請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84011完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳為堅(Wei J. Chen) | |
| dc.contributor.author | Yun-Chu Wang | en |
| dc.contributor.author | 王韻筑 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:27:36Z | - |
| dc.date.copyright | 2022-10-17 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-27 | |
| dc.identifier.citation | Andreasen, N. C., Carpenter, W. T., Jr., Kane, J. M., Lasser, R. A., Marder, S. R., & Weinberger, D. R. (2005). Remission in schizophrenia: proposed criteria and rationale for consensus. Am J Psychiatry, 162(3), 441-449. doi:10.1176/appi.ajp.162.3.441 Austin, S. F., Mors, O., Budtz-J?rgensen, E., Secher, R. G., Hjorth?j, C. R., Bertelsen, M., Jeppesen, P., Petersen, L., Thorup, A., & Nordentoft, M. (2015). Long-term trajectories of positive and negative symptoms in first episode psychosis: a 10 year follow-up study in the OPUS cohort. Schizophr Res, 168(1-2), 84-91. doi:10.1016/j.schres.2015.07.021 Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297. doi:10.1016/s0092-8674(04)00045-5 Boczek, T., Mackiewicz, J., Sobolczyk, M., Wawrzyniak, J., Lisek, M., Ferenc, B., Guo, F., & Zylinska, L. (2021). The role of G Protein-Coupled Receptors (GPCRs) and calcium signaling in schizophrenia. Focus on GPCRs activated by neurotransmitters and chemokines. Cells, 10(5). doi:10.3390/cells10051228 Caseiro, O., P?rez-Iglesias, R., Mata, I., Mart?nez-Garcia, O., Pelayo-Ter?n, J. M., Tabares-Seisdedos, R., Ortiz-Garc?a de la Foz, V., V?zquez-Barquero, J. L., & Crespo-Facorro, B. (2012). Predicting relapse after a first episode of non-affective psychosis: a three-year follow-up study. J Psychiatr Res, 46(8), 1099-1105. doi:10.1016/j.jpsychires.2012.05.001 Chaudhry, I. B., Husain, M. O., Khoso, A. B., Husain, M. I., Buch, M. H., Kiran, T., Fu, B., Bassett, P., Qurashi, I., Ur Rahman, R., Baig, S., Kazmi, A., Corsi-Zuelli, F., Haddad, P. M., Deakin, B., & Husain, N. (2020). A randomised clinical trial of methotrexate points to possible efficacy and adaptive immune dysfunction in psychosis. Transl Psychiatry, 10(1), 415. doi:10.1038/s41398-020-01095-8 Chen, S. D., Sun, X. Y., Niu, W., Kong, L. M., He, M. J., Fan, H. M., Li, W. S., Zhong, A. F., Zhang, L. Y., & Lu, J. (2016). A preliminary analysis of microRNA-21 expression alteration after antipsychotic treatment in patients with schizophrenia. Psychiatry Res, 244, 324-332. doi:10.1016/j.psychres.2016.04.087 Crespo-Facorro, B., de la Foz, V. O., Ayesa-Arriola, R., P?rez-Iglesias, R., Mata, I., Suarez-Pinilla, P., Tabares-Seisdedos, R., & V?zquez-Barquero, J. L. (2013). Prediction of acute clinical response following a first episode of non affective psychosis: results of a cohort of 375 patients from the Spanish PAFIP study. Prog Neuropsychopharmacol Biol Psychiatry, 44, 162-167. doi:10.1016/j.pnpbp.2013.02.009 Demjaha, A., Lappin, J. M., Stahl, D., Patel, M. X., MacCabe, J. H., Howes, O. D., Heslin, M., Reininghaus, U. A., Donoghue, K., Lomas, B., Charalambides, M., Onyejiaka, A., Fearon, P., Jones, P., Doody, G., Morgan, C., Dazzan, P., & Murray, R. M. (2017). Antipsychotic treatment resistance in first-episode psychosis: prevalence, subtypes and predictors. Psychol Med, 47(11), 1981-1989. doi:10.1017/s0033291717000435 Dempster, K., Jeon, P., MacKinley, M., Williamson, P., Th?berge, J., & Palaniyappan, L. (2020). Early treatment response in first episode psychosis: a 7-T magnetic resonance spectroscopic study of glutathione and glutamate. Mol Psychiatry, 25(8), 1640-1650. doi:10.1038/s41380-020-0704-x Gillespie, A. L., Samanaite, R., Mill, J., Egerton, A., & MacCabe, J. H. (2017). Is treatment-resistant schizophrenia categorically distinct from treatment-responsive schizophrenia? a systematic review. BMC Psychiatry, 17(1), 12. doi:10.1186/s12888-016-1177-y Goff, D. C. (2021). The pharmacologic treatment of schizophrenia-2021. JAMA, 325(2), 175-176. doi:10.1001/jama.2020.19048 Golabi, M., Fathi, F., Samadi, M., Hesamian, M. S., & Eskandari, N. (2022). Identification of potential biomarkers in the peripheral blood mononuclear cells of relapsing-remitting multiple sclerosis patients. Inflammation. doi:10.1007/s10753-022-01662-9 Haddad, P. M., & Correll, C. U. (2018). The acute efficacy of antipsychotics in schizophrenia: a review of recent meta-analyses. Ther Adv Psychopharmacol, 8(11), 303-318. doi:10.1177/2045125318781475 He, K., Guo, C., Guo, M., Tong, S., Zhang, Q., Sun, H., He, L., & Shi, Y. (2019). Identification of serum microRNAs as diagnostic biomarkers for schizophrenia. Hereditas, 156, 23. doi:10.1186/s41065-019-0099-3 Howes, O. D., & McCutcheon, R. (2017). Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry, 7(2), e1024. doi:10.1038/tp.2016.278 Huang, X., Bao, C., Lv, Q., Zhao, J., Hu, G., Wu, H., Li, Z., & Yi, Z. (2021). MicroRNA-195 predicts olanzapine response in drug-free patients with schizophrenia: A prospective cohort study. J Psychopharmacol, 35(1), 23-30. doi:10.1177/0269881120959617 Hui, C. L. M., Honer, W. G., Lee, E. H. M., Chang, W. C., Chan, S. K. W., Chen, E. S. M., Pang, E. P. F., Lui, S. S. Y., Chung, D. W. S., Yeung, W. S., Ng, R. M. K., Lo, W. T. L., Jones, P. B., Sham, P., & Chen, E. Y. H. (2018). Long-term effects of discontinuation from antipsychotic maintenance following first-episode schizophrenia and related disorders: a 10 year follow-up of a randomised, double-blind trial. Lancet Psychiatry, 5(5), 432-442. doi:10.1016/s2215-0366(18)30090-7 Iasevoli, F., Giordano, S., Balletta, R., Latte, G., Formato, M. V., Prinzivalli, E., De Berardis, D., Tomasetti, C., & de Bartolomeis, A. (2016). Treatment resistant schizophrenia is associated with the worst community functioning among severely-ill highly-disabling psychiatric conditions and is the most relevant predictor of poorer achievements in functional milestones. Prog Neuropsychopharmacol Biol Psychiatry, 65, 34-48. doi:10.1016/j.pnpbp.2015.08.010 Iasevoli, F., Razzino, E., Altavilla, B., Avagliano, C., Barone, A., Ciccarelli, M., D'Ambrosio, L., Matrone, M., Milandri, F., Notar Francesco, D., Fornaro, M., & de Bartolomeis, A. (2021). Relationships between early age at onset of psychotic symptoms and treatment resistant schizophrenia. Early Interv Psychiatry. doi:10.1111/eip.13174 Jankowska, U., Skupien-Rabian, B., Swiderska, B., Prus, G., Dziedzicka-Wasylewska, M., & Kedracka-Krok, S. (2021). Proteome analysis of PC12 cells reveals alterations in translation regulation and actin signaling induced by clozapine. Neurochem Res, 46(8), 2097-2111. doi:10.1007/s11064-021-03348-4 Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull, 13(2), 261-276. doi:10.1093/schbul/13.2.261 Keepers, G. A., Fochtmann, L. J., Anzia, J. M., Benjamin, S., Lyness, J. M., Mojtabai, R., Servis, M., Walaszek, A., Buckley, P., Lenzenweger, M. F., Young, A. S., Degenhardt, A., & Hong, S. H. (2020). The American psychiatric association practice guideline for the treatment of patients with schizophrenia. Am J Psychiatry, 177(9), 868-872. doi:10.1176/appi.ajp.2020.177901 Keith, S. J. (2001). Evaluating characteristics of patient selection and dropout rates. J Clin Psychiatry, 62 Suppl 9, 11-14; discussion 15-16. Retrieved from https://www.psychiatrist.com/read-pdf/6733/ Kennedy, J. L., Altar, C. A., Taylor, D. L., Degtiar, I., & Hornberger, J. C. (2014). The social and economic burden of treatment-resistant schizophrenia: a systematic literature review. Int Clin Psychopharmacol, 29(2), 63-76. doi:10.1097/YIC.0b013e32836508e6 Kim, A. H., Reimers, M., Maher, B., Williamson, V., McMichael, O., McClay, J. L., van den Oord, E. J., Riley, B. P., Kendler, K. S., & Vladimirov, V. I. (2010). MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res, 124(1-3), 183-191. doi:10.1016/j.schres.2010.07.002 Lai, C. Y., Lee, S. Y., Scarr, E., Yu, Y. H., Lin, Y. T., Liu, C. M., Hwang, T. J., Hsieh, M. H., Liu, C. C., Chien, Y. L., Udawela, M., Gibbons, A. S., Everall, I. P., Hwu, H. G., Dean, B., & Chen, W. J. (2016). Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiatry, 6(1), e717. doi:10.1038/tp.2015.213 Lai, C. Y., Yu, S. L., Hsieh, M. H., Chen, C. H., Chen, H. Y., Wen, C. C., Huang, Y. H., Hsiao, P. C., Hsiao, C. K., Liu, C. M., Yang, P. C., Hwu, H. G., & Chen, W. J. (2011). MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One, 6(6), e21635. doi:10.1371/journal.pone.0021635 Li, S., Lu, G., Wang, D., He, J. L., Zuo, L., Wang, H., Gu, Z. T., Zhou, J. S., Yan, F. L., & Deng, Q. W. (2020). MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur J Neurol, 27(8), 1625-1637. doi:10.1111/ene.14282 Lieberman, J. A., & First, M. B. (2018). Psychotic disorders. N Engl J Med, 379(3), 270-280. doi:10.1056/NEJMra1801490 Lin, A., Kenis, G., Bignotti, S., Tura, G. J., De Jong, R., Bosmans, E., Pioli, R., Altamura, C., Scharp?, S., & Maes, M. (1998). The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res, 32(1), 9-15. doi:10.1016/s0920-9964(98)00034-6 Liu-Seifert, H., Adams, D. H., & Kinon, B. J. (2005). Discontinuation of treatment of schizophrenic patients is driven by poor symptom response: a pooled post-hoc analysis of four atypical antipsychotic drugs. BMC Med, 3, 21. doi:10.1186/1741-7015-3-21 Liu, S., Yuan, Y. B., Guan, L. L., Wei, H., Cheng, Z., Han, X., Yang, L., Pu, C. C., Yang, F. D., Lu, Z., Deng, H., Zhao, J. P., & Yu, X. (2013). MiRNA-365 and miRNA-520c-3p respond to risperidone treatment in first-episode schizophrenia after a 1 year remission. Chin Med J (Engl), 126(14), 2676-2680. Liu, Y., Chang, X., Hahn, C. G., Gur, R. E., Sleiman, P. A. M., & Hakonarson, H. (2018). Non-coding RNA dysregulation in the amygdala region of schizophrenia patients contributes to the pathogenesis of the disease. Transl Psychiatry, 8(1), 44. doi:10.1038/s41398-017-0030-5 Martinuzzi, E., Barbosa, S., Daoudlarian, D., Bel Haj Ali, W., Gilet, C., Fillatre, L., Khalfallah, O., Troudet, R., Jamain, S., Fond, G., Sommer, I., Leucht, S., Dazzan, P., McGuire, P., Arango, C., Diaz-Caneja, C. M., Fleischhacker, W., Rujescu, D., Glenth?j, B., Winter, I., Kahn, R. S., Yolken, R., Lewis, S., Drake, R., Davidovic, L., Leboyer, M., & Glaichenhaus, N. (2019). Stratification and prediction of remission in first-episode psychosis patients: the OPTiMiSE cohort study. Transl Psychiatry, 9(1), 20. doi:10.1038/s41398-018-0366-5 Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., & Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 105(30), 10513-10518. doi:10.1073/pnas.0804549105 Molina-Pinelo, S., Carnero, A., Rivera, F., Estevez-Garcia, P., Bozada, J. M., Limon, M. L., Benavent, M., Gomez, J., Pastor, M. D., Chaves, M., Suarez, R., Paz-Ares, L., de la Portilla, F., Carranza-Carranza, A., Sevilla, I., Vicioso, L., & Garcia-Carbonero, R. (2014). MiR-107 and miR-99a-3p predict chemotherapy response in patients with advanced colorectal cancer. BMC Cancer, 14, 656. doi:10.1186/1471-2407-14-656 National Collaborating Centre for Mental, H. (2014). National Institute for Health and Clinical Excellence: Guidance. In Psychosis and Schizophrenia in Adults: Treatment and Management: Updated Edition 2014. London: National Institute for Health and Care Excellence (UK) Copyright ? National Collaborating Centre for Mental Health, 2014. O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne), 9, 402. doi:10.3389/fendo.2018.00402 Patil, K. S., Basak, I., Dalen, I., Hoedt, E., Lange, J., Lunde, K. A., Liu, Y., Tysnes, O. B., Forsgren, L., Aarsland, D., Neubert, T. A., Larsen, J. P., Alves, G., & M?ller, S. G. (2019). Combinatory microRNA serum signatures as classifiers of Parkinson's disease. Parkinsonism Relat Disord, 64, 202-210. doi:10.1016/j.parkreldis.2019.04.010 Perkins, D. O. (2002). Predictors of noncompliance in patients with schizophrenia. J Clin Psychiatry, 63(12), 1121-1128. doi:10.4088/jcp.v63n1206 Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., Parker, J. S., Jin, J., & Hammond, S. M. (2007). MicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol, 8(2), R27. doi:10.1186/gb-2007-8-2-r27 Perkins, D. O., Johnson, J. L., Hamer, R. M., Zipursky, R. B., Keefe, R. S., Centorrhino, F., Green, A. I., Glick, I. B., Kahn, R. S., Sharma, T., Tohen, M., McEvoy, J. P., Weiden, P. J., & Lieberman, J. A. (2006). Predictors of antipsychotic medication adherence in patients recovering from a first psychotic episode. Schizophr Res, 83(1), 53-63. doi:10.1016/j.schres.2005.10.016 Per?l?, J., Suvisaari, J., Saarni, S. I., Kuoppasalmi, K., Isomets?, E., Pirkola, S., Partonen, T., Tuulio-Henriksson, A., Hintikka, J., Kiesepp?, T., H?rk?nen, T., Koskinen, S., & L?nnqvist, J. (2007). Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry, 64(1), 19-28. doi:10.1001/archpsyc.64.1.19 Sabherwal, S., English, J. A., F?cking, M., Cagney, G., & Cotter, D. R. (2016). Blood biomarker discovery in drug-free schizophrenia: the contributionof proteomics and multiplex immunoassays. Expert Rev Proteomics, 13(12), 1141-1155. doi:10.1080/14789450.2016.1252262 Slab?kov?, E., Culig, Z., Rem??k, J., & Sou?ek, K. (2017). Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis, 8(10), e3100. doi:10.1038/cddis.2017.495 Smigielski, L., Jagannath, V., R?ssler, W., Walitza, S., & Gr?nblatt, E. (2020). Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry, 25(8), 1718-1748. doi:10.1038/s41380-019-0601-3 Song, H. T., Sun, X. Y., Zhang, L., Zhao, L., Guo, Z. M., Fan, H. M., Zhong, A. F., Niu, W., Dai, Y. H., Zhang, L. Y., Shi, Z., Liu, X. P., & Lu, J. (2014). A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology improvement in schizophrenia patients before and after antipsychotic treatment. J Psychiatr Res, 54, 134-140. doi:10.1016/j.jpsychires.2014.03.008 Stevenson, J. M., Reilly, J. L., Harris, M. S., Patel, S. R., Weiden, P. J., Prasad, K. M., Badner, J. A., Nimgaonkar, V. L., Keshavan, M. S., Sweeney, J. A., & Bishop, J. R. (2016). Antipsychotic pharmacogenomics in first episode psychosis: a role for glutamate genes. Transl Psychiatry, 6(2), e739. doi:10.1038/tp.2016.10 Subbanna, M., Shivakumar, V., Venugopal, D., Narayanaswamy, J. C., Berk, M., Varambally, S., Venkatasubramanian, G., & Debnath, M. (2020). Impact of antipsychotic medication on IL-6/STAT3 signaling axis in peripheral blood mononuclear cells of drug-naive schizophrenia patients. Psychiatry Clin Neurosci, 74(1), 64-69. doi:10.1111/pcn.12938 Sullivan, P. F., Fan, C., & Perou, C. M. (2006). Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet, 141b(3), 261-268. doi:10.1002/ajmg.b.30272 Sun, X. Y., Zhang, J., Niu, W., Guo, W., Song, H. T., Li, H. Y., Fan, H. M., Zhao, L., Zhong, A. F., Dai, Y. H., Guo, Z. M., Zhang, L. Y., Lu, J., & Zhang, Q. L. (2015). A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 168b(3), 170-178. doi:10.1002/ajmg.b.32292 Szczepanek, J., Skorupa, M., & Tretyn, A. (2022). MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells, 11(6). doi:10.3390/cells11061008 Tolosa, E., Botta-Orfila, T., Morat?, X., Calatayud, C., Ferrer-Lorente, R., Mart?, M. J., Fern?ndez, M., Gaig, C., Raya, ?., Consiglio, A., Ezquerra, M., & Fern?ndez-Santiago, R. (2018). MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol Aging, 69, 283-291. doi:10.1016/j.neurobiolaging.2018.05.032 Troudet, R., Ali, W. B. H., Bacq-Daian, D., Rossum, I. W. V., Boland-Auge, A., Battail, C., Barau, C., Rujescu, D., McGuire, P., Kahn, R. S., Deleuze, J. F., Leboyer, M., & Jamain, S. (2020). Gene expression and response prediction to amisulpride in the OPTiMiSE first episode psychoses. Neuropsychopharmacology, 45(10), 1637-1644. doi:10.1038/s41386-020-0703-2 van den Berg, M. M. J., Krauskopf, J., Ramaekers, J. G., Kleinjans, J. C. S., Prickaerts, J., & Bried?, J. J. (2020). Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol, 185, 101732. doi:10.1016/j.pneurobio.2019.101732 Wada, Y., Shimada, M., Morine, Y., Ikemoto, T., Saito, Y., Zhu, Z., Wang, X., Etxart, A., Park, Y., Bujanda, L., Park, I. J., & Goel, A. (2021). Circulating miRNA signature predicts response to preoperative chemoradiotherapy in locally advanced rectal cancer. JCO Precis Oncol, 5. doi:10.1200/po.21.00015 Wei, H., Yuan, Y., Liu, S., Wang, C., Yang, F., Lu, Z., Wang, C., Deng, H., Zhao, J., Shen, Y., Zhang, C., Yu, X., & Xu, Q. (2015). Detection of circulating miRNA levels in schizophrenia. Am J Psychiatry, 172(11), 1141-1147. doi:10.1176/appi.ajp.2015.14030273 Xiu, M. H., Yang, G. G., Tan, Y. L., Chen, D. C., Tan, S. P., Wang, Z. R., Yang, F. D., Okusaga, O., Soares, J. C., & Zhang, X. Y. (2014). Decreased interleukin-10 serum levels in first-episode drug-nave schizophrenia: relationship to psychopathology. Schizophr Res, 156(1), 9-14. doi:10.1016/j.schres.2014.03.024 Zhang, J. P., Robinson, D. G., Gallego, J. A., John, M., Yu, J., Addington, J., Tohen, M., Kane, J. M., Malhotra, A. K., & Lencz, T. (2015). Association of a schizophrenia risk variant at the DRD2 locus with antipsychotic treatment response in first-episode psychosis. Schizophr Bull, 41(6), 1248-1255. doi:10.1093/schbul/sbv116 Zhou, R., Yuan, P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., Damschroder-Williams, P., Du, J., Chen, G., & Manji, H. K. (2009). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34(6), 1395-1405. doi:10.1038/npp.2008.131 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84011 | - |
| dc.description.abstract | 背景與目的 周邊血液中表現異常的微小核醣核酸 (microRNA, miRNA) 和思覺失調症有關。然而, miRNA 表現量在不同時間長度的長期追蹤的研究當中結果並不一致,每篇研究探討的 miRNA 數量亦有不同。對於臨床效益重要的是基線 miRNA 表現異常能否預測數月後的臨床結果。目前為止只有一篇研究檢驗單一miRNA (miR-195),並發現其基線表現量與兩個月後症狀改善之間有關,然而在全基因體中是否能發現更多表現異常且和症狀改善之間有關的miRNA目前並不清楚。因此,本研究的目的是利用微陣列 (microarray) 實驗找出能預測病人治療六個月症狀改善的miRNA,以及探索其潛在的生物功能。 方法 本研究於臺灣北部 3 間醫院及 2 間診所招募而來並且在 6 個月後仍可以追蹤到的 41 位首次發作精神病病人。治療 6 個月後活性與負性症狀量表 (Positive and Negative Syndrome Scale, PANSS) 得分下降 20% 以上定義為治療反應良好者 (n=17),其餘病人為反應不佳者 (n=24)。使用 GeneChip miRNA 4.0 Array 掃描病人基線的周邊血液單核細胞中 miRNA 表現量,統計方面使用多變量羅吉斯迴歸分析校正病人年齡及來源(住院/門診病人)後找出潛在和臨床症狀改善有關的 miRNA,微陣列分析中差異倍數 (fold change) 最高的前 15 個且顯著的 miRNA 使用定量即時逆轉錄聚合?連鎖反應分析 (Quantitative reverse transcriptase polymerase chain reaction, qRT-PCR) 做再次的驗證。並利用Ingenuity Pathway Analysis (IPA) 預測被驗證的 miRNA 所調控的基因及了解潛在的生物功能。 結果 在 15 個再次驗證的miRNA中,僅有 2 個 miRNA(hsa-miR-34a-5p和hsa-miR-299-5p)在校正病人來源(住院/門診病人)和年齡後仍然和病人治療六個月後症狀改善之間有關。合併hsa-miR-34a-5p和hsa-miR-299-5p的曲線下面積 (Area Under the Curve, AUC) 達85.8% (95%信賴區間:74.7-96.8%)。使用IPA分析顯示hsa-miR-34a-5p調控的基因參與神經傳遞有關的路徑,而hsa-miR-299-5p調控的基因參與在和發炎反應有關的路徑。 結論 基線周邊血液中表現較高的 hsa-miR-34a-5p 和 hsa-miR-299-5p 與治療六個月後較高的機率成為治療反應良好者有關,這兩個 miRNA調控的基因可能有助於闡釋並支持思覺失調症患者治療反應異質性之因素。 | zh_TW |
| dc.description.abstract | Background Aberrant expressions of microRNAs (miRNAs) in peripheral blood have been associated with the diagnosis of schizophrenia. However, the results of longitudinal follow-up of miRNA expression levels have been conflicting in previous studies, with differences in the length of follow-up and the number of miRNAs examined. From a view point of clinical utility, it is of importance to ask whether the aberrant expressions of miRNAs at baseline could predict the clinical outcome several months later. To date, only a study examining a single miRNA (miR-195) in schizophrenia patients found an association between its expression levels and psychotic symptom improvement 2 months later. Whether the expression aberrations in genome-wide miRNAs can detect more miRNAs with expression levels that were associated with improvement in psychotic symptoms in a time period longer than 2 month remains unknown. This study aimed to identify potential miRNAs as biological predictors of symptom improvement after 6-month of treatment and explore the potential biological functions of target genes using microarray analysis in the first-episode psychotic patients. Methods Participants of this study were 41 patients with first episode psychosis recruited from three hospitals and two private clinics in northern Taiwan and having data at 6-month follow-up. Patients with more than 20% reduction in Positive and Negative Syndrome Scale (PANSS) after six months of treatment were classified as good responders (n = 17) and the remaining patients as poor responders (n = 24). The genome-wide miRNA expressions were measured using a GeneChip miRNA 4.0 Array in the peripheral blood mononuclear cells of the psychotic patients at baseline. Multivariable logistic regression analysis of 6-month treatment response on individual miRNA’s expression level with adjustment for patients’ age and type of patient source (inpatient vs. outpatient) was used to identify potential miRNAs associated with clinical outcome. The top 15 miRNAs in fold-change with significant change in the microarray analysis were selected for validation by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). For those validated miRNAs, Ingenuity Pathway Analysis (IPA) was utilized to explore genes targeted by the miRNAs and their potential functions. Results Out of 15 miRNAs selected for qRT-PCR validation, two miRNAs, hsa-miR-34a-5p and hsa-miR-299-5p, remained significantly associated with 6-month clinical outcome with adjustment for patient source (inpatient/ outpatient) and age. The combination of the two differentially expressed miRNAs led to the highest area under the curve (AUC) of receiver operating characteristics of 85.8% (95% CI: 74.7-96.8%). Analysis using IPA revealed that the targeted genes of hsa-miR-34a-5p were engaged in the pathways related to neurotransmission, and those of hsa-miR-299-5p were involved in the pathways associated with inflammation. Conclusions Higher expression levels of hsa-miR-34a-5p and hsa-miR-299-5p in peripheral blood at baseline were associated with higher likelihood to be good responders after 6 months of treatment. The pathway genes regulated by these two miRNAs may help elucidate the nature underpinning the heterogeneous treatment responses in patients with schizophrenia. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:27:36Z (GMT). No. of bitstreams: 1 U0001-1709202217444100.pdf: 1577215 bytes, checksum: 5d4529435273743da7608288411a1566 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iv Contents vii List of Figures ix List of Tables x List of Supplemental Materials xi Chapter 1 Introduction 1 Chapter 2 Methods 4 2.1 Participants 4 2.2 Measurements 4 2.3 RNA isolation 5 2.4 Microarray 5 2.5 Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) 6 2.6 Pathway Analysis 7 2.7 Statistical analysis 7 Chapter 3 Results 8 3.1 Sample demographic characteristics 8 3.2 Identification of baseline differentially expressed miRNAs 8 3.3 Pathway analysis of the targeted mRNAs 9 3.4 Sensitivity analysis 10 Chapter 4 Discussion 11 4.1 Patient source and symptom improvement 11 4.2 Validation of miRNAs 11 4.3 hsa-miR-34a-5p 12 4.4 hsa-miR-299-5p 13 4.5 Limitation 14 4.6 Conclusion 15 Reference 16 Supplemental Materials 37 | |
| dc.language.iso | en | |
| dc.subject | 治療反應 | zh_TW |
| dc.subject | 首次發作精神病 | zh_TW |
| dc.subject | 抗精神病藥 | zh_TW |
| dc.subject | 微小核醣核酸 | zh_TW |
| dc.subject | 症狀改善 | zh_TW |
| dc.subject | first-episode psychosis | en |
| dc.subject | symptom improvement | en |
| dc.subject | microRNAs | en |
| dc.subject | antipsychotics | en |
| dc.subject | treatment response | en |
| dc.title | 微小核醣核酸表現量和首發精神病患治療六個月後症狀改善之關聯 | zh_TW |
| dc.title | Association between microRNAs expression levels and symptom improvement after 6 months of treatment in first-episode psychosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王彥雯(Charlotte Wang) | |
| dc.contributor.oralexamcommittee | 郭柏秀(Po-Hsiu Kuo),陳璿宇(Hsuan-Yu Chen),劉智民(Chih-Ming Liu) | |
| dc.subject.keyword | 首次發作精神病,抗精神病藥,微小核醣核酸,症狀改善,治療反應, | zh_TW |
| dc.subject.keyword | first-episode psychosis,antipsychotics,microRNAs,symptom improvement,treatment response, | en |
| dc.relation.page | 43 | |
| dc.identifier.doi | 10.6342/NTU202203513 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-27 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1709202217444100.pdf 未授權公開取用 | 1.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
