請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84051完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林永松(Yeong-Sung Lin) | |
| dc.contributor.author | Tsung-Yu Peng | en |
| dc.contributor.author | 彭琮鈺 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:29:38Z | - |
| dc.date.copyright | 2022-10-14 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-22 | |
| dc.identifier.citation | A. Hassan, T. Dohi, and H. Daida, 'Current use of intravascular ultrasound in coronary artery disease,' Clinical Medicine Insights: Therapeutics, vol. 8, p. CMT.S18472, 2016. Y.-C. Li, T.-Y. Shen, C.-C. Chen, W.-T. Chang, P.-Y. Lee, and C.-C. J. Huang, 'Automatic detection of atherosclerotic plaque and calcification from intravascular ultrasound images by using deep convolutional neural networks,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 5, pp. 1762-1772, 2021. T. F. Luscher, ''Assessing coronary plaques: non-invasive and intracoronary imaging and haemodynamic measurements,' European Heart Journal, vol. 39, no. 35, pp. 3265-3268, 2018. S. Koganti, T. Kotecha, and R. Rakhit, 'Choice of intracoronary imaging: When to use intravascular ultrasound or optical coherence tomography,' Interventional Cardiology (London), vol. 11, p. epub, 2016. A. Maehara, M. Matsumura, Z. A. Ali, G. S. Mintz, and G. W. Stone, 'Ivus-guided versus oct-guided coronary stent implantation: A critical appraisal,' JACC: Cardiovascular Imaging, vol. 10, no. 12, pp. 1487-1503, 2017. D. Grand, K. Navrazhina, and J. W. Frew, 'A scoping review of non-invasive imaging modalities in dermatological disease: Potential novel biomarkers in hidradenitis suppurativa,' Frontiers in Medicine, vol. 6, p. 253, 2019. Y. Ueki, T. Otsuka, K. Hibi, and L. Raber, 'The value of intracoronary imaging and coronary physiology when treating calcified lesions,' Interventional Cardiology Review, vol. 14, pp. 164-168, 2019. J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, 'Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,' Scientific Reports, vol. 7, p. 1417, 2017. X. Liu, Z. Deng, and Y. Yang, 'Recent progress in semantic image segmentation,' Artificial Intelligence Review, vol. 52, no. 2, p. 1089-1106, 2018. K. Rao, D. M. J. Stephen, and D. Phanindra, 'Classification based image segmentation approach,' International Journal of Computer Science And Technology, vol. Vol. 3, Jan. - March 2012, pp. 658-660, 2012. Y. Song and H. Yan, 'Image segmentation techniques overview,' in 2017 Asia Modelling Symposium (AMS), pp. 103-107, 2017. M. A. B. Siddique, R. B. Arif, and M. M. R. Khan, 'Digital image segmentation in matlab: A brief study on otsu's image thresholding,' in 2018 International Conference on Innovation in Engineering and Technology (ICIET), pp. 1-5, 2018. H. El Khoukhi, Y. Filali, A. Yahyaouy, M. A. Sabri, and A. Aarab, 'A hardware implementation of otsu thresholding method for skin cancer image segmentation,' in 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1-5, 2019. R. Tak, N. Kumar, Satyaki, S. Verma, and S. Dixit, 'Segmentation of medical image using region based statistical model,' in 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1247-1253, 2017. Y. Xia, X. Xie, X. Wu, J. Zhi, and S. Qiao, 'An approach of automatically selecting seed point based on region growing for liver segmentation,' in 2019 8th International Symposium on Next Generation Electronics (ISNE), pp. 1-4, 2019. S. Qiao, Y. Xia, J. Zhi, X. Xie, and Q. Ye, 'Automatic liver segmentation method based on improved region growing algorithm,' in 2020 JEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, pp. 644-650, 2020. M. Ansari and R. Anand, 'Region based segmentation and image analysis with application to medical imaging,' in 2007 IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), pp. 724-729,2007. K. Ilayarajaa and E. Logashanmugam, 'Retinal blood vessel segmentation using morphological and canny edge detection technique,' in 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), pp. 1-5, 2020. S. Santra, S. Mandal, K. Das, J. Bhattacharjee, and A. Roy, 'A modified canny edge detection approach to early detection of cancer cell,' in 2019 3rd International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech), pp. 1-5,2019. M. Zheng, W. Yubin, W. Yousheng, S. Xiaodi, and W. Yali, 'Detection of the lumen and media-adventitia borders in ivus imaging,' in 2008 9th International Conference on Signal Processing, pp. 1059-1062, 2008. A. Swarnalatha and M. Manikandan, 'Review of segmentation techniques for intravascular ultrasound (ivus) images,' in 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), pp. 1-4, 2017. Y. Gefeng, O. Xu, and L. Zhisheng, 'Fuzzy clustering application in medical image segmentation,' in 2011 6th International Conference on Computer Science Education (ICCSE), pp. 826-829, 2011. H. Yadav, P. Bansal, and R. Kumar Sunkaria, 'Color dependent k-means clustering for color image segmentation of colored medical images,' in 2015 1st International Conference on Next Generation Computing Technologies (NGCT), pp. 858-862, 2015. C. Wan, M. Ye, C. Yao, and C. Wu, 'Brain mr image segmentation based on gaussian filtering and improved fcm clustering algorithm,' in 2017 10th International Congress on Image and Signal Processing. BioMedical Engineering and Informatics (CISP-BMEI), pp. 1-5, 2017. C. Ye, W. Wang, S. Zhang, and K. Wang, 'Multi-depth fusion network for Whole-Heart CT image segmentation,' IEEE Access, vol. 7, pp. 23421-23429, 2019. M. Eslami, S. Tabarestani, S. Albargouni, E. Adeli, N. Navab, and M. Adjouadi, 'Image-to-images translation for multi-task organ segmentation and bone suppression in chest x-ray radiography,' IEEE Transactions on Medical Imaging, vol. 39, no. 7, pp. 2553-2565, 2020. S. Liu, X. Yuan, R. Hu, S. Liang, S. Feng, Y. Ai, and Y. Zhang, 'Automatie pancreas segmentation via coarse location and ensemble learning,' IEEE Access, vol. 8, pp. 2906-2914, 2020. O. Ronneberger, P. Fischer, and T. Brox, 'U-net: Convolutional networks for biomedical image segmentation,' in Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 9351 of LNCS, pp. 234 -241, Springer, 2015. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, 'Unet++: Redesigning skip connections to exploit multiscale features in image segmentation,' IEEE Transactions on Medical Imaging, vol. 39, no. 6, pp. 1856-1867, 2020. X. Hou, C. Xie, F. Li, J. Wang, C. Lv, G. Xie, and Y. Nan, 'A triple-stage self-guided network for kidney tumor segmentation,' in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 341-344, 2020. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Areas, 'Communication-Efficient Learning of Deep Networks from Decentralized Data,' in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, vol. 54, pp. 1273-1282, 2017. M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, 'Efficient and privacy-enhanced federated learning for industrial artificial intelligence,' IEEE Transactions on Industrial Informatics, vol. 16, no. 10, pp. 6532- 6542, 2020. B. Zhao, K. Fan, K. Yang, Z. Wang, H. Li, and Y. Yang, 'Anonymous and privacy- preserving federated learning with industrial big data,' TEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 6314-6323, 2021. H. Yang, H. He, W. Zhang, and X. Cao, 'Fedsteg: A federated transfer learning framework for secure image steganalysis,' IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1084-1094, 2021. Z. Xue, P. Zhou, Z. Xu, X. Wang, Y. Xie, X. Ding, and S. Wen, 'A resource-constrained and privacy-preserving edge-computing-enabled clinical decision system: A federated reinforcement learning approach,' IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9122-9138, 2021. Z. Yan, J. Wicaksana, Z. Wang, X. Yang, and K.-T. Cheng, 'Variation-aware federated learning with multi-source decentralized medical image data,' IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 7, pp. 2615-2628, 2021. R. Kumar, A. A. Khan, J. Kumar, Zakria, N. A. Golilarz, S. Zhang, Y. Ting, C. Zheng, and W. Wang, 'Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging,' IEEE Sensors Journal, vol. 21, no. 14, pp. 16301-16314,2021. W. Zhang, T. Zhou, Q. Lu, X. Wang, C. Zhu, H. Sun, Z. Wang, S. K. Lo, and F.-Y Wang, 'Dynamic-fusion-based federated learning for COVID-19 detection,' IEEE Internet of Things Journal, vol. 8, no. 21, pp. 15884-15891, 2021. Y. Chen, X. Sun, and Y. Jin, 'Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation,' IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 10, pp. 4229-4238. 2020. L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, 'Privacy-preserving deep learning via additively homomorphic encryption,' IEEE Transactions on Information Forensics and Security, vol. 13, no. 5, pp. 1333-1345, 2018. L. Song, C. Ma, G. Zhang, and Y. Zhang, 'Privacy-preserving unsupervised domain adaptation in federated setting,' IEEE Access, vol. 8, pp. 143233-143240, 2020. K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S. Quek, and H. V. Poor, 'Federated learning with differential privacy: Algorithms and performance analysis,' IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3454-3469, 2020. J. Tan, Y.-C. Liang, N. C. Luong, and D. Niyato, 'Toward smart security enhancement of federated learning networks,' IEEE Network, vol. 35, no. 1, pp. 340-347, 2021. L. Lyu, J. Yu, K. Nandakumar, Y. Li, X. Ma, J. Jin, H. Yu, and K. S. Ng, 'Towards fair and privacy-preserving federated deep models,' TEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 11, pp. 2524-2541, 2020. Q. Li, B. He, and D. Song, 'Model-contrastive federated learning,' in 2021 IEEE/ CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10708-10717.2021. [46] C.-H. Hsiao, T.-L. Sun, P.-C. Lin, T.-Y. Peng, Y.-H. Chen, C.-Y. Cheng, F.-J. Yang, S.-Y. Yang, C.-H. Wu, F. Y.-S. Lin, and Y. Huang, 'A deep learning-based precision volume calculation approach for kidney and tumor segmentation on computed tomography images,' Computer Methods and Programs in Biomedicine, vol. 221, p. 106861, 2022. H. Cho, S.-J. Kang, H.-S. Min, J.-G. Lee, W.-J. Kim, S. H. Kang, D.-Y. Kang, P. H. Lee, J.-M. Ahn, D.-W. Park, S.-W. Lee, Y.-H. Kim, C. W. Lee, S.-W. Park, and S.-J. Park, 'Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease,' Atherosclerosis, vol. 324, pp. 69-75, 2021. L. S. Shapley, '17. a value for n-person games,' in Contributions to the Theory of Games (AM-28), Volume II, pp. 307-318, Princeton University Press, 2016. Y. Tian, Y. Ding, S. Fu, and D. Liu, 'Data boundary and data pricing based on the shapley value,' IEEE Access, vol. 10, pp. 14288-14300, 2022. J. Xie, L. Zhang, X. Chen, Y. Zhan, and L. Zhou, 'Incremental benefit allocation for joint operation of multi-stakeholder wind-pv-hydro complementary generation system with cascade hydro-power: An aumann-shapley value method,' IEEE Access, vol. 8, pp. 68668-68681, 2020. G. O'Brien, A. El Gamal, and R. Rajagopal, 'Shapley value estimation for compensation of participants in demand response programs,' IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2837-2844, 2015. S. Sharma and A. R. Abhyankar, 'Loss allocation for weakly meshed distribution system using analytical formulation of shapley value,' IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1369-1377, 2017. C.-H. Hsiao, T.-Y. Peng, W.-C. Huang, H.-I. Teng, T.-M. Lu, F. Y.-S. Lin, and Y. Huang, 'A federated learning-based precision prediction model for external elastic membrane and lumen boundary segmentation in intravascular ultrasound images,' in Advanced Information Networking and Applications (L. Barolli, F. Hussain, and T. Enokido, eds.), (Cham), pp. 375-386, Springer International Publishing, 2022. M. Kolossvary, B. Szilveszter, B. Merkely, and P. Maurovich-Horvat, 'Plaque imaging with ct—a comprehensive review on coronary ct angiography based risk assessment,' Cardiovascular Diagnosis and Therapy, vol. 7, no. 5, pp. 489-506, 2017. D. Bitter, T. Mayrhofer, S. Puchner, M. Lu, P. Maurovich-Horvat, K. Ghemigian, P. Kitslaar, A. Broersen, Q. Truong, C. Schlett, U. Hoffmann, and M. Ferencik, 'Coronary computed tomography angiography - specific definitions of high-risk plaque features improve detection of acute coronary syndrome: Results from the romicat ii trial,' Circulation: Cardiovascular Imaging, vol. 11, pp. (e007657) 1-11, 2018. J. K. Min, H.-J. Chang, D. Andreini, G. Pontone, M. Guglielmo, J. J. Bax, P. Knaapen, S. V. Raman, R. A. Chazal, A. M. Freeman, T. Crabtree, and J. P. Earls, 'Coronary cta plaque volume severity stages according to invasive coronary angiography and ffr,' Journal of Cardiovascular Computed Tomography, vol. 16, no. 5, pp. 415-422, 2022. G. W. Stone, A. Maehara, A. J. Lansky, B. de Bruyne, E. Cristea, G. S. Mintz, R. Mehran, J. McPherson, N. Farhat, S. P. Marso, H. Parise, B. Templin, R. White, Z. Zhang, and P. W. Serruys, 'A prospective natural-history study of coronary atherosclerosis,' New England Journal of Medicine, vol. 364, no. 3, pp. 226-235, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84051 | - |
| dc.description.abstract | 深度學習技術已經廣泛地被應用在諸多醫學影像分析上,相較於傳統的醫學影像分析高度仰賴專業醫師及放射師的經驗判斷,深度學習的方法可以提供更為穩定及精確的判斷,因此,深度學習模型可以在臨床治療時有效的協助醫生進行決策。 本研究使用影像分割技術應用於血管內超音波影像 (IVUS) 的斑塊分割,以U-Net模型為基礎,設計一個兩階段的IVUS分割模型用以標示出影像中外彈性膜、流明區域以及斑塊的位置,骰子相似係數分別為0.88、0.87和0.70,分割結果與專業醫師具有一致性。模型提供準確與即時的預測結果,是手術過程中不可或缺的有效分割工具。 為了建立一個泛化能力高的模型,通常會需要搜集更多的資料來訓練模型,但在實務上,基於醫病隱私等緣故,跨機構間的交換資料是有困難的。本研究設計了一套聯邦式學習框架,使各機構可以在不互相交換資料的情況下,共同在分散式的資料集上訓練模型。為了提升參與者投入合作的意願,本研究同時提出了一套公平的商業模式作為激勵機制。與最先進的演算法相比,所提出的演算法在運算和通訊成本、安全性及公平性等面向展現了優越性。透過建構一個周全的聯邦式學習框架,希冀增加本研究應用於實務問題的可能性。 本研究的主要貢獻歸納如下: (1) 提出一套高效能的斑塊分割系統,能夠準確且即時的辨識 IVUS 影像中斑塊的位置。 (2) 設計一個周全的聯邦式學習框架,相較於傳統演算法在運算及通訊成本、安全性及公平性等面向具有優勢。 | zh_TW |
| dc.description.abstract | Deep learning technologies have been widely used in medical image analysis. Compared with traditional methods that rely heavily on the experience of professional physicians and radiologists, deep learning methods can provide more stable and accurate judgments. Therefore, deep learning models can effectively assist doctors in making decisions during clinical treatment. This thesis adopted the image segmentation technique for the task of plaque segmentation from intravascular ultrasound (IVUS) images. Based on the U-Net model, a two-stage IVUS segmentation model was designed to annotate the external elastic membrane (EEM), lumen area, and plaque burden in IVUS images with a dice similarity coefficient of 0.88, 0.87, and 0.70, respectively. The segmentation results showed close agreement with human experts. The proposed model provides precise and real-time segmentation masks and is an efficient segmentation tool essential during surgery. In general, collecting large volumes of training data can make the model has a better generalization capacity. However, exchanging data across institutions would be challenging in practice for patient privacy and other reasons. In this study, a federated learning framework is proposed. Institutions can collaboratively train models on distributed data sets without any data exchange. In order to enhance the willingness of participants to invest, this study also proposed a fair business model as an incentive mechanism. Compared with the state-of-the-art algorithm, the proposed algorithm exhibited superiority in computational and communication costs, security, and fairness. It is expected to put this study into practice by fulfilling a comprehensive federated learning framework. The main contributions of this study are summarized as follows: (1) Propose a high-performance plaque burden segmentation system that can accurately and instantly identify the location of plaque burden in IVUS images. (2) Develop a comprehensive federated learning framework that outperforms the traditional algorithm regarding computational and communication costs, security, and fairness. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:29:38Z (GMT). No. of bitstreams: 1 U0001-2109202217275300.pdf: 12157233 bytes, checksum: aaf69ddfe0e412775a7fad04aa9a4837 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 iii 摘要 v Abstract vii Contents ix List of Figures xii List of Tables xiv Chapter 1 Introduction 1 1.1 Background Overview 1 1.2 Motivation 2 1.3 Objectives 4 1.4 Thesis Organization 5 Chapter 2 Literature Review 6 2.1 Image Segmentation 6 2.1.1 Image Segmentation Methods 7 2.1.2 Multi-stage Segmentation Strategy 12 2.2 Federated Learning 13 2.3 Summary 16 Chapter 3 Methods 18 3.1 System Process 18 3.2 IVUS Image Segmentation 20 3.2.1 Model Architecture 20 3.2.2 Data Preprocessing 22 3.2.3 Data Coordinate Conversion 22 3.3 Federated Learning 26 3.3.1 The FederatedAveraging Algorithm (FedAVG) 26 3.3.2 Improved Federated Learning Algorithm - A Subspace Method 29 3.3.3C An extension of the Subspace Method 38 3.4 A Fair Business Model 45 3.5 Implementation 48 Chapter 4 Experimental Results and Discussion 50 4.1 IVUS Dataset 50 4.2_ Evaluation Metrics 52 4.3 IVUS Segmentation Experiments 53 4.3.1 Quantitative Analysis 54 4.3.2 Visualization of Segmentation Results 58 4.3.3 Agreement Between Manual and Automatic Measurements 61 4.4_ Federated Learning Experiments 66 4.4.1 Effects of Data Distribution 66 4.4.2 Effects of the Number of Clients(N) 72 4.4.3 Determining the Initial Point for Proposed Methods 78 4.5 Application of Business Model 82 4.6 Analysis of the Proposed Algorithm in Several Important Aspects 86 4.6.1 Complexity Analysis 86 4.6.2 Security Analysis 89 4.6.3 Fairness Issue 90 Chapter 5 Conclusions and Future Work 91 5.1 Conclusions 91 5.2 Future Work 92 References 94 | |
| dc.language.iso | en | |
| dc.subject | 子空間法 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 聯邦式學習 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 血管內超音波 | zh_TW |
| dc.subject | Intravascular Ultrasound (IVUS) | en |
| dc.subject | Image Segmentation | en |
| dc.subject | Federated Learning | en |
| dc.subject | Subspace Method | en |
| dc.subject | Deep Learning | en |
| dc.title | 基於聯邦式學習框架的血管內超音波影像斑塊分割之深度學習技術 | zh_TW |
| dc.title | A Deep Learning Technique for Intravascular Ultrasound Images Plaque Segmentation Based on Federated Learning Framework | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孔令傑(Ling-Chieh Kung),呂俊賢(CHUN-HSIEN LU),鍾順平(Shun-Ping Chung),李家岩(Chia-Yen Lee) | |
| dc.subject.keyword | 影像分割,聯邦式學習,深度學習,血管內超音波,子空間法, | zh_TW |
| dc.subject.keyword | Image Segmentation,Federated Learning,Deep Learning,Intravascular Ultrasound (IVUS),Subspace Method, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202203750 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-26 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2109202217275300.pdf 未授權公開取用 | 11.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
