Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83991
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅竹平(Chu-Ping Lo)
dc.contributor.authorYu-Cheng Linen
dc.contributor.author林祐丞zh_TW
dc.date.accessioned2023-03-19T21:26:39Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-06-07
dc.identifier.citation邱志洲、蔡易潤、呂奇傑(2015)。建構兩階段多目標之類免疫支援向量迴歸模式於股價預測。數據分析,10(5),1-30。 洪得洋、林祖嘉(1999)。臺北市捷運系統與道路寬度對房屋價格影響之研究。住宅學報,8(8),47-67。 張祐禎(2017)。影響「共享經濟」使用者意願之因素。國立臺灣大學農業經濟學系碩士學位論文。 黃宜瑜、劉文燦、楊雅君(2012)。體驗經濟對民宿價格影響之研究-特徵價格法之應用。行政院國家科學委員會計畫。東海大學景觀學系。 魏暄庭(2018)。Airbnb房源出租價格之決定因素-特徵價格法之應用。台灣大學農業經濟學系碩士論文。 Becerra, M., Santal?, J., & Silva, R., 2013. Being Better vs. Being Different: Differentiation, Competition, and Pricing Strategies in the Spanish Hotel Industry. Tourism Management, 34, 71–79. Belk, R., 2014. You Are What You Can Access: Sharing and Collaborative Consumption Online. Journal of Business Research, 67(8), 1595-1600. Botsman, R., & Roger, R., 2010. What's Mine Is Yours. The Rise of Collaborative Consumption, 1. Botsman, R., & Roger, R., 2011. How Collaborative Consumption is Changing the Way We Live. Breiman, L., 1996. Bagging Predictors, Machine Learning, 24(2), 123-140. Breiman, L., 2001. Random Forests, Machine Learning, 45(1), 5-32. Chen, T., & Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Couts, A., 2012. Terms & Conditions: Airbnb makes everything your problem. Digital Trends, 4. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. N., 1996. Support vector regression machines. Advances in Neural Information Processing Systems, 9. Felson, M., & Spaeth, J. L., 1978. Community Structure and Collaborative Consumption: A Routine Activity Approach. The American Behavioral Scientist, 21(4), 614-624. Gansky, L., 2011. Do More, Own Less: A Grand Theory of The Sharing Economy. The Atlantic, 25. Gutt, D., & Herrmann, P., 2015. Sharing Means Caring? Hosts’ Price Reaction to Rating Visibility. In Proceedings of the 23rd European Conference on Information System (ECIS), M?nster. Guttentag, D., 2015. Airbnb: Disruptive Innovation and the Rise of an Informal Tourism Accommodation Sector. Current Issues in Tourism, 18(12), 1192-1217. Hamari, J., Sj?klint, M., & Ukkonen, A., 2015, The Sharing Economy: Why People Participate in Collaborative Consumption. Journal of the Association for Information Science and Technology, 67(9), 2047-2059. Hasan, A., Moin, S., Karim, A., & Shamshirband, S., 2018. Machine Learning-Based Sentiment Analysis for Twitter Accounts. Mathematical and Computational Applications, 23(1), 11. Henriksson, E. & Werlinder, K., 2021. Housing Price Prediction over Countrywide Data: A Comparison of XGBoost and Random Forest Regressor Models. Hung, W. T., Shang, J. K., & Wang, F. C., 2010. Price Determinants in the Hotel Industry: Quantile Regression Analysis. International Journal of Hospitality Management, 29(3), 378-384. Israeli, A. A., 2002. Star Rating and Corporate Affiliation: Their Influence on Room Price and Performance of Hotels in Israel. International Journal of Hospitality Management, 21(4), 405–424. Kalehbasti P. R., Nikolenko L., & Rezaei H., 2021. Airbnb Price Prediction Using Machine Learning and Sentiment Analysis. International Cross-Domain Conference for Machine Learning and Knowledge Extraction (pp. 173-184). Springer, Cham. Limsombunchai V., Gan, C., & Lee M., 2004. House Price Prediction: Hedonic Price Model vs. Artificial Neural Network. American Journal of Applied Sciences 1(3). Liu, P., 2021. Airbnb Price Prediction with Sentiment Classification. Ma Y., Zhang Z., Iher A., & Pan B., 2018. Estimating Warehouse Rental Price Using Machine Learning Techniques., International Journal of Computers, Communications & Control, 13(2), 235-250. Masiero, L., Nicolau, J.L., & Law, R., 2015. A Demand-Driven Analysis of Tourist Accommodation Price: A Quantile Regression of Room Bookings. International Journal of Hospitality Management, 50, 1–8. Schonfeld, E., 2008. Airbed and Breakfast Takes Pad Crashing to a Whole New Level. TechCrunch. Spector M., MacMillan D., & Rusli E. M., 2014. TPG-Led Group Closes $450 Million Investment in Airbnb. Wall Street Journal, 18. Sundararajan, A., 2014. Peer-to-Peer Business and the Sharing(Collaborative)Economy: Overview, Economic Effects and Regulatory Issues. Written testimony for the hearing title, The Power of Connection: Peer-to-Peer Businesses, 1-7. Truong, Q., Nguyen, M., Dang, H., & Mei, B., 2020. Housing Price Prediction via Improved Machine Learning Techniques. Procedia Computer Science, 174, 433-442. Vapnik, V., Golowich, S., & Smola, A., 1996. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. Advances in Neural Information Processing Systems, 9. Wang, D., & Nicolau J. L., 2017. Price Determinants of Sharing Economy Based Accommodation Rental: A Study of Listings from 33 Cities on Airbnb.com. International Journal of Hospitality Management, 62, 120–131 Yang, Y., Mueller, N.J., & Croes, R.R., 2016. Market Accessibility and Hotel Prices in the Caribbean: The Moderating Effect of Quality-Signaling Factors. Tourism Management, 56, 40–51. Yu H. & Wu J., 2016. Real Estate Price Prediction with Regression and Classification. CS229 (Machine Learning) Final Project Reports. 臺北市觀光傳播局 https://www.tpedoit.gov.taipei/Default.aspx Airbnb 年收入及房源數量。 https://www.businessofapps.com/data/airbnb-statistics/ Airbnb 臺灣 https://www.airbnb.com.tw/ Airbnb Revenue and Usage Statistics(2022)David Curry https://www.businessofapps.com/data/airbnb-statistics/ Airbnb Wikipedia https://zh.wikipedia.org/wiki/Airbnb#cite_ref-Botsman,_Rachel_2010_8-0 DMLC. Xgboost. Github. https://github.com/dmlc/xgboost Microsoft. LightGBM. Github. https://github.com/microsoft/LightGBM northern-taiwan-metro-stations https://github.com/repeat/northern-taiwan-metro-stations scikit-learn Machine Learning in Python https://scikit-learn.org/stable/ scikit-learn Permutation feature importance https://scikit-learn.org/stable/modules/permutation_importance.html scikit-learn Ridge https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html scikit-learn Random Forest Regression https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html scikit-learn SVR https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html Term & Conditions: Airbnb makes everything your problem(2012)Andrew Counts https://www.digitaltrends.com/web/terms-conditions-airbnb/ TextBlob https://textblob.readthedocs.io/en/dev/index.html The Python Deep Learning Library https://keras.io/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83991-
dc.description.abstract網路科技進步和行動裝置的普及,訊息的傳遞成本獲得大幅下降,人與人對等式(Peer to Peer)交流日漸普遍,也讓共享經濟(Sharing Economy)獲得高速的發展,Airbnb乘著這波潮流出現於世。不同於過去傳統的旅館飯店服務, Airbnb在價格和房源類型上擁有更多選擇,提供租客不一樣的住宿體驗。 對住宿業來說,房源的定價直接決定了收益的多寡,過高或過低的價格都可能導致房東和租客雙方權益受損,但是由於共享經濟的房源大多來自於閒置資源,過去對旅館業所使用的訂價參數無法使用,故本研究欲開發可靠的價格預測模型,以幫助租房業者和租客都能夠進行房源的價格預測,以確保自身和彼此權益。 本研究使用情感分析(sentiment analysis)將過去租客的留言加入解釋變數。再利用p-value解釋變數篩選和Lasso解釋變數篩選,將資料轉化成五個擁有不同解釋變數的資料,最後運用多元線性回歸模型(Multiple Linear Regression)、脊迴歸模型(Ridge Regression)、支援向量迴歸模型(Support Vector Regression)、隨機森林迴歸模型(Random Forest Regression)、Extreme Gradient Boost(XGBoost)和神經網絡模型(Neural Network),六個機器學習模型對臺北市Airbnb的房源進行建模和房源價格預測。 在眾多模型的比較下,以模型解釋力 R^2和均方根誤差RMSE為判斷依據,以擁有和RMSE等於0.4764和R^2 等於0.6434的XGBoost在Lasso解釋變數篩選下表現最優,故選擇其作為臺北市Airbnb房源價格預測的模型。本研究結果顯示臺北市Airbnb的房源價格較不受臺北市行政區劃分所影響,也不受房源與最近捷運站之距離所影響,房源價格於各行政區有高低價格的差異可能為其他的解釋變數所導致。zh_TW
dc.description.abstractWith the advancement of Internet technology and the popularization of mobile devices, the cost of transmitting information has been greatly reduced. Nowadays, Peer-to-peer communication has become more common, and the sharing economy has also achieved rapid development. Airbnb was created under this circumstance. Different from the traditional hotel and hotel services in the past, Airbnb has more choices in terms of prices and types of listings, providing tenants with a different accommodation experience. For the hotel industry, the pricing of housing listings directly determines the amount of income. Overpriced or underpriced may damage the rights of both landlords and tenants. However, since most of the housing listings in the sharing economy come from idle resources, the parameters used in the pricing hotel industry cannot be used for predicting Airbnb listing prices. Thus, this study intends to develop a reliable price forecasting model to help both landlords and tenants to predict the price of the house, so as to ensure both of their rights and interests. This study uses sentiment analysis to quantify past tenants' comments as explanatory variables. By using p-value feature selection and Lasso feature selection, converting the data into five different data with different explanatory variables. Finally, build the Taipei City Airbnb listings price forecasting model by using Multiple Linear Regression, Ridge Regression, Support Vector Regression Model, Random Forest Regression, Extreme Gradient Boost (XGBoost) and Neural Network Model. In the comparison of multiple models, the result shows that the XGBoost model with 0.4764 RMSE and 0.6434 R squared performs the best under the Lasso feature selection. The model was chosen as a model for the price prediction of Airbnb listings in Taipei City. Finally, the experiment of this study shows that the price of Airbnb listings in Taipei City is not affected by the division of administrative districts in Taipei City, nor is it affected by the distance between the listings and the nearest MRT station. Fluctuations in Airbnb listings prices in Taipei City come from other explanatory variables.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:26:39Z (GMT). No. of bitstreams: 1
U0001-0606202214380200.pdf: 3494563 bytes, checksum: 559186c304d3ba98478b917add6f9ea2 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 2 第三節 研究方法與步驟 3 第四節 研究架構 4 第二章 文獻回顧與探討 5 第一節 共享經濟的定義 5 第二節 Airbnb之文獻回顧 6 第三節 相關文獻回顧與探討 9 第四節 情感分析文獻回顧 15 第五節 小結 16 第三章 資料介紹 17 第一節 資料背景與介紹 17 第二節 資料處理過程 19 第三節 解釋變數選擇 22 第四節 敘述統計 33 第五節 小結 59 第四章 實證模型與方法 60 第一節 多元線性迴歸(Multiple Linear Regression) 61 第二節 脊迴歸(Ridge Regression) 62 第三節 支援向量迴歸(Support Vector Regression) 63 第四節 隨機森林迴歸(Random Forest Regression) 65 第五節 Extreme Gradient Boost(XGBoost) 66 第六節 神經網絡(Neural Network) 68 第七節 模型評估和解釋變數評估 70 第五章 模型比較 71 第一節 依照解釋變數不同 71 第二節 依照模型不同 84 第三節 解釋變數重要性 90 第四節 小結 103 第六章 結論 104 第一節 結論與探討 104 第二節 研究限制與未來研究方向 107 參考文獻 108
dc.language.isozh-TW
dc.subject共享經濟zh_TW
dc.subject旅館業zh_TW
dc.subject機器學習zh_TW
dc.subject情感分析zh_TW
dc.subjectSharing Economyen
dc.subjectSentiment Analysisen
dc.subjectAirbnben
dc.subjectHotel Industryen
dc.subjectMachine Learningen
dc.title應用機器學習和情感分析預測臺北市Airbnb房源價格zh_TW
dc.titleApplying Machine Learning and Sentiment Analysis to Predict Airbnb Listing Prices in Taipei Cityen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳暐(Wei Chen),許淑?(Su-Ing Hsu)
dc.subject.keyword共享經濟,旅館業,機器學習,情感分析,zh_TW
dc.subject.keywordSharing Economy,Airbnb,Hotel Industry,Machine Learning,Sentiment Analysis,en
dc.relation.page114
dc.identifier.doi10.6342/NTU202200870
dc.rights.note未授權
dc.date.accepted2022-06-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業經濟學研究所zh_TW
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
U0001-0606202214380200.pdf
  未授權公開取用
3.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved