi.org/10.1021/acscatal.7b04469 [54] N.M. Martin, P. Velin, M. Skoglundh, M. Bauer, P.A. Carlsson. Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts, Catal. Sci. Technol., 7 (2017) 1086-1094. http://doi.org/10.1039/c6cy02536f [55] X. Wang, H. Shi, J.H. Kwak, J. Szanyi. Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies, ACS Catal., 5 (2015) 6337-6349. http://doi.org/10.1021/acscatal.5b01464 [56] H.X. Jiang, Q. Gao, S.T. Wang, Y.F. Chen, M.H. Zhang. The synergistic effect of Pd NPs and UiO-66 for enhanced activity of carbon dioxide methanation, J. CO2 Util., 31 (2019) 167-172. http://doi.org/10.1016/j.jcou.2019.03.011 [57] J. Liu, C.M. Li, F. Wang, S. He, H. Chen, Y.F. Zhao, M. Wei, D.G. Evans, X. Duan. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst, Catal. Sci. Technol., 3 (2013) 2627-2633. http://doi.org/10.1039/c3cy00355h [58] R.P. Ye, Q.H. Li, W.B. Gong, T.T. Wang, J.J. Razink, L. Lin, Y.Y. Qin, Z.F. Zhou, H. Adidharma, J.K. Tang, A.G. Russell, M.H. Fan, Y.G. Yao. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation, Appl. Catal. B-Environ., 268 (2020) 11. http://doi.org/10.1016/j.apcatb.2019.118474 [59] A. Makdee, K.C. Chanapattharapol, P. Kidkhunthod, Y. Poo-arporn, T. Ohno. The role of Ce addition in catalytic activity enhancement of TiO2-supported Ni for CO2 methanation reaction, RSC Adv., 10 (2020) 26952-26971. http://doi.org/10.1039/d0ra04934d [60] D. Messou, V. Bernardin, F. Meunier, M.B. Ordono, A. Urakawa, B.F. Machado, V. Colliere, R. Philippe, P. Serp, C. Le Berre. Origin of the synergistic effect between TiO2 crystalline phases in the Ni/TiO2-catalyzed CO2 methanation reaction, J. Catal., 398 (2021) 14-28. http://doi.org/10.1016/j.jcat.2021.04.004 [61] S.S. Li, G.L. Liu, S.R. Zhang, K. An, Z. Ma, L.H. Wang, Y. Liu. Cerium-modified Ni-La2O3/ZrO2 for CO2 methanation, J. Energy Chem., 43 (2020) 155-164. http://doi.org/10.1016/j.jechem.2019.08.024 [62] L.J. Zhang, L. Bian, Z.T. Zhu, Z.H. Li. La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance, Int. J. Hydrog. Energy, 43 (2018) 2197-2206. http://doi.org/10.1016/j.ijhydene.2017.12.082 [63] M.C. Bacariza, M. Maleval, I. Graca, J.M. Lopes, C. Henriques. Power-to-methane over Ni/zeolites: Influence of the framework type, Microporous Mesoporous Mat., 274 (2019) 102-112. http://doi.org/10.1016/j.micromeso.2018.07.037 [64] M.C. Bacariza, I. Graca, J.M. Lopes, C. Henriques. Enhanced activity of CO2 hydrogenation to CH4 over Ni based zeolites through the optimization of the Si/Al ratio, Microporous Mesoporous Mat., 267 (2018) 9-19. http://doi.org/10.1016/j.micromeso.2018.03.010 [65] M.C. Bacariza, I. Graca, J.M. Lopes, C. Henriques. Ni-Ce/Zeolites for CO2 Hydrogenation to CH4: Effect of the Metal Incorporation Order, ChemCatChem, 10 (2018) 2773-2781. http://doi.org/10.1002/cctc.201800204 [66] D. Beierlein, D. Haussermann, M. Pfeifer, T. Schwarz, K. Stowe, Y. Traa, E. Klemm. Is the CO2 methanation on highly loaded Ni-Al2O3 catalysts really structure-sensitive?, Appl. Catal. B-Environ., 247 (2019) 200-219. http://doi.org/10.1016/j.apcatb.2018.12.064 [67] W.H. Li, X.W. Nie, X. Jiang, A.F. Zhang, F.S. Ding, M. Liu, Z.M. Liu, X.W. Guo, C.S. Song. ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation, Appl. Catal. B-Environ., 220 (2018) 397-408. http://doi.org/10.1016/j.apcatb.2017.08.048 [68] C.H. Chung, F.Y. Tu, T.A. Chiu, T.T. Wu, W.Y. Yu. Critical Roles of Surface Oxygen Vacancy in Heterogeneous Catalysis over Ceria-based Materials: A Selected Review, Chem. Lett., 50 (2021) 856-865. http://doi.org/10.1246/cl.200845 [69] X.P. Guo, H.Y. He, A. Traitangwong, M.M. Gong, V. Meeyoo, P. Li, C.S. Li, Z.J. Peng, S.J. Zhang. Ceria imparts superior low temperature activity to nickel catalysts for CO2 methanation, Catal. Sci. Technol., 9 (2019) 5636-5650. http://doi.org/10.1039/c9cy01186b [70] Z.F. Bian, Y.M. Chan, Y. Yu, S. Kawi. Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study, Catal. Today, 347 (2020) 31-38. http://doi.org/10.1016/j.cattod.2018.04.067 [71] M. Yamasaki, H. Habazaki, K. Asami, K. Izumiya, K. Hashimoto. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys, Catal. Commun., 7 (2006) 24-28. http://doi.org/10.1016/j.catcom.2005.08.005 [72] P. Frontera, A. Macario, M. Ferraro, P. Antonucci. Supported Catalysts for CO2 Methanation: A Review, Catalysts, 7 (2017) 28. http://doi.org/10.3390/catal7020059 [73] L. He, Q.Q. Lin, Y. Liu, Y.Q. Huang. Unique catalysis of Ni-Al hydrotalcite derived catalyst in CO2 methanation: cooperative effect between Ni nanoparticles and a basic support, J. Energy Chem., 23 (2014) 587-592. http://doi.org/10.1016/s2095-4956(14)60144-3 [74] S.J. Tauster, S.C. Fung, R.T.K. Baker, J.A. Horsley. STRONG-INTERACTIONS IN SUPPORTED-METAL CATALYSTS, Science, 211 (1981) 1121-1125. http://doi.org/10.1126/science.211.4487.1121 [75] S.J. Tauster. STRONG METAL-SUPPORT INTERACTIONS, Accounts Chem. Res., 20 (1987) 389-394. http://doi.org/10.1021/ar00143a001 [76] Y.R. Zhang, W.J. Yan, H.F. Qi, X. Su, Y. Su, X.Y. Liu, L. Li, X.F. Yang, Y.Q. Huang, T. Zhang. Strong Metal-Support Interaction of Ru on TiO2 Derived from the Co-Reduction Mechanism of RuxTi1-xO2 Interphase, ACS Catal., 12 (2022) 1697-1705. http://doi.org/10.1021/acscatal.1c04785 [77] S. Bagheri, N. Muhd Julkapli, S. Bee Abd Hamid. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis, The Scientific World Journal, 2014 (2014) 727496. http://doi.org/10.1155/2014/727496 [78] K. Bourikas, C. Kordulis, A. Lycourghiotis. Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts, Chem. Rev., 114 (2014) 9754-9823. http://doi.org/10.1021/cr300230q [79] L.L. Xu, F.G. Wang, M.D. Chen, D.Y. Nie, X.B. Lian, Z.Y. Lu, H.X. Chen, K. Zhang, P.X. Ge. CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity, Int. J. Hydrog. Energy, 42 (2017) 15523-15539. http://doi.org/10.1016/j.ijhydene.2017.05.027 [80] X.Z. Fang, J. Zhang, J.J. Liu, C. Wang, Q. Huang, X.L. Xu, H.G. Peng, W.M. Liu, X. Wang, W.F. Zhou. Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides, J. CO2 Util., 25 (2018) 242-253. http://doi.org/10.1016/j.jcou.2018.04.011 [81] G. Garbarino, C.Y. Wang, T. Cavattoni, E. Finocchio, P. Riani, M. Flytzani-Stephanopoulos, G. Busca. A study of Ni/La-Al2O3 catalysts: A competitive system for CO2 methanation, Appl. Catal. B-Environ., 248 (2019) 286-297. http://doi.org/10.1016/j.apcatb.2018.12.063 [82] X.L. Wang, L.J. Zhu, Y.X. Zhuo, Y.Q. Zhu, S.R. Wang. Enhancement of CO2 Methanation over La-Modified Ni/SBA-15 Catalysts Prepared by Different Doping Methods, ACS Sustain. Chem. Eng., 7 (2019) 14647-14660. http://doi.org/10.1021/acssuschemeng.9b02563 [83] J.A. Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Perez. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction, Science, 318 (2007) 1757-1760. http://doi.org/10.1126/science.1150038 [84] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts, Science, 301 (2003) 935-938. http://doi.org/10.1126/science.1085721 [85] J. Kaspar, P. Fornasiero, M. Graziani. Use of CeO2-based oxides in the three-way catalysis, Catal. Today, 50 (1999) 285-298. http://doi.org/10.1016/s0920-5861(98)00510-0 [86] H. Muraki, G. Zhang. Design of advanced automotive exhaust catalysts, Catal. Today, 63 (2000) 337-345. http://doi.org/10.1016/s0920-5861(00)00477-6 [87] T. Montini, M. Melchionna, M. Monai, P. Fornasiero. Fundamentals and Catalytic Applications of CeO2-Based Materials, Chem. Rev., 116 (2016) 5987-6041. http://doi.org/10.1021/acs.chemrev.5b00603 [88] T. Miki, T. Ogawa, M. Haneda, N. Kakuta, A. Ueno, S. Tateishi, S. Matsuura, M. Sato. ENHANCED OXYGEN STORAGE CAPACITY OF CERIUM OXIDES IN CeO2/La2O3/Al2O3 CONTAINING PRECIOUS METALS, J. Phys. Chem., 94 (1990) 6464-6467. http://doi.org/10.1021/j100379a056 [89] M. Nolan, J.E. Fearon, G.W. Watson. Oxygen vacancy formation and migration in ceria, Solid State Ion., 177 (2006) 3069-3074. http://doi.org/10.1016/j.ssi.2006.07.045 [90] S. Wada, K. Oka, K. Watanabe, Y. Izumi. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism, Front. Chem., 1 (2013) 8. http://doi.org/10.3389/fchem.2013.00008 [91] S. Ronsch, J. Schneider, S. Matthischke, M. Schluter, M. Gotz, J. Lefebvre, P. Prabhakaran, S. Bajohr. Review on methanation - From fundamentals to current projects, Fuel, 166 (2016) 276-296. http://doi.org/10.1016/j.fuel.2015.10.111 [92] M. Honda, A. Suzuki, B. Noorjahan, K. Fujimoto, K. Suzuki, K. Tomishige. Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration, Chem. Commun., (2009) 4596-4598. http://doi.org/10.1039/b909610h [93] M. Honda, S. Kuno, S. Sonehara, K. Fujimoto, K. Suzuki, Y. Nakagawa, K. Tomishige. Tandem Carboxylation-Hydration Reaction System from Methanol, CO2 and Benzonitrile to Dimethyl Carbonate and Benzamide Catalyzed by CeO2, ChemCatChem, 3 (2011) 365-370. http://doi.org/10.1002/cctc.201000339 [94] D.I. Hunt H-NMR Chemical shifts. https://www.chem.ucalgary.ca/courses/353/Carey5th/Ch13/ch13-nmr-3b.html (accessed 23 March). [95] B. Ravel, M. Newville. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, Journal of Synchrotron Radiation, 12 (2005) 537-541. http://doi.org/10.1107/s0909049505012719 [96] S. Tada, M. Yokoyama, R. Kikuchi, T. Haneda, H. Kameyama. N2O Pulse Titration of Ni/alpha-Al2O3 Catalysts: A New Technique Applicable to Nickel Surface-Area Determination of Nickel-Based Catalysts, J. Phys. Chem. C, 117 (2013) 14652-14658. http://doi.org/10.1021/jp404291k [97] G. Bergeret, P. Gallezot. Particle size and dispersion measurements, Handbook of heterogeneous catalysis, 2 (2008) 439. [98] E.I. Ko, S. Winston, C. Woo. THE EFFECT OF CRYSTALLITE SIZE ON THE ONSET OF METAL-SUPPORT INTERACTIONS FOR TITANIA-SUPPORTED NICKEL-CATALYSTS, J. Chem. Soc.-Chem. Commun., (1982) 740-741. http://doi.org/10.1039/c39820000740 [99] B. Mile, D. Stirling, M.A. Zammitt, A. Lovell, M. Webb. THE LOCATION OF NICKEL-OXIDE AND NICKEL IN SILICA-SUPPORTED CATALYSTS - 2 FORMS OF NIO AND THE ASSIGNMENT OF TEMPERATURE-PROGRAMMED REDUCTION PROFILES, J. Catal., 114 (1988) 217-229. http://doi.org/10.1016/0021-9517(88)90026-7 [100] X.L. Yan, Y. Liu, B.R. Zhao, Z. Wang, Y. Wang, C.J. Liu. Methanation over Ni/SiO2: Effect of the catalyst preparation methodologies, Int. J. Hydrog. Energy, 38 (2013) 2283-2291. http://doi.org/10.1016/j.ijhydene.2012.12.024 [101] C. Zhao, Y.Z. Yu, A. Jentys, J.A. Lercher. Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation, Appl. Catal. B-Environ., 132 (2013) 282-292. http://doi.org/10.1016/j.apcatb.2012.11.042 [102] Y.P. Lin, Y.F. Zhu, X.L. Pan, X.H. Bao. Modulating the methanation activity of Ni by the crystal phase of TiO2, Catal. Sci. Technol., 7 (2017) 2813-2818. http://doi.org/10.1039/c7cy00124j [103] Q.J. Pei, G.H. Qiu, Y. Yu, J.T. Wang, H.C. Tan, J.P. Guo, L. Liu, H.J. Cao, T. He, P. Chen. Fabrication of More Oxygen Vacancies and Depression of Encapsulation for Superior Catalysis in the Water-Gas Shift Reaction, J. Phys. Chem. Lett., 12 (2021) 10646-10653. http://doi.org/10.1021/acs.jpclett.1c02857 [104] T.H. Tan, B.Q. Xie, Y.H. Ng, S.F.B. Abdullah, H.Y.M. Tang, N. Bedford, R.A. Taylor, K.F. Aguey-Zinsou, R. Amal, J. Scott. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction, Nat. Catal., 3 (2020) 1034-1043. http://doi.org/10.1038/s41929-020-00544-3 [105] T.F. Zhang, H.M. Ai, Q. Liu. La2O3-Promoted Ni/Al2O3 Catalyst for CO Methanation: Enhanced Catalytic Activity and Stability, Energy Technol., 7 (2019) 9. http://doi.org/10.1002/ente.201900531 [106] G.J. Zhi, X.N. Guo, Y.Y. Wang, G.Q. Jin, X.Y. Guo. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide, Catal. Commun., 16 (2011) 56-59. http://doi.org/10.1016/j.catcom.2011.08.037 [107] R. Martinez, E. Romero, C. Guimon, R. Bilbao. CO2 reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum, Appl. Catal. A-Gen., 274 (2004) 139-149. http://doi.org/10.1016/j.apcata.2004.06.017 [108] A.F. Lucredio, J.M. Assaf, E.M. Assaf. Reforming of a model biogas on Ni and Rh-Ni catalysts: Effect of adding La, Fuel Process. Technol., 102 (2012) 124-131. http://doi.org/10.1016/j.fuproc.2012.04.020 [109] J.Y. Liu, W.N. Su, J. Rick, S.C. Yang, C.J. Pan, J.F. Lee, J.M. Chen, B.J. Hwang. Rational design of ethanol steam reforming catalyst based on analysis of Ni/La2O3 metal-support interactions, Catal. Sci. Technol., 6 (2016) 3449-3456. http://doi.org/10.1039/c5cy00410a [110] Y.K. Chang, K.P. Lin, W.F. Pong, M.H. Tsai, H.H. Hseih, J.Y. Pieh, P.K. Tseng, J.F. Lee, L.S. Hsu. Charge transfer and hybridization effects in Ni3Al and Ni3Ga studies by x-ray-absorption spectroscopy and theoretical calculations, J. Appl. Phys., 87 (2000) 1312-1317. http://doi.org/10.1063/1.372015 [111] J.W. Xue, X.D. Zhu, Y. Zhang, W.D. Wang, W. Xie, J.L. Zhou, J. Bao, Y. Luo, X. Gao, Y. Wang, L.Y. Jang, S. Sun, C. Gao. Nature of Conduction Band Tailing in Hydrogenated Titanium Dioxide for Photocatalytic Hydrogen Evolution, ChemCatChem, 8 (2016) 2010-2014. http://doi.org/10.1002/cctc.201600237 [112] F. Ocampo, B. Louis, A.C. Roger. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method, Appl. Catal. A-Gen., 369 (2009) 90-96. http://doi.org/10.1016/j.apcata.2009.09.005 [113] E.I. Koytsoumpa, S. Karellas. Equilibrium and kinetic aspects for catalytic methanation focusing on CO2 derived Substitute Natural Gas (SNG), Renew. Sust. Energ. Rev., 94 (2018) 536-550. http://doi.org/10.1016/j.rser.2018.06.051 [114] Q.S. Pan, J.X. Peng, T.J. Sun, S. Wang, S.D. Wang. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites, Catal. Commun., 45 (2014) 74-78. http://doi.org/10.1016/j.catcom.2013.10.034 [115] A. van der Heijden, V. Belliere, L.E. Alonso, M. Daturi, O.V. Manoilova, B.M. Weckhuysen. Destructive adsorption of CCl4 over lanthanum-based solids: Linking activity to acid-base properties, J. Phys. Chem. B, 109 (2005) 23993-24001. http://doi.org/10.1021/jp054689b [116] Z.R. Yan, Q.H. Liu, L.X. Liang, J. Ouyang. Surface hydroxyls mediated CO2 methanation at ambient pressure over attapulgite-loaded Ni-TiO2 composite catalysts with high activity and reuse ability, J. CO2 Util., 47 (2021) 12. http://doi.org/10.1016/j.jcou.2021.101489 [117] K. Pokrovski, K.T. Jung, A.T. Bell. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia, Langmuir, 17 (2001) 4297-4303. http://doi.org/10.1021/la001723z [118] J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian. Carbon dioxide adsorption on oxide nanoparticle surfaces, Chem. Eng. J., 170 (2011) 471-481. http://doi.org/10.1016/j.cej.2010.12.041 [119] N.O. Savage, S.A. Akbar, P.K. Dutta. Titanium dioxide based high temperature carbon monoxide selective sensor, Sens. Actuator B-Chem., 72 (2001) 239-248. http://doi.org/10.1016/s0925-4005(00)00676-6 [120] K.Y. Ho, K.L. Yeung. Effects of ozone pretreatment on the performance of Au/TiO2 catalyst for CO oxidation reaction, J. Catal., 242 (2006) 131-141. http://doi.org/10.1016/j.jcat.2006.06.005 [121] K. Bhattacharyya, A. Danon, B.K. Vijayan, K.A. Gray, P.C. Stair, E. Weitz. Role of the Surface Lewis Acid and Base Sites in the Adsorption of CO2 on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FT-IR Study, J. Phys. Chem. C, 117 (2013) 12661-12678. http://doi.org/10.1021/jp402979m [122] R. Zhou, N. Rui, Z.G. Fan, C.J. Liu. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation, Int. J. Hydrog. Energy, 41 (2016) 22017-22025. http://doi.org/10.1016/j.ijhydene.2016.08.093 [123] S. Bashir, H. Idriss. Mechanistic study of the role of Au, Pd and Au-Pd in the surface reactions of ethanol over TiO2 in the dark and under photo-excitation, Catal. Sci. Technol., 7 (2017) 5301-5320. http://doi.org/10.1039/c7cy00961e [124] P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles - Synthesized via sol-gel route, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 117 (2014) 622-629. http://doi.org/10.1016/j.saa.2013.09.037 [125] X.L. Xu, Y.Y. Tong, J. Huang, J. Zhu, X.Z. Fang, J.W. Xu, X. Wang. Insights into CO2 methanation mechanism on cubic ZrO2 supported Ni catalyst via a combination of experiments and DFT calculations, Fuel, 283 (2021) 10. http://doi.org/10.1016/j.fuel.2020.118867 [126] V.I. Avdeev, V.N. Parmon. Molecular Mechanism of the Formic Acid Decomposition on V2O5/TiO2 Catalysts: A Periodic DFT Analysis, J. Phys. Chem. C, 115 (2011) 21755-21762. http://doi.org/10.1021/jp204652n [127] J. Baltrusaitis, J.H. Jensen, V.H. Grassian. FTIR Spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3, J. Phys. Chem. B, 110 (2006) 12005-12016. http://doi.org/10.1021/jp057437j [128] M. Daniel, S. Loridant. Probing reoxidation sites by in situ Raman spectroscopy: differences between reduced CeO2 and Pt/CeO2, J. Raman Spectrosc., 43 (2012) 1312-1319. http://doi.org/10.1002/jrs.4030 [129] B. Liu, C.M. Li, G.Q. Zhang, X.S. Yao, S.S.C. Chuang, Z. Li. Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO2 Nanorods, ACS Catal., 8 (2018) 10446-10456. http://doi.org/10.1021/acscatal.8b00415 [130] H.G. Brittain. Vibrational Spectroscopic Studies of Cocrystals and Salts. 1. The Benzamide-Benzoic Acid System, Cryst. Growth Des., 9 (2009) 2492-2499. http://doi.org/10.1021/cg801397t [131] T.W. van Deelen, C.H. Mejia, K.P. de Jong. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity, Nat. Catal., 2 (2019) 955-970. http://doi.org/10.1038/s41929-019-0364-x [132] X.Y. Li, J. Lin, L. Li, Y.K. Huang, X.L. Pan, S.E. Collins, Y.J. Ren, Y. Su, L.L. Kang, X.Y. Liu, Y.L. Zhou, H. Wang, A.Q. Wang, B.T. Qiao, X.D. Wang, T. Zhang. Controlling CO2 Hydrogenation Selectivity by Metal-Supported Electron Transfer, Angew. Chem.-Int. Edit., 59 (2020) 19983-19989. http://doi.org/10.1002/anie.202003847 [133] M.M. Bettahar. The hydrogen spillover effect. A misunderstanding story, Catal. Rev.-Sci. Eng., 64 (2022) 87-125. http://doi.org/10.1080/01614940.2020.1787771 [134] H. Shen, H. Li, Z. Yang, C. Li. Magic of hydrogen spillover: Understanding and application, Green Energy & Environment, (2022) http://doi.org/https://doi.org/10.1016/j.gee.2022.01.013 [135] J.L. Blackburn, C. Engtrakul, J.B. Bult, K. Hurst, Y.F. Zhao, Q. Xu, P.A. Parilla, L.J. Simpson, J.D.R. Rocha, M.R. Hudson, C.M. Brown, T. Gennett. Spectroscopic Identification of Hydrogen Spillover Species in Ruthenium-Modified High Surface Area Carbons by Diffuse Reflectance Infrared Fourier Transform Spectroscopy, J. Phys. Chem. C, 116 (2012) 26744-26755. http://doi.org/10.1021/jp305235p [136] X.M. Liu, Y.J. Tang, E.S. Xu, T.C. Fitzgibbons, G.S. Larsen, H.R. Gutierrez, H.H. Tseng, M.S. Yu, C.S. Tsao, J.V. Badding, V.H. Crespi, A.D. Lueking. Evidence for Ambient-Temperature Reversible Catalytic Hydrogenation in Pt-doped Carbons, Nano Lett., 13 (2013) 137-141. http://doi.org/10.1021/nl303673z [137] W.T. Chen, A. Chan, D. Sun-Waterhouse, J. Llorca, H. Idriss, G.I.N. Waterhouse. Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures, J. Catal., 367 (2018) 27-42. http://doi.org/10.1016/j.jcat.2018.08.015 [138] U. Ulmer, T. Dingle, P.N. Duchesne, R.H. Morris, A. Tayasoli, T. Wood, G.A. Ozin. Fundamentals and applications of photocatalytic CO2 methanation, Nat. Commun., 10 (2019) 12. http://doi.org/10.1038
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84063-
dc.description.abstract二氧化碳還原與非還原轉換成燃料與高價值化學品之觸媒系統為近年二氧化碳相關研究趨勢。於二氧化碳還原部分,本研究探討添加鑭作為催化助劑(catalytic promoter)對於鎳/二氧化鈦觸媒低溫催化二氧化碳甲烷化反應之影響。我們結合表面性質鑑定、原位光譜鑑定與催化反應數據,探討表面活性位點與反應機制,並分析催化助劑在觸媒中扮演的角色。催化結果顯示添加鑭能有效增加觸媒於低溫環境的催化表現,250 °C下二氧化碳轉化率由20%提升至76%。透過氫氣程溫還原、X光繞射光譜與相關物化性質鑑定,我們確認添加鑭有助於提升鎳金屬分散度。我們亦由X光吸收光譜判斷鎳金屬與二氧化鈦擔體之間金屬擔體交互作用會隨著鑭擔載量增加而減弱。由二氧化碳程溫脫附實驗,我們發現隨著鑭擔載量增加,觸媒表面中強鹼性位點的數量也隨之增加。我們進行一系列紅外線原位光譜實驗以探討鑭對反應機制的影響,發現擔載鑭之後,二氧化碳甲烷化之反應途徑由一氧化碳路徑改變為甲酸根路徑,由於甲酸根路徑之反應活化能較低,使鎳鑭/二氧化鈦於低溫之下的催化活性比鎳/二氧化鈦高。最後我們將消除鎳金屬分散度影響後的反應速率與中強鹼性位點量做線性迴歸,發現兩者成完美的線性關係,顯示隨著鑭擔載量增加而提升的中強鹼性位點量與觸媒活性提升有直接關係。 本研究的第二部分著重於開發化學或物理除水方法,移除二氧化碳非還原性轉換生成有機碳酸酯反應之副產物水,以符合工業化生產條件之原則突破反應熱力學限制提升有機碳酸酯的產率。化學性除水方面,我們使用商用二氧化鈰觸媒分別搭配氰基甲烷(acetonitrile)及苯甲?(benzonitrile)作為化學除水劑,催化甲醇與二氧化碳反應生成碳酸二甲酯(dimethyl carbonate, DMC),DMC產率由平衡產率(0.07%, 170 °C)分別提升至2.1%和5.2%。隨著反應時間增長,氰基甲烷水合產物乙醯胺的衍生性副產物增加限制了DMC產率;苯甲?水合產物苯甲醯胺則有毒化觸媒之情形。物理性除水方面,我們使用常壓流動CO2半批次反應系統進行常壓CO2和1,4-丁二醇(1,4-butanediol, 1,4-BDO)共聚反應,利用流動CO2以氣提分離法將水分子帶離反應系統,成功合成出脂肪族聚碳酸酯寡聚物(Polycarbonate oligomer, PCPO)(X1,4-BDO = 35%, Mn, GPC = 540 g mol-1)。產物混合物以真空系統減壓濃縮進行縮和聚合,使分子量由540 g mol-1上升至6143 g mol-1。我們以反應溫度、CO2流量和溶劑為變因進行反應系統測試,反應溫度提升可加快反應速率,但也因氣化增加1,4-丁二醇的損失;CO2流量增大有助於增加反應溶液的CO2濃度提升反應速率;使用疏水性溶劑則能有效提升除水效率,進而提升1,4-丁二醇轉化率與聚碳酸酯寡聚物(PCPO)聚合度。最佳化後之1,4-丁二醇轉化率約35% (1,4-丁二醇40 mmol, 二苯醚6 g, 180 °C, CO2 200 mL/min, 48 h),所得聚碳酸酯寡聚物(PCPO)產量仍難以符合工業化條件,需研究更多操作變因以找出提升除水效率的關鍵。zh_TW
dc.description.abstractOwing to increasing carbon dioxide (CO2) emissions and exhaustion of fossil fuels, the conversion of CO2 toward value-added chemicals and fuels has attracted much attention. Research has been focused on developing catalyst with enhanced low temperature activity in CO2 methanation to avoid stability loss and catalyst deactivation. In this work, titanium-supported nickel-lanthanum catalyst prepared by deposition precipitation method was studied for CO2 methanation. The CO2 conversion at 250 °C increase from 20% (10Ni/TiO2) to 76% (10Ni-24La2O3/TiO2) with the incorporation of lanthanum. Results suggest that the addition of lanthanum enhanced the dispersion of Ni particle (H2-TPR, XRD, TEM), while reducing the interaction between nickel and support (XAS). CO2-TPD and CO2 DRIFTS-TPD results show that medium basic sites on catalyst surface effectively increased with increased loading of lanthanum, promoting catalyst’s CO2 adsorption ability. The presence of medium basic centers favors formation of carbonate species, which are intermediates in formate pathway. In-situ IR surface reaction result indicated that different reaction pathway occurred on the surface of Ni/TiO2 (CO pathway) and Ni-La2O3/TiO2 (formate pathway). Formate pathway with lower activation is the main reason for enhanced catalytic performance at lower temperature. We also confirmed the linear relation between reaction rate and medium basic sites by normalizing the effect of Ni dispersion. In the second part of the thesis, we focused on developing a feasible process for direct synthesis of organic carbonate through carbon dioxide and alcohols with the assistance of chemical or physical dehydrating methods to overcome the thermodynamic limitation on product yields. With the promotion of acetonitrile and benzonitrile, the yield of dimethyl carbonate (DMC) raised from the equilibrium yield (0.07% at 170 °C) to 2.1% and 5.2%, respectively. As reaction time increase, the DMC yield of acetonitrile dehydrating system is limited by increase of by-product from acetamide. Benzamide was also observed (transmission IR) to strongly adsorb on CeO2 catalyst surface which results in catalyst poison and the decrease in DMC production rate. An atmospheric CO2 flow semi-batch reactor was used as an alternative dehydrating method for direct synthesis of polycarbonate oligomer from CO2 and 1,4-butanediol with CeO2 as catalyst. The conversion of 1,4-butanediol reaches 35% and the product reaches 540 g/mol without using any dehydrating agent and was further directly polymerized to 6000 g/mol by melt polycondensation. The effects of solvent, reaction temperature and CO2 flow rate were also studied. The reaction rate increases with increasing temperature, resulting in increase of oligomer molecular weight but more 1,4-butanediol loss due to higher vaporization rate. Higher CO2 flow rate results in higher CO2 concentration in the reaction media and hence higher reaction rate. Adding hydrophobic organic solvent accelerates the separation of water and reaction mixture, thus promoting the water removal efficiency.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:30:14Z (GMT). No. of bitstreams: 1
U0001-2309202214143500.pdf: 20660246 bytes, checksum: 1ce5d72c386fc7a1d0e902ce0d01e29b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 iii ABSTRACT v 目錄 vii 圖目錄 x 表目錄 xvi Chapter 1 緒論 1 1.1 研究背景 1 1.1.1 二氧化碳再利用 1 1.1.2 甲烷作為新興能源 4 1.1.3 碳酸酯類及其應用 7 1.2 反應介紹 9 1.2.1 二氧化碳甲烷化反應 9 1.2.2 二氧化碳非還原性轉化成有機碳酸酯 11 1.3 觸媒介紹 17 1.3.1 二氧化碳甲烷化觸媒 17 1.3.1.1 催化二氧化碳甲烷化之活性金屬 17 1.3.1.2 鎳擔載於二氧化鈦應用於二氧化碳甲烷化反應 19 1.3.1.3 鑭(La)作為觸媒助劑 24 1.3.2 二氧化碳非還原性轉換 - 二氧化鈰 25 1.4 研究目標 28 Chapter 2 實驗方法 30 2.1 實驗藥品 30 2.2 觸媒製備 32 2.2.1 二氧化碳甲烷化觸媒 - 以沉積沉澱法製備鎳鑭二氧化鈦觸媒 32 2.2.2 二氧化碳非還原性反應觸媒 - 商用二氧化鈰奈米顆粒觸媒 33 2.3 活性測試與產物分析 34 2.3.1 二氧化碳甲烷化反應 34 2.3.1.1 催化活性測試–二氧化碳甲烷化連續式氣相反應 34 2.3.1.2 產物分析–氣相層析熱傳導偵測儀 (GC-TCD) 37 2.3.2 二氧化碳非還原性反應 41 2.3.2.1 催化活性測試–二氧化碳與甲醇合成碳酸二甲酯 41 2.3.2.2 催化活性測試–二氧化碳與1,4-丁二醇合成碳酸酯寡聚物 43 2.3.2.3 以減壓濃縮將寡聚物碳酸酯(oligomer)聚合成聚碳酸酯 45 2.3.2.4 產物分析–氣相層析火焰離子化偵測儀 (GC-FID) 48 2.3.2.5 產物分析–氫核磁共振頻譜儀 (1H-NMR) 52 2.3.2.6 產物分析–凝膠層析儀 (GPC) 55 2.4 觸媒鑑定 57 2.4.1 掃描式電子顯微鏡 (SEM) 57 2.4.2 穿透式電子顯微鏡 (TEM) 57 2.4.3 比表面積及孔隙分布測定儀 (ASAP) 58 2.4.4 感應耦合電漿光學發射光譜儀 (ICP-OES) 59 2.4.5 X光繞射儀 (XRD) 61 2.4.6 拉曼光譜儀 (Raman) 61 2.4.7 X光吸收光譜 (XAS) 62 2.4.8 化學吸附分析儀 65 2.4.9 傅立葉轉換紅外線光譜儀 (FTIR) 68 Chapter 3 結果與討論 - 鑭催化助劑對於鎳金屬觸媒催化二氧化碳甲烷化反應之影響 73 3.1 觸媒鑑定 73 3.1.1 觸媒H2-TPR鑑定 73 3.1.2 觸媒XRD與物理性質鑑定 76 3.1.3 觸媒SEM與TEM鑑定 79 3.1.4 觸媒XAS鑑定 84 3.2 反應活性測試與活化能 87 3.3 二氧化碳吸附探討 92 3.3.1 觸媒CO2-TPD鑑定 92 3.3.2 二氧化碳在觸媒表面吸附機制 95 3.4 二氧化碳甲烷化反應機制 100 3.4.1 in-situ DRIFTS二氧化碳甲烷化程溫反應 100 3.4.2 in-situ DRIFTS二氧化碳甲烷化定溫表面反應 103 3.4.3 CO2甲烷化反應速率與Ni分散度、中強鹼性位點量回歸分析 111 Chapter 4 結果與討論 - 二氧化碳非還原性轉換之除水系統探討 113 4.1 商用二氧化鈰物性鑑定 113 4.1.1 觸媒XRD與物理性質鑑定 113 4.1.2 觸媒Raman鑑定 115 4.2 氰基甲烷和苯甲?化學除水系統測試 116 4.2.1 不同?類除水劑的除水效果測試 117 4.2.2 除水系統反應條件最佳化與長時間反應測試 119 4.2.3 商用CeO2奈米顆粒於苯甲?除水系統之活性比較 124 4.3 常壓半批式氣提除水系統測試 125 4.3.1 二階段製程合成聚碳酸酯 – 氣提除水系統與減壓濃縮再聚合 125 4.3.2 不同反應條件下之氣提除水系統測試 127 Chapter 5 結論 131 Chapter 6 未來展望 133 APPENDIX 136 REFERENCE 148
dc.language.isozh-TW
dc.subject二氧化鈰zh_TW
dc.subject二氧化碳zh_TW
dc.subject鎳金屬觸媒zh_TW
dc.subject甲烷化反應zh_TW
dc.subject原位紅外線光譜zh_TW
dc.subject有機碳酸酯zh_TW
dc.subject聚碳酸酯zh_TW
dc.subject除水劑zh_TW
dc.subject氣提分離zh_TW
dc.subject半批式反應zh_TW
dc.subjectnickel-based heterogeneous catalysten
dc.subjectCO2 methanationen
dc.subjectin-situ infrared spectroscopyen
dc.subjectcerium oxideen
dc.subjectsemi-batch processen
dc.subjectgas strippingen
dc.subjectdehydrationen
dc.subjectpolycarbonateen
dc.subjectorganic carbonateen
dc.subjectCO2 utilizationen
dc.title二氧化碳甲烷化反應之鎳金屬觸媒改質與二氧化碳非還原性轉換之除水系統探討zh_TW
dc.titleModification of Ni-based Catalyst for CO2 Methanation and Dehydrating System for Non-Reductive Conversion of CO2en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王誠佑(Cheng-Yu Wang),潘詠庭(Yung-Tin Pan),郭明智(Ming-Zhi Guo)
dc.subject.keyword二氧化碳,鎳金屬觸媒,甲烷化反應,原位紅外線光譜,有機碳酸酯,聚碳酸酯,除水劑,氣提分離,半批式反應,二氧化鈰,zh_TW
dc.subject.keywordCO2 utilization,CO2 methanation,nickel-based heterogeneous catalyst,in-situ infrared spectroscopy,organic carbonate,polycarbonate,dehydration,gas stripping,semi-batch process,cerium oxide,en
dc.relation.page159
dc.identifier.doi10.6342/NTU202203907
dc.rights.note未授權
dc.date.accepted2022-09-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2309202214143500.pdf
  未授權公開取用
20.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved