請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84045完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
| dc.contributor.author | Wei-Chen Chen | en |
| dc.contributor.author | 陳韋辰 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:29:20Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-19 | |
| dc.identifier.citation | Chapter 1 Introduction [1] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Nature 508, 373 (2014). [2] L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, and M. G. Kanatzidis, Science 351, 141 (2016). [3] M. A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, J. Am. Chem. Soc. 132, 4060 (2010). [4] L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, and Q. Wang, J. Am. Chem. Soc. 135, 1213 (2013). [5] C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y.-Q. Lan, J. Bao, and J.Zhu, ACS Nano 8, 3761 (2014). [6] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, Adv. Mater. 27, 8035 (2015). [7] Z. Wang, J. Wang, Y. Zang, Q. Zhang, J.-A. Shi, T. Jiang, Y. Gong, C.-L. Song, S.-H. Ji, L.-L. Wang, L. Gu, K. He, W. Duan, X. Ma, X. Chen, and Q.-K. Xue, Adv. Mater. 27, 4150 (2015). [8] W. Jin, S. Vishwanath, J. Liu, L. Kong, R. Lou, Z. Dai, J. T. Sadowski, X. Liu, H.-H. Lien, A. Chaney, Y. Han, M. Cao, J. Ma, T. Qian, S. Wang, M. Dobrowolska, J. Furdyna, D. A. Muller, K. Pohl, H. Ding, J. I. Dadap, H. G. Xing, and R. M. Osgood, Phys. Rev. X 7, 041020 (2017). [9] K.-M. Chung, D. Wamwangi, M. Woda, M. Wuttig, and W. Bensch, J. Appl. Phys. 103, 083523 (2008). [10] R. Y. Wang, M. A. Caldwell, R. G. D. Jeyasingh, S. Aloni, R. M. Shelby, H.-S. P. Wong, and D. J. Milliron, J. Appl. Phys. 109, 113506 (2011). [11] Y. Song, X. Liang, J. Guo, J. Deng, G. Gao, and X. Chen, Phys. Rev. Mater. 3, 054804 (2019). [12] Y.-M. Zhang, J.-Q. Fan, W.-L. Wang, D. Zhang, L. Wang, W. L., K. He, C.-L. Song, X.-C. Ma, and Q.-K. Xue, Phys. Rev. B 98, 220508 (R) (2018). [13] Y. Mao, X. Ma, D. Wu, C. Lin, H. Shan, X. Wu, J. Zhao, A. Zhao, and Bing Wang, Nano Lett. 20, 8067 (2020). [14] Z. Shao, Z.-G. Fu, S. Li, Y. Cao, Q. Bian, H. Sun, Z. Zhang, H. Gedeon, X. Zhang, L. Liu, Z. Cheng, F. Zheng, P. Zhang, and M. Pan, Nano Lett. 19, 5304 (2019). [15] L. K. Ma, M. Z. Shi, B. L. Kang, K. L. Peng, F. B. Meng, C. S. Zhu, J. H. Cui, Z. L. Sun, D. H. Ma, H. H. Wang, B. Lei, T. Wu, and X. H. Chen, Phys. Rev. Mater. 4, 124803 (2020). [16] J. Zeng, E. Liu, Y. Fu, Z. Chen, C. Pan, C. Wang, M. Wang, Y. Wang, K. Xu, S. Cai, X. Yan, Y. Wang, X. Liu, P. Wang, S.-J. Liang, Y. Cui, H. Y. Hwang, H. Yuan, and F. Miao, Nano Lett. 18, 1410 (2018). Chapter 2 Theory and Background [1] N. Ashcroft and N. Mermin, Solid State Physics (1976). [2] Rainer Waser (Editor), Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, 3rd Edition (2012). [3] Shinobu Hikami, Anatoly I. Larkin, Yosuke Nagaoka, Progress of Theoretical Physics, Volume 63, 707 (1980). [4] Badih El-Kareh, Silicon Devices and Process Integration (2009). [5] S.M. Sze, Kwok K. Ng, Physics of Semiconductor Devices (2006). [6] B. Van Zeghbroeck, Principles of Electronic Devices (2011). [7] Tengfei Pei, Lihong Bao, Guocai Wang, Ruisong Ma, Haifang Yang, Junjie Li, Changzhi Gu, Sokrates Pantelides, Shixuan Du, and Hong-jun Gao, Appl. Phys. Lett. 108, 053506 (2016). Chapter 3 Experimental Apparatus [1] B. Y. Wu, Electronic Transport Properties of Monolayer Graphene and Graphene Ribbons, Doctoral Dissertation, NTU, 2019. [2] Trion 200/400 Cryo-free Dilution Refrigerator Operator’s Handbook (Oxford Instrument), 2012. Chapter 4 Experimental Methods [1] Y.-P. Hsieh, W.-Y. Chiang, S.-L. Tsai and M. Hofmann, Phys. Chem. Chem. Phys. 18, 339 (2016). [2] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 30 (2009). [3] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, Adv. Mater. 27, 8035 (2015). [4] J.-K. Wu, M. Hofmann, W.-P. Hsieh, S.-H. Chen, Z.-L. Yen, S.-K. Chiu, Y.-R. Luo, C.-C. Chiang, S.-Y. Huang, Y.-H. Chang and Ya-Ping Hsieh, ACS App. Energy Mater. 2, 8411 (2019). [5] J. Zeng, E. Liu, Y. Fu, Z. Chen, C. Pan, C. Wang, M. Wang, Y. Wang, K. Xu, S. Cai, X. Yan, Y. Wang, X. Liu, P. Wang, S.-J. Liang, Y. Cui, H. Y. Hwang, H. Yuan, and F. Miao, Nano Lett. 18, 1410 (2018). [6] C. Chuang, C.-T. Liang, G.-H. Kim, R. E. Elmquist, Y. Yang, Y. P. Hsieh, D. K. Patel, K. Watanabe, T. Taniguchi, N. Aoki, Carbon 136, 211 (2018). [7] C. Chuang, M. Mineharu, M. Matsunaga, C.-W. Liu, B.-Y. Wu, G.-H. Kim, K. Watanabe, T. Taniguchi, C.-T. Liang, N. Aoki, Carbon 154, 238 (2019). [8] C.-Y. Wang, Y.-W. Lin, C. Chuang, C.-H. Yang, D. Patel, S.-Z. Chen, C.-C. Yeh, W.-C. Chen, C.-C. Lin, Y.-H. Chen, W.-H. Wang, R. Sankar, F.-C. Chou, M. Krusopf, R. E. Elmquist, C.-T. Liang, Nanotechnol. 32, 155704 (2021). [9] J. D. Wood, G. P. Doidge, E. A. Carrion, J. C. Koepke, J. A. Kaitz, I. Datye, A. Behnam, J. Hewaparakrama, B. Aruin, Y. Chen, H. Dong, R. T. Haasch, J. W. Lyding and E. Pop, Nanotechnol. 26, 055302 (2015). Chapter 5 Results and Discussion [1] Chenglei Guo, Zhen Tian, Yanjun Xiao, Qixi Mi, and Jiamin Xue, Appl. Phys. Lett. 109, 203104 (2016). [2] S.M. Sze Kwok K. Ng, Physics of Semiconductor Devices (2006). [3] Ashcroft, Mermin, Solid State Physics (1976). [4] Tengfei Pei, Lihong Bao, Guocai Wang, Ruisong Ma, Haifang Yang, Junjie Li, Changzhi Gu, Sokrates Pantelides, Shixuan Du, and Hong-jun Gao, Appl. Phys. Lett. 108, 053506 (2016). [5] Yuchen Du, Adam T Neal, Hong Zhou and Peide D Ye, 2D Mater. 3 024003 (2016). [6] Edward M. Likovich, Kasey J. Russell, Eric W. Petersen, and Venkatesh Narayanamurti, Phys. Rev. B 80, 245318 (2009). [7] J.-P. Colinge, A.J. Quinn, L. Floyd, G. Redmond, J.C. Alderman, Weize Xiong, C.R. Cleavelin, T. Schulz, K. Schruefer, G. Knoblinger, P. Patruno, IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 2 (2006). [8] D Zanato, S Gokden, N Balkan, B K Ridley and W J Schaff, Semicond. Sci. Technol. 19 427. (2004). [9] Shinobu Hikami, Anatoly I. Larkin, Yosuke Nagaoka, Progress of Theoretical Physics, Volume 63, Issue 2, Pages 707–710 (1980). [10] J. Zeng, E. Liu, Y. Fu, Z. Chen, C. Pan, C. Wang, M. Wang, Y. Wang, K. Xu, S. Cai, X. Yan, Y. Wang, X. Liu, P. Wang, S.-J. Liang, Y. Cui, H. Y. Hwang, H. Yuan, and F. Miao, Nano Lett. 18, 1410 (2018). [11] V. Tk??, K. V?born?, V. Komanick?, J. Warmuth, M. Michiardi, A.?S. Ngankeu, M. Vondr??ek, R. Tarasenko, M. Vali?ka, V. Stetsovych, K. Carva, I. Garate, M. Bianchi, J. Wiebe, V. Hol?, Ph. Hofmann, G. Springholz, V. Sechovsk?, and J. Honolka Phys. Rev. Lett. 123, 036406 (2019). [12] A. L. Efros, M. Pollak, Electron-Electron Interactions in Disordered Systems (1985). [13] S. Est?vez Hern?ndez, M. Akabori, K. Sladek, Ch. Volk, S. Alagha, H. Hardtdegen, M. G. Pala, N. Demarina, D. Gr?tzmacher, and Th. Sch?pers, Phys. Rev. B 82, 235303 (2010). [14] Joseph M. Gonzalez and Ivan I. Oleynik, Phys. Rev. B 94, 125443 (2016). [15] Yu Yun, Yang Ma, Songsheng Tao, Wenyu Xing, Yangyang Chen, Tang Su, Wei Yuan, Jian Wei, Xi Lin, Qian Niu, X. C. Xie, and Wei Han Phys. Rev. B 96, 245310 (2017). [16] A. Yu. Kuntsevich, N. N. Klimov, S. A. Tarasenko, N. S. Averkiev, V. M. Pudalov, H. Kojima, and M. E. Gershenson, Phys. Rev. B 75, 195330 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84045 | - |
| dc.description.abstract | 本論文針對化學氣相沉積的少層二硒化錫在石墨烯上的薄片材料進行磁電阻效應的研究,並觀察到吻合Hikami-Larkin-Nagaoka模型的弱局域效應,研究中發現可以透過溫度及閘極電壓控制相位相干長度,藉由調控的機制,在溫度為 1 K 閘極電壓為 -20 V 時相位相干長度約為 540 nm 。 研究中也探討二硒化錫類似於電晶體的電傳輸特性,其中載子遷移率和載子密度高度依賴於溫度和柵極電壓。根據上述結果,我們提出了一些方法來改善二硒化錫場效元件的開關比,這讓未來針對二維材料奈米場效元件的研究和開發有著很大的優勢。 | zh_TW |
| dc.description.abstract | We have conducted an investigation into the magneto-transport properties of chemical vapor deposition few-layer SnSe2 flake on monolayer graphene. The observed weak localization magnetoresistance agrees well with the Hikami-Larkin-Nagaoka model, and the phase coherence length can be tuned by controlling the temperature and gate voltage. We find that the phase coherence length is around 540 nm when a voltage of -20 V is applied on the back gate at 1 K. We also show the field-effect-transistor-like behavior of SnSe2, in which the mobility and carrier density are highly dependent on temperature and gate voltage. According to the aforementioned results, we propose some method to increase the on-off ratio of a SnSe2-based device, a great advantage for future two-dimensional material-based nano-switch device. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:29:20Z (GMT). No. of bitstreams: 1 U0001-1502202200454200.pdf: 5258255 bytes, checksum: 81aa4962aede618aadfc295a1f3c334d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 I 致謝 II 中文摘要 III 英文摘要 IV Chapter 1 Introduction 1-1 Introduction……………………………………………………………………………………………………1 1-2 Bibliography …………………………………………………………………………………………………4 Chapter 2 Theory and Background 2-1 Drude Model ……………………………………………………………………………………………………7 2-2 Hall effect………………………………………………………………………………………………………8 2-3 Weak localization………………………………………………………………………………………10 2-4 Field effect transistor………………………………………………………………………14 2-5 Bibliography……………………………………………………………………………………………………17 Chapter 3 Experimental Apparatus 3-1 Atomic Force Microscope (AFM) ……………………………………………………18 3-2 Raman Spectrometer……………………………………………………………………………………19 3-3 Oxford Cryogenic Systems……………………………………………………………………20 3-4 Bibliography……………………………………………………………………………………………………23 Chapter 4 Experimental Methods 4-1 Experimental Methods………………………………………………………………………………24 4-2 Bibliography……………………………………………………………………………………………………28 Chapter 5 Results and Discussion 5-1 Hall measurements………………………………………………………………………………………30 5-2 Weak localization effect……………………………………………………………………33 5-3 Field-effect-transistor (FET) like behavior…………………42 5-4 Bibliography………………………………………………………………………………………………… 47 Chapter 6 Conclusions 6-1 Conclusions…………………………………………………………………………………………………… 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 弱局域化 | zh_TW |
| dc.subject | 相位相干長度 | zh_TW |
| dc.subject | weak localization | en |
| dc.subject | phase coherence length | en |
| dc.subject | coherent quantum transport | en |
| dc.subject | 2D tin selenide materials | en |
| dc.title | 二硒化?閘極場效元件弱局域化現象研究 | zh_TW |
| dc.title | Gate-dependent weak localization in few-layer disordered SnSe2 field-effect device | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 梁啟德(0000-0003-4435-5949) | |
| dc.contributor.oralexamcommittee | 謝雅萍(Ya-Ping Hsieh),莊家翔(Chia-Shain Chuang) | |
| dc.contributor.oralexamcommittee-orcid | 謝雅萍(0000-0002-6065-751X) | |
| dc.subject.keyword | 弱局域化,相位相干長度, | zh_TW |
| dc.subject.keyword | weak localization,phase coherence length,coherent quantum transport,2D tin selenide materials, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU202200597 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-02-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1502202200454200.pdf 未授權公開取用 | 5.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
