請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晃巖 | |
| dc.contributor.author | Li-Jen Hsiao | en |
| dc.contributor.author | 蕭立人 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:11:02Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.available | 2021-05-11T05:11:02Z | - |
| dc.date.copyright | 2019-10-09 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-04 | |
| dc.identifier.citation | [1] R. Kerth, K. Jain, and M. Latta, “Excimer laser projection lithography on a full-field scanning projection system,” IEEE electron device letters 7(5), pp. 299–301, 1986.
[2] D. M. Williamson, “Evolution of ring-field systems in microlithography,” in International Optical Design Conference 1998, 3482, pp. 369–377, International Society for Optics and Photonics, 1998. [3] H. Komori, G. Soumagne, H. Hoshino, T. Abe, T. Suganuma, Y. Imai, A. Endo, and K. Toyoda, “Ion damage analysis on euv collector mirrors,” in Microlithography 2004, pp. 839–846, International Society for Optics and Photonics, 2004. [4] S. Braun, T. Foltyn, L. van Loyen, M. Moss, and A. Leson, “Multi component euv multilayer mirrors,” in Proceedings of SPIE, 5037, pp. 274–285, 2003. [5] L.-J. Hsiao and H. Y. Lin, “Reflective euvl tool design with generalized gaussian constant mathematics,” Appl. Opt. 57, pp. 5884–5892, Jul 2018. [6] C. Mack, Fundamental principles of optical lithography: the science of microfabrication, John Wiley & Sons, 2008. [7] A. Tobey, “Wafer stepper steps up yield and resolution in ic lithography,” Electronics 52(17), pp. 109–112, 1979. [8] J. Lyman, “Optical lithography refuses to die,” Electronics 58(40), pp. 36–39, 1985. [9] G. E. Moore et al., “Cramming more components onto integrated circuits,” 1965. [10] G. E. Moore et al., “Progress in digital integrated electronics,” in Electron Devices Meeting, 21, pp. 11–13, 1975. [11] G. E. Moore, “Lithography and the future of moore’s law,” in Integrated Circuit Metrology, Inspection, and Process Control IX, 2439, pp. 2–18, International Society for Optics and Photonics, 1995. [12] D. R. Shafer, “Lens usable in the ultraviolet,” Sept. 13 1988. US Patent 4,770,477. [13] J. Braat, “Quality of microlithographic projection lenses,” in Optical Microlithographic Technology for Integrated Circuit Fabrication and Inspection, 811, pp. 22–31, International Society for Optics and Photonics, 1987. [14] H. Matsuzawa, M. Kobayashi, K. Endo, and Y. Suenaga, “Projection optical system and exposure apparatus using the same,” Nov. 10 1998. US Patent 5,835,285 A. [15] Y. Suenaga and K. Yamaguchi, “Projection optical system and method of using such system for manufacturing devices,” July 27 1999. US Patent 5,930,049. [16] D. Shafer and S. Beder, “Projection optical system and method,” Nov. 27 2007. US Patent 7,301,707. [17] W. Ulrich, H.-J. Rostalski, and R. Hudyma, “The development of dioptric projection lenses for deep ultraviolet lithography,” Optical review 10(4), pp. 233–240, 2003. [18] D. Williamson, “Catadioptric microlithographic reduction lenses,” Proc. IODC 22, 1994. [19] S. Hashimoto, Y. Suenaga, and Y. Ichihara, “Catadioptric reduction projection optical system,” Dec. 1 1998. US Patent 5,844,728. [20] J. C. Perrin, A. Epple, and W. Ulrich, “Catadioptric reduction lens,” July 20 2004. US Patent 6,765,729. [21] T. Kato, C. Terasawa, and H. Shinonaga, “Catadioptric projection optical system, exposure apparatus having the same, device fabrication method,” Feb. 9 2006. US Patent App. 11/196,378. [22] D. R. Shafer, H. Beierl, G. Furter, K.-H. Schuster, and W. Ulrich, “Catadioptric¨ optical system and exposure apparatus having the same,” Dec. 17 2002. US Patent 6,496,306. [23] Y. Omura, H. Ikezawa, and D. M. Williamson, “Projection optical system and method for photolithography and exposure apparatus and method using same,” Mar. 04 2004. WO/2004/019128. [24] D. R. Shafer, A. Epple, A. Dodoc, H. Beierl, and W. Ulrich, “Catadioptric projection objective with geometric beam splitting,” Feb. 7 2006. US Patent 6,995,930. [25] J. W. Goodman, Introduction to Fourier optics, Roberts and Company Publishers, 2005. [26] A. Jain, “Super-resolution imaging system,” Aug. 14 1979. US Patent 4,164,788. [27] H. I. Smith, E. H. Anderson, and M. L. Schattenburg, “Lithography mask with a π-phase shifting attenuator,” Dec. 26 1989. US Patent 4,890,309. [28] Y. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” JOSA A 11(9), pp. 2438–2452, 1994. [29] H. Gross, B. Dorband, and H. M¨ uller,¨ Handbook of optical systems, vol. 4, Wiley Online Library, 2005. [30] V. Banine, J. P. Benschop, M. Leenders, and R. Moors, “Relationship between an euv source and the performance of an euv lithographic system,” in Microlithography 2000, pp. 126–135, International Society for Optics and Photonics, 2000. [31] A. Endo, “High-average power euv light source for the next-generation lithography by laser-produced plasma,” Selected Topics in Quantum Electronics, IEEE Journal of 10(6), pp. 1298–1306, 2004. [32] Schott R , “Zerodur R zero expansion glass ceramic.” http://www.schott.com / advanced optics / english / download / schott zerodur katalog july 2011 en.pdf. Accessed: 2016-05-17. [33] Corning R , “Corning R ule R 7973 low expansion glass.” https://www.corning.com / media / worldwide / csm / documents / 7973 Product Brochure 2015 07 21.pdf. Accessed: 2016-05-17. [34] M. Bal, F. Bociort, and J. J. Braat, “The influence of multilayers on the optical performance of extreme ultraviolet projection systems,” in International Optical Design Conference 2002, pp. 149–157, International Society for Optics and Photonics,2002. [35] H. Gross, W. Singer, and M. Totzeck, Handbook of optical systems, vol. 1, Wiley Online Library, 2005. [36] K. Tanaka, “Ii paraxial theory in optical design in terms of gaussian brackets,” Progress in Optics 23, pp. 63–111, 1986. [37] M. Herzberger, “Gaussian optics and gaussian brackets*†,” JOSA 33(12), pp. 651– 655, 1943. [38] M. F. Bal, F. Bociort, and J. J. Braat, “Analysis, search, and classification for reflective ring-field projection systems,” Applied optics 42(13), pp. 2301–2311, 2003. [39] F. Liu and Y. Li, “Grouping design of eight-mirror projection objective for highnumerical aperture euv lithography,” Applied optics 52(29), pp. 7137–7144, 2013. [40] R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” in Optical Fabrication, Testing, and Metrology III, 7102, p. 71020J, International Society for Optics and Photonics, 2008. [41] M. Antoni, W. Singer, J. Schultz, J. Wangler, I. Escudero-Sanz, and B. Kruizinga, “Illumination optics design for euv lithography,” in Soft X-Ray and EUV Imaging Systems, 4146, pp. 25–35, International Society for Optics and Photonics, 2000. [42] S. C. Park and R. R. Shannon, “Zoom lens design using lens modules,” Optical Engineering 35(6), pp. 1668–1676, 1996. [43] V. CODE, “Reference manuals,(version 10.6),” Synopsys OSG , 2014. [44] R. Zemax, “Zemax user’s manual,” July , 2011. [45] T. Suzuki and Y. Ichioka, “Automatic lens design,” Applied Physics 33(10), pp. 698–706, 1964. [46] L.-J. Hsiao and H.-Y. Lin, “Extreme ultra violet lithographic optical projection system design method using code v lens module and generalized gaussian constants,” in International Conference on Extreme Ultraviolet Lithography 2017, 10450, p. 1045021, International Society for Optics and Photonics, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/839 | - |
| dc.description.abstract | 此研究的主要目的為開發及系統化極紫外光波段之光刻機之成像及照明系統的設計。光刻為一系列頗複雜的流程的組合。其中,最為關鍵的部分之一為曝光這一步驟。曝光機的成像品質,於其成品的製程密度與解析度甚至於此製成的生產效率中間,存在直接的影響與關係。然而,曝光機之光學系統特性,及其參數之間,存在著許多複雜且繁瑣之關係,導致於此光學系統不易分系,也不易設計。因此,此研究最為核心的目的,為研究及開發某一系統化之分析方法,以達到簡化此光學系統之設計之目的。此研究核心之關鍵,為將廣義高斯常數應用於光刻機之分析及設計上。通過廣義高斯常數,眾多複雜且繁瑣之光學特性及光學系統之間之聯繫能以之表達及簡化,而將所有關係結合並簡化後,從中所導出之數學關係式可用於與商用光學設計軟體之結合,以達到幫助分析及設計簡化。
原理上,廣義高斯常數與光學分析中常用之 ABCD 矩陣極為相似,唯一最大不同為當以 ABCD 矩陣進行光學系統分析時,計算其矩陣及將其展開時,其難度及複雜性與其光學系統中光學元件之數量呈指數增長,因此,不適用於較為複雜之光學系統分析。而相較於 ABCD 矩陣,廣義高斯常數適用於表達及分析由多數光學系統組合所形成之相對複雜之光學系統,而其又可將之分解成更小之光學系統看待。此廣義高斯常數之特性,可隨心將多數光學系統視為一總光學系統,或是將一光學系統拆開以多數小光學系統看待,可適用於分析或推導個別光學元件之參數及整體光學系統特性之關係。 廣義高斯常數之最初用途為變焦光學系統之分析及設計,其中通常有複數多件光學元件所組成之組合,及其為配合不同使用狀況而改變位置及光學特性。而將之強大分析能力應用於極紫外光刻機之分析及設計為此研究之重要關鍵之一。此研究之成果之一為某一 0.4 數值孔徑之極紫外光刻機之反射式成像光學系統之分析與設計,以及其照明光學系統之分析與設計。設計過程中所用之光學設計軟體中包含市售光學設計軟體,及一簡單 Monte Carlo 優化演算法將廣義高斯常數與市售光學設計程式結合使用以達成協助光學設計之目的。 | zh_TW |
| dc.description.abstract | This study aims to develop a systematic design procedure for the EUV lithography (EUVL) tools, for both the projection part and the illumination part. The optical lithography is a complex process encompasses many stages. Wafer preparation, resist coating, pre-exposure bake, exposure, post-exposure bake, etching, and metrology. Through analysis using generalized Gaussian constants (GGC), relationships between optical properties and requirements can be obtained, and can be used to help ensuring that optical system properties required for the tool are upheld during the design process.
The GGC is closely related to the ABCD matrix method, however over and above, it is also useful in analyzing the whole system as a combination of smaller subsystems, which can then again be broken down into even smaller subsystems to any degree desired. This abstraction of raw lens data into optical properties of the sub-systems at arbitrary level of abstraction is a great help in analyzing the inter-subsystem relations, which are easily lost in the raw expansion of the ABCD matrix of even a slightly larger optical system. In fact, the development of GGC was initially intended for purpose of zoom lens design and analysis, where inside the complex optical system the optical elements are constantly moving in relation to one another. This analytic power lends itself well to optics design of other applications, such as this case of EUVL projection systems. As verification of the design method, this study demonstrates an eight mirror 0.4 NA projector, and its illuminator. In addition to the use of commercial design software, a simple Monte Carlo random walk algorithm is also deviced for the purpose of integrating the use of GGC into existing design software. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:11:02Z (GMT). No. of bitstreams: 1 ntu-108-D01941028-1.pdf: 8460107 bytes, checksum: 2b3e87bf44d3fdbe05b95d582243fa55 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 1 Introduction 14
1.1 Lithography Overview 14 1.1.1 Evolution of Lithographic Systems 16 1.1.2 Lithography Systems 23 1.2 Aerial Image Formation 27 1.2.1 Partial Coherence 30 1.3 Resolution 34 1.3.1 Resolution Limit 36 1.3.2 Resolution Enhancement Techneques 39 1.4 EUV Lithography 47 1.4.1 Extreme Ultraviolet Source 48 1.4.2 Mirror Optics 50 1.5 EUV Lithographic Tool Design 58 1.5.1 Projector Design 58 1.5.2 Illuminator Design 60 2 Mathematical Methods 66 2.1 Gaussian Bracket 66 2.1.1 Definition 66 2.1.2 Identities 67 2.2 Generalized Gaussian Constants 69 2.2.1 Definition 69 2.2.2 Relationship to the Matrix Method 69 2.2.3 GGC and Optical System Properties 70 2.2.4 GGC in Mirror Systems for EUV 75 2.3 Numerical Optimization 76 2.3.1 Commercial Opical Design Software 76 2.3.2 GGC Integrated Optimization 80 3 Projection Tool Design 86 3.1 Optical System Properties 86 3.1.1 Telecentricity 86 3.1.2 Magnification 88 3.1.3 Mask-Wafer Conjugate 89 3.1.4 Total Tract Length 90 3.2 Number of Mirrors 90 3.2.1 Notes on the Aperture Stop Position 91 3.2.2 Mirror Pair Concept 91 3.2.3 Multiple mirror pair expansion 92 3.2.4 Mask and Wafer Side Working Distance 94 3.2.5 Subsystem Magnifications 94 3.3 Monte Carlo Random Walk Kernel 95 3.3.1 Demonstration: Four-Mirror System 98 3.3.2 Brief Note on Solution Convergence and Computation Time 99 3.4 Eight-Mirror System 102 3.4.1 Optical System Optimization 103 4 Illuminator Design 109 4.1 Illumination Optics System Properties 109 4.1.1 Pupil Matching 109 4.1.2 Field Lens and Mask Position 109 4.1.3 Grid Source NA and Exposure Field Width 111 4.1.4 Illumination Optics NA and Collimated Plasma Source Beam Size 112 4.1.5 Pupil Pitch Size 113 4.1.6 Number of Array Elements 113 4.2 Illumination System Design 114 4.2.1 First Order Analysis 114 4.2.2 Resolving Obstructions 115 4.3 Reflective Illuminator System Embodiment 118 4.3.1 Illuminator Design Result 118 4.4 Illuminator Projector Integration 120 5 Conclusion 124 6 References 125 7 Appendices 130 7.1 GGC Implementation into MATLAB 130 7.2 GGC Implementation into Code V 131 7.3 GGC Implementation into Zemax 134 | |
| dc.language.iso | en | |
| dc.subject | 非成像光學系統 | zh_TW |
| dc.subject | 光學系統設計 | zh_TW |
| dc.subject | 成像光學系統 | zh_TW |
| dc.subject | 光刻 | zh_TW |
| dc.subject | 極紫外 | zh_TW |
| dc.subject | lithography | en |
| dc.subject | optical system design | en |
| dc.subject | non-imaging | en |
| dc.subject | EUV | en |
| dc.subject | imaging | en |
| dc.title | 以廣義高斯常數使用於深紫外光學微影之成像與照明系統設計 | zh_TW |
| dc.title | Extreme Ultraviolet Lithography Projector and Illuminator Design with Generalized Gaussian Constants | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蘇國棟,陳亮嘉,劉宗平,徐進成 | |
| dc.subject.keyword | 極紫外,光刻,成像光學系統,非成像光學系統,光學系統設計, | zh_TW |
| dc.subject.keyword | EUV,lithography,imaging,non-imaging,optical system design, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU201901098 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-07-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 8.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
