Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 進修推廣部
  3. 生物科技管理碩士在職學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84013
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝思民(Szu-Min Hsieh)
dc.contributor.authorJui-Lin Fangen
dc.contributor.author房瑞琳zh_TW
dc.date.accessioned2023-03-19T21:27:42Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-05-17
dc.identifier.citation1. Zhu, N., et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 2020. 382(8): p. 727-733. 2. WHO. Weekly epidemiological update on COVID-19 - 15 March 2022. 2022 [cited 2022 2022/3/18]; Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---15-march-2022. 3. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020. 395(10223): p. 497-506. 4. Huang, C.-F., et al., Dose-Related Aberrant Inhibition of Intracellular Perforin Expression by S1 Subunit of Spike Glycoprotein That Contains Receptor-Binding Domain from SARS-CoV-2. Microorganisms, 2021. 9(6): p. 1303. 5. Beigel, J.H., et al., Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine, 2020. 383(19): p. 1813-1826. 6. Mahase, E., Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ, 2021. 375: p. n2713. 7. Jayk Bernal, A., et al., Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. New England Journal of Medicine, 2021. 386(6): p. 509-520. 8. Dougan, M., et al., Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19. New England Journal of Medicine, 2021. 385(15): p. 1382-1392. 9. Le, T.T., et al., The COVID-19 vaccine development landscape. Nature Reviews Drug Discovery, 2020. 19(5): p. 305-306. 10. Mullard, A., COVID-19 vaccine development pipeline gears up. Lancet (London, England), 2020. 395(10239): p. 1751-1752. 11. Krammer, F., SARS-CoV-2 vaccines in development. Nature, 2020. 586(7830): p. 516-527. 12. Rawat, K., P. Kumari, and L. Saha, COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. European journal of pharmacology, 2021. 892: p. 173751-173751. 13. Hsieh, S.-M., et al., Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. The Lancet Respiratory Medicine, 2021. 9(12): p. 1396-1406. 14. Lu, R., et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 2020. 395(10224): p. 565-574. 15. WHO. COVID-19 vaccine tracker and landscape. 2022 [cited 2022 2022/3/18]; Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. 16. Forni, G., et al., COVID-19 vaccines: where we stand and challenges ahead. Cell Death & Differentiation, 2021. 28(2): p. 626-639. 17. Nagy, A. and B. Alhatlani, An overview of current COVID-19 vaccine platforms. Computational and Structural Biotechnology Journal, 2021. 19: p. 2508-2517. 18. Won, J.-H. and H. Lee, The Current Status of Drug Repositioning and Vaccine Developments for the COVID-19 Pandemic. International Journal of Molecular Sciences, 2020. 21(24): p. 9775. 19. van Riel, D. and E. de Wit, Next-generation vaccine platforms for COVID-19. Nature Materials, 2020. 19(8): p. 810-812. 20. Jara, A., et al., Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. New England Journal of Medicine, 2021. 385(10): p. 875-884. 21. Dolgin, E., HOW PROTEIN-BASED COVID VACCINES COULD CHANGE THE PANDEMIC. Nature, 2021. 599(7885): p. 359-360. 22. Keech, C., et al., Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. New England Journal of Medicine, 2020. 383(24): p. 2320-2332. 23. Hsieh, S.-M., et al., Safety and immunogenicity of a Recombinant Stabilized Prefusion SARS-CoV-2 Spike Protein Vaccine (MVCCOV1901) Adjuvanted with CpG 1018 and Aluminum Hydroxide in healthy adults: A Phase 1, dose-escalation study. EClinicalMedicine, 2021. 38: p. 100989. 24. Heath, P.T., et al., Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. New England Journal of Medicine, 2021. 385(13): p. 1172-1183. 25. WHO. WHO lists 9th COVID-19 vaccine for emergency use with aim to increase access to vaccination in lower-income countries. 2021 [cited 2022 2022/3/18]; Available from: https://www.who.int/news/item/17-12-2021-who-lists-9th-covid-19-vaccine-for-emergency-use-with-aim-to-increase-access-to-vaccination-in-lower-income-countries. 26. TFDA. TFDA granted emergency use authorization (EUA) for four COVID-19 vaccines in Taiwan. 2021; Available from: https://www.mohw.gov.tw/cp-115-64023-2.html. 27. FocusTaiwan. CORONAVIRUS/Medigen COVID-19 vaccine receives EUA in Paraguay. 2022 [cited 2022 3/19]; Available from: https://focustaiwan.tw/society/202202140029. 28. Khoury, D.S., et al., Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature Medicine, 2021. 27(7): p. 1205-1211. 29. Feng, S., et al., Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nature Medicine, 2021. 27(11): p. 2032-2040. 30. WHO. WHO Statement on Solidarity Trial Vaccines. 2021 [cited 2022 2022/3/18]; Available from: https://www.who.int/news/item/26-10-2021-who-statement-on-solidarity-trial-vaccines. 31. Mendon?a, S.A., et al., Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. npj Vaccines, 2021. 6(1): p. 97. 32. Collier, A.-r.Y., et al., Differential Kinetics of Immune Responses Elicited by Covid-19 Vaccines. New England Journal of Medicine, 2021. 385(21): p. 2010-2012. 33. Holm, M.R. and G.A. Poland, Critical aspects of packaging, storage, preparation, and administration of mRNA and adenovirus-vectored COVID-19 vaccines for optimal efficacy. Vaccine, 2021. 39(3): p. 457-459. 34. Voysey, M., et al., Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet, 2021. 397(10269): p. 99-111. 35. Voysey, M., et al., Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. The Lancet, 2021. 397(10277): p. 881-891. 36. WHO. WHO lists two additional COVID-19 vaccines for emergency use and COVAX roll-out. 2021 [cited 2022 3/19]; Available from: https://www.who.int/news/item/15-02-2021-who-lists-two-additional-covid-19-vaccines-for-emergency-use-and-covax-roll-out. 37. AstraZeneca. AZD1222 US Phase III primary analysis confirms safety and efficacy. 2021 [cited 2022 3/19]; Available from: https://www.astrazeneca.com/media-centre/press-releases/2021/azd1222-us-phase-iii-primary-analysis-confirms-safety-and-efficacy.html. 38. Bos, R., et al., Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. npj Vaccines, 2020. 5(1): p. 91. 39. Sadoff, J., et al., Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. New England Journal of Medicine, 2021. 384(23): p. 2187-2201. 40. WHO. WHO adds Janssen vaccine to list of safe and effective emergency tools against COVID-19. 2021 [cited 2022 3/19]; Available from: https://www.who.int/news/item/12-03-2021-who-adds-janssen-vaccine-to-list-of-safe-and-effective-emergency-tools-against-covid-19. 41. Johnson, J. Johnson & Johnson COVID-19 Vaccine Authorized by U.S. FDA For Emergency Use - First Single-Shot Vaccine in Fight Against Global Pandemic. 2021 [cited 2022 3/19]; Available from: https://www.jnj.com/johnson-johnson-covid-19-vaccine-authorized-by-u-s-fda-for-emergency-usefirst-single-shot-vaccine-in-fight-against-global-pandemic - :~:text=NEW%20BRUNSWICK%2C%20N.J.%2C%20February%2027,of%20Johnson%20%26%20Johnson%2C%20to%20prevent. 42. Kyriakidis, N.C., et al., SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines, 2021. 6(1): p. 28. 43. Lurie, N., et al., Developing Covid-19 Vaccines at Pandemic Speed. New England Journal of Medicine, 2020. 382(21): p. 1969-1973. 44. Frederiksen, L.S.F., et al., The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Frontiers in immunology, 2020. 11: p. 1817-1817. 45. Maruggi, G., et al., mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Molecular Therapy, 2019. 27(4): p. 757-772. 46. Baden, L.R., et al., Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 2020. 384(5): p. 403-416. 47. WHO. WHO lists Moderna vaccine for emergency use. 2021 [cited 2022 3/19]; Available from: https://www.who.int/news/item/30-04-2021-who-lists-moderna-vaccine-for-emergency-use. 48. Polack, F.P., et al., Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 2020. 383(27): p. 2603-2615. 49. WHO. WHO issues its first emergency use validation for a COVID-19 vaccine and emphasizes need for equitable global access. 2020 [cited 2022 3/19]; Available from: https://www.who.int/news/item/31-12-2020-who-issues-its-first-emergency-use-validation-for-a-covid-19-vaccine-and-emphasizes-need-for-equitable-global-access. 50. Aschwanden, C., Five reasons why COVID herd immunity is probably impossible. Nature, 2021. 591(7851): p. 520-522. 51. Dolgin, E., COVID vaccine immunity is waning-how much does that matter. Nature, 2021. 597(7878): p. 606-607. 52. Erice, A., D. Varillas-Delgado, and C. Caballero, Decline of antibody titres 3?months after two doses of BNT162b2 in non-immunocompromised adults. Clinical Microbiology and Infection, 2022. 28(1): p. 139.e1-139.e4. 53. Levin, E.G., et al., Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. New England Journal of Medicine, 2021. 385(24): p. e84. 54. Harvey, W.T., et al., SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 2021. 19(7): p. 409-424. 55. Hacisuleyman, E., et al., Vaccine Breakthrough Infections with SARS-CoV-2 Variants. New England Journal of Medicine, 2021. 384(23): p. 2212-2218. 56. Monto, A.S., The Future of SARS-CoV-2 Vaccination — Lessons from Influenza. New England Journal of Medicine, 2021. 385(20): p. 1825-1827. 57. WHO. Tracking SARS-CoV-2 variants. 2020 [cited 2022 3/19]; Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. 58. Morens, D.M., J.K. Taubenberger, and A.S. Fauci, A Centenary Tale of Two Pandemics: The 1918 Influenza Pandemic and COVID-19, Part I. American Journal of Public Health, 2021. 111(6): p. 1086-1094. 59. Konings, F., et al., SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021. 6(7): p. 821-823. 60. Krause, P.R., et al., SARS-CoV-2 Variants and Vaccines. New England Journal of Medicine, 2021. 385(2): p. 179-186. 61. Tao, K., et al., The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews Genetics, 2021. 22(12): p. 757-773. 62. GISAID. Clade and lineage nomenclature, March 2, 2021. 2021 [cited 2022 3/19]; Available from: https://www.gisaid.org/resources/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/. 63. Nextstrain. Updated Nextstrain SARS-CoV-2 clade naming strategy. 2021 [cited 2022 3/19]; Available from: https://nextstrain.org/blog/2021-01-06-updated-SARS-CoV-2-clade-naming. 64. PANGO. Lineage List. 2021 [cited 2022 3/19]; Available from: https://cov-lineages.org/lineage_list.html. 65. Rambaut, A., et al., A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology, 2020. 5(11): p. 1403-1407. 66. Abdool Karim, S.S. and T. de Oliveira, New SARS-CoV-2 Variants — Clinical, Public Health, and Vaccine Implications. New England Journal of Medicine, 2021. 384(19): p. 1866-1868. 67. CDC. SARS-CoV-2 Variant Classifications and Definitions. 2021 [cited 2022 3/19]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html. 68. Walker, A.S., et al., Tracking the Emergence of SARS-CoV-2 Alpha Variant in the United Kingdom. New England Journal of Medicine, 2021. 385(27): p. 2582-2585. 69. Volz, E., et al., Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature, 2021. 593(7858): p. 266-269. 70. Davies, N.G., et al., Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature, 2021. 593(7858): p. 270-274. 71. Carl A.B. Pearson*, T.W.R., Nicholas Davies, Adam J Kucharski, CMMID COVID-19 working group, W John Edmunds & Rosalind M Eggo. Estimates of severity and transmissibility of novel SARS-CoV-2 variant 501Y.V2 in South Africa. 2021 [cited 2022 3/20]; Available from: https://cmmid.github.io/topics/covid19/sa-novel-variant.html. 72. Wang, P., et al., Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021. 593(7857): p. 130-135. 73. Planas, D., et al., Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nature Medicine, 2021. 27(5): p. 917-924. 74. Zhou, D., et al., Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 2021. 184(9): p. 2348-2361.e6. 75. Oude Munnink, B.B., et al., The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology. Nature Medicine, 2021. 27(9): p. 1518-1524. 76. National Institute of Infectious Diseases, J. Brief report: new variant strain of SARS-CoV-2 identified in travelers from Brazil. . 2021 [cited 2022 3/20]; Available from: https://www.niid.go.jp/niid/en/2019-ncov-e/10108-covid19-33-en.html. 77. Faria, N.R., et al., Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 2021. 372(6544): p. 815-821. 78. Li, J., et al., The emergence, genomic diversity and global spread of SARS-CoV-2. Nature, 2021. 600(7889): p. 408-418. 79. CDC. What You Need to Know About Variants. 2021 [cited 2022 3/20]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/about-variants.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fvariants%2Fdelta-variant.html. 80. Dhar, M.S., et al., Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science, 2021. 374(6570): p. 995-999. 81. Bolze, A., et al., SARS-CoV-2 variant Delta rapidly displaced variant Alpha in the United States and led to higher viral loads. medRxiv, 2021: p. 2021.06.20.21259195. 82. Twohig, K.A., et al., Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. The Lancet Infectious Diseases, 2022. 22(1): p. 35-42. 83. Pouwels, K.B., et al., Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nature Medicine, 2021. 27(12): p. 2127-2135. 84. R?ssler, A., et al., SARS-CoV-2 Omicron Variant Neutralization in Serum from Vaccinated and Convalescent Persons. New England Journal of Medicine, 2022. 386(7): p. 698-700. 85. Callaway, E., OMICRON LIKELY TO WEAKEN COVID VACCINE PROTECTION. Nature, 2021. 600(7889): p. 367-368. 86. WHO. WHO Coronavirus (COVID-19) Dashboard. 2019 [cited 2022 3/20]; Available from: https://covid19.who.int/. 87. Lopez Bernal, J., et al., Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. New England Journal of Medicine, 2021. 385(7): p. 585-594. 88. Eyre, D.W., et al., Effect of Covid-19 Vaccination on Transmission of Alpha and Delta Variants. New England Journal of Medicine, 2022. 386(8): p. 744-756. 89. Wall, E.C., et al., Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. The Lancet, 2021. 397(10292): p. 2331-2333. 90. WHO. Vaccine efficacy, effectiveness and protection. 2022 [cited 2022 3/20]; Available from: https://www.who.int/news-room/feature-stories/detail/vaccine-efficacy-effectiveness-and-protection. 91. Kuhlmann, C., et al., Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. The Lancet, 2022. 399(10325): p. 625-626. 92. Chemaitelly, H., et al., Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. New England Journal of Medicine, 2021. 385(24): p. e83. 93. Juthani, P.V., et al., Hospitalisation among vaccine breakthrough COVID-19 infections. The Lancet Infectious Diseases, 2021. 21(11): p. 1485-1486. 94. Bergwerk, M., et al., Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. New England Journal of Medicine, 2021. 385(16): p. 1474-1484. 95. Edara, V.-V., et al., Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants. New England Journal of Medicine, 2021. 385(7): p. 664-666. 96. Liu, C., et al., Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell, 2021. 184(16): p. 4220-4236.e13. 97. Andrews, N., et al., Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. New England Journal of Medicine, 2022. 386(4): p. 340-350. 98. Tartof, S.Y., et al., Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. The Lancet, 2021. 398(10309): p. 1407-1416. 99. Greinacher, A., et al., Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. New England Journal of Medicine, 2021. 384(22): p. 2092-2101. 100. Callaway, E., Mixing COVID vaccines triggers potent immune response. Nature, 2021. 593(491): p. 10.1038. 101. Oxford, U.o. University of Oxford. 2021 [cited 2022 3/20]; Available from: https://comcovstudy.org.uk/home. 102. Liu, X., et al., Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. The Lancet, 2021. 398(10303): p. 856-869. 103. Normark, J., et al., Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination. New England Journal of Medicine, 2021. 385(11): p. 1049-1051. 104. Schmidt, T., et al., Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nature Medicine, 2021. 27(9): p. 1530-1535. 105. Hillus, D., et al., Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. The Lancet Respiratory Medicine, 2021. 9(11): p. 1255-1265. 106. Stuart, A.S.V., et al., Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. The Lancet, 2022. 399(10319): p. 36-49. 107. Bar-On, Y.M., et al., Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. New England Journal of Medicine, 2021. 385(15): p. 1393-1400. 108. Nemet, I., et al., Third BNT162b2 Vaccination Neutralization of SARS-CoV-2 Omicron Infection. New England Journal of Medicine, 2021. 386(5): p. 492-494. 109. Regev-Yochay, G., et al., Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. New England Journal of Medicine, 2022. 386(14): p. 1377-1380. 110. Kuo, T.-Y., et al., Protection of Hamsters Challenged with SARS-CoV-2 Variants of Concern by Two Doses of MVC-COV1901 Vaccine Followed by a Single Dose of Beta Variant Version of MVC-COV1901. bioRxiv, 2021: p. 2021.09.29.462344. 111. Tan, C.-W., et al., Pan-Sarbecovirus Neutralizing Antibodies in BNT162b2-Immunized SARS-CoV-1 Survivors. New England Journal of Medicine, 2021. 385(15): p. 1401-1406.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84013-
dc.description.abstract為了因應 SARS-CoV-2 所引起的人類感染大流行,在滾動式審查過程和緊急授權(EUA)政策下,來自多個平台的多項候選疫苗得以快速開發及提供民眾施打。除了腺病毒載體疫苗和 mRNA 疫苗外,蛋白次單元疫苗隨後也在此次新冠疫情上扮演一定程度的角色。雖然人類快速發展出新冠疫苗,但更多的挑戰接踵而至。例如,疫苗在世界各地的供應短缺,各廠牌或各平台未必都能及時生產運送到位;接種完標準兩劑疫苗後,抗體效價還是會逐步下降;尤其是變種病毒層出不窮的出現,從 Alpha/Beta/Gamma 變種,到橫掃全球的 Delta 及 Omicron 變種,不但傳播性可能更強,疫苗所能提供的免疫力也可能會有所下降,而可能發生突破性感染。 我在網路上各大生物醫學資料庫,以預設的關鍵字,例如 “immunogenicity”, “efficacy”, “effectiveness”, “variant”, “Covid-19 vaccine”, 及在 “2021-2022” 期間所發表的文獻,系統性的大量搜尋並閱讀新冠病毒及其變種,及新冠疫苗等相關資料,試圖從我的角度,整理出幾項人類目前希望克服這些挑戰的疫苗發展方向及應變策略應用,並將於文中詳加討論。 結果發現,世界衛生組織、各衛生學術機構、各相關研究團隊,針對前述挑戰,所採取的應變策略,主要為以下幾項。首先,混打接種政策的組合方式及評估。在各種組合的混合接種試驗結果發現,mRNA 與 AZ 腺病毒疫苗的混打,中和抗體效價可以遠高於兩劑 AZ;蛋白疫苗的混打,則是提高接種安全性及不亞於 mRNA 疫苗的細胞性免疫。藉由對各種混打的可行性及優缺點的了解,讓各地區能靈活運用所取得的疫苗,提高全球施打率,以期減少變種病毒的出現。 其次是施打的劑數。在兩劑完整接種後,中和抗體雖能達到高峰,但會隨著時間逐漸下降;第三劑疫苗的施打,不僅可重新拉高抗體的數量,而且還可超越前兩劑接種所能達到的高峰;更重要的是,抗體對抗 Omicron variant 的中和效價也更加提升,並且之後抗體濃度可維持更久。至於第四劑新冠疫苗的接種,可將中和抗體量重新拉回第三劑所能達到的量,但無明顯更加提升;雖然仍然安全,但大約只多提供了30 %的保護效力來對抗 Omicron 的感染;打滿四劑仍感染的人,依然有相當的傳染性;不論是否有施打第四劑,得到 Omicron variant 感染皆為輕症。從此看來,我認為將來透過固定時間的反覆施打,來與病毒共存的趨勢已相當明確。既然需要每年的反覆施打,最安全且最能普及的蛋白次單位疫苗,在人類需長期與病毒共存的未來,將扮演關鍵的角色。 另外,以南非變種的棘蛋白為基礎所設計的 S-2P,所製作而成的次世代疫苗,在動物試驗已呈現出能對新冠變種病毒提升免疫生成性及攻毒試驗中的保護力,目前也已進入初步人體試驗。新加坡團隊也在已感染過SARS又接種過新冠疫苗的人身上,發現極廣效中和抗體的存在,因此我認為人類研發出可同時對抗所有變種病毒的通用型疫苗,是指日可待的。 因此,綜上所述,雖然人類已無可逃避與新冠病毒的共存,也無法阻止新冠病毒層出不窮的出現,但人類已同時有多項疫苗發展的因應對策,來因應這場與新冠病毒的長期抗戰。zh_TW
dc.description.abstractIn response to the SARS-CoV-2 pandemic, many vaccine candidates from several platforms have been developed rapidly under the rolling review process and EUA policy. In addition to adenovirus-vectored vaccines and mRNA vaccines that were introduced to help control the infectious disease pandemic, protein-based vaccines were developed. However, despite the availability of a variety of vaccines, human beings continue to face more challenges, such as the equity and shortage of vaccine supply, the phenomenon of antibody decline after the standard 2-dose vaccination, the emergence of viral variants that have strong transmissibility and are refractory to immune protection from vaccination, and subsequent breakthrough infections. I conducted an extensive literature review from a preset search strategy and selection criteria to search academic reports containing the terms “immunogenicity”, “efficacy”, or “effectiveness”, and “COVID-19 vaccines” in adult populations. From the literature review, I tried to analyze and then propose a whole picture of how human beings face these new challenges, especially the coping strategies of vaccine development. In this master’s thesis, I will introduce and discuss the feasibility of these strategies from my perspective. I found that the WHO, health institutes, and research teams have enacted several policies to face the challenges mentioned above. The first is the assessment of the combination of homologous and/or heterologous vaccination. The studies showed that the immunogenicity of heterologous vaccination with mRNA and AZ adenovirus-vectored vaccine (ChAd) was superior to that of homologous ChAd vaccination; in addition, heterologous vaccination with protein-based vaccination could provide a high level of safety and good cellular immunity. The understanding and application of heterologous vaccination could lead to widespread vaccination and decrease the risk of the emergence of viral variants. The second is the times of vaccination. The antibody titers increased markedly after two vaccinations, but the titers declined gradually. The third dosing policy could increase the antibody titers up to levels even higher than those achieved through two-dose vaccination. Furthermore, not only antibody titers but also neutralizing capacity against the Omicron variant and much better antibody persistence could be achieved by the third dosing. However, although the fourth dose could level up the declined antibody titers after the third dose, it failed to increase the peak levels when compared to those achieved with the third dose. The fourth dose is well tolerated and safe but has only approximately 30% efficacy against infection by the Omicron variant. Low vaccine efficacy against infections as well as relatively high viral loads suggest that those who were infected were infectious. Thus, a fourth vaccination may have only marginal benefits. In my opinion, a repeated annual vaccination will fail to eradicate the virus but remains necessary to control the pandemic. Protein-based vaccines may play a critical role in the long-term because of their high level of safety and availability. In addition, a next-generation vaccine based on the modified S-2P from the beta variant has been developed. An animal study with a hamster model showed improved immunogenicity against viral variants, including Omicron, and provided good protection in the virus challenge test. Clinical trials have already begun. Furthermore, extremely broad-spectrum neutralizing antibodies against coronaviruses have been identified in persons who were infected with SARS and vaccinated with BNT. This finding makes universal COVID-19 vaccine development against all variants possible. In summary, in my opinion, based on the currently available evidence, living with SARS-CoV-2 and facing the threat of the emergence of viral variants are inevitable; however, people have prepared coping strategies for vaccine development to fight against these challenges.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:27:42Z (GMT). No. of bitstreams: 1
U0001-1705202212355900.pdf: 5168795 bytes, checksum: 193b32a994309892f7b82f5186f37562 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v Outline vii List of Figures and Tables ix Introduction 1 Methods of Literature Review 2 Abbreviations 3 Chapter 1. Different platforms of COVID-19 vaccines 4 1.1 Live-attenuated vaccines 4 1.2 Inactivated whole-virus vaccines 5 1.3 Protein-based vaccines 5 1.3.1 NVX-CoV2373 6 1.3.2 MVC-COV1901 6 1.4 Viral vector vaccines 7 1.4.1 ChAdOX1-nCoV-19 8 1.4.2 Ad26.COV2-S 8 1.5 Nucleic acid vaccines 9 1.5.1 DNA vaccines 9 1.5.2 mRNA vaccines 10 1.5.2.1 Moderna mRNA-1273 11 1.5.2.1 Pfizer-BNT (BNT162b2) 11 Chapter 2. Variants of SARS-CoV-2 13 2.1 Categorization systems 13 2.1.1 Variants of interest (VOIs) 13 2.1.2 Variants of concern (VOCs) 14 2.1.3 Variants under monitoring (VUMs) 14 2.1.4 Variants of high consequence (VOHCs) 15 2.2 WHO nomenclature system for VOCs 15 2.2.1 The Alpha variant (B.1.1.7) 15 2.2.2 The Beta variant (B.1.351) 15 2.2.3 The Gamma variant (P.1) 16 2.2.4 The Delta variant (B.1.617.2) 16 2.2.5 The Omicron variant (B.1.1.529) 17 2.3 Impact of VOCs on the protection from vaccines 17 2.3.1 Impact of VOCs on the neutralizing capacity of vaccine-induced antibodies 18 2.3.2 The Delta variant 18 2.3.3 The Alpha, Beta, and Gamma variants 19 2.3.4 The Omicron variant 20 2.3.5 Impact of VOCs on the occurrence of severe disease 20 Chapter 3. Coping strategies to fight against viral variants 23 3.1 Heterologous and Homologous Vaccination 24 3.1.1 AZ vs. mRNA 24 3.1.2 Role of protein-based vaccines 27 3.2 The third dosing 28 3.2.1 Before the emergence of the Omicron variant 28 3.2.2 After the emergence of the Omicron variant 29 3.2.3 The significance of the third dosing 31 3.3 The third dosing 32 3.3.1 Immunogenicity and safety 32 3.3.2 The role of protein-based vaccines in multiple dosings 34 3.4 Vaccines in the future 35 3.4.1 Next-generation vaccines 35 3.4.2 Universal vaccine development 36 Summary 38 References 40
dc.language.isoen
dc.subject新冠病毒zh_TW
dc.subject變種zh_TW
dc.subject疫苗zh_TW
dc.subject中和抗體校價zh_TW
dc.subject應變策略zh_TW
dc.subjectCOVID-19en
dc.subjectCoping strategyen
dc.subjectNeutralizing antibody titeren
dc.subjectVaccineen
dc.subjectVarianten
dc.subjectSARS-CoV-2en
dc.title新冠病毒變種的威脅及疫苗發展的因應策略zh_TW
dc.titleThe Threat of Variants of SARS-CoV-2 Virus and The Coping Strategies of Vaccine Developmenten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文生(Wen-Sen Lee),王振泰(Jen-Tay Wang)
dc.subject.keyword新冠病毒,變種,疫苗,中和抗體校價,應變策略,zh_TW
dc.subject.keywordSARS-CoV-2,COVID-19,Variant,Vaccine,Neutralizing antibody titer,Coping strategy,en
dc.relation.page48
dc.identifier.doi10.6342/NTU202200772
dc.rights.note未授權
dc.date.accepted2022-05-17
dc.contributor.author-college進修推廣學院zh_TW
dc.contributor.author-dept生物科技管理碩士在職學位學程zh_TW
顯示於系所單位:生物科技管理碩士在職學位學程

文件中的檔案:
檔案 大小格式 
U0001-1705202212355900.pdf
  未授權公開取用
5.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved