請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83936
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳怡然 | zh_TW |
dc.contributor.advisor | Yi-Jan Chen | en |
dc.contributor.author | 盧弈臻 | zh_TW |
dc.contributor.author | Yi-Chen Lu | en |
dc.date.accessioned | 2023-03-19T21:24:13Z | - |
dc.date.available | 2023-12-26 | - |
dc.date.copyright | 2022-07-07 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] H. -Y. Tu et al., “Analysis of negative bias temperature instability degradation in p-type low-temperature polycrystalline silicon thin-film transistors of different grain sizes,” IEEE Electron Device Lett., vol. 40, no. 11, pp. 1768-1771, Nov. 2019. [2] Samsung Display. ( 2017, August 1 ). How-it-works: LCD screens explained. Retrieved from https://pid.samsungdisplay.com/en/learning-center/blog/lcd-structure [3] Merck. LIQUID CRYSTAL DISPLAY (LCD) TECHNOLOGIES. Retrieved from https://www.merckgroup.com/en/expertise/displays/solutions/liquid-crystals/lcd-technologies.html [4] Mike Logan ( 2020, December 9 ) MicroLED vs OLED: Next generation display technology. Retrieved from https://www.andersdx.com/microled-vs-oled-next-generation-display-technology/ [5] A. Zocco, H. You, J. Hagen and A. Steckl, “Pentacene organic thin-film transistors on flexible paper and glass substrates,” Nanotechnology, vol. 25, no. 9, Feb. 2014. [6] K. Blankenbach, “What is a Display? An Introduction to Visual Displays and Display Systems,” Sept. 2015. [7] 戴亞翔,“TFT-LCD面板的驅動與設計”,五南,2016。 [8] L. Chu, P. Liu and M. Ker, “Design of integrated gate driver with threshold voltage drop cancellation in amorphous silicon technology for TFT-LCD application,” J. Display Technol., vol. 7, no. 12, pp. 657-664, Dec. 2011. [9] Y. Chen et al., “An 18.6-μm pitch gate driver using a-IGZO TFTs for ultrahigh-definition AR/VR displays,” IEEE Trans. Electron Devices, vol. 67, no. 11, pp. 4929-4933, Nov. 2020. [10] Y. Ji, F. Ran, H. Xu, W. Shen and D. J. Lilja, “A digitally driven pixel circuit with current compensation for AMOLED microdisplays,” J. Soc. Inf. Display, vol. 22, no. 9, pp. 465–472, Jan. 2015. [11] F. Templier, J. Bernard, “A new approach for fabricating high‐performance microLED displays,” in SID Symp. Digest Tech.Pap., vol. 50, no. 1, pp. 240-243, May 2019. [12] D. Peng, K. Zhang, and Z. Liu, “Design and fabrication of fine-pitch pixelated-addressed micro-LED arrays on printed circuit board for display and communication applications,” IEEE J. Electron Devices Soc., vol. 5, no. 1, pp. 90–94, Jan. 2017. [13] J. H. Baek et al., “A current-mode display driver IC using sample-and-hold scheme for QVGA full-color AMOLED displays,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2974-2982, Dec. 2006. [14] H. -A. Ahn, S. -K. Hong and O. -K. Kwon, “An active matrix micro-pixelated LED display driver for high luminance uniformity using resistance mismatch compensation method,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 6, pp. 724-728, June 2018. [15] H. -A. Ahn and O. -K. Kwon, “A driving and compensation method for AMLED displays using adaptive reference generator for high luminance uniformity,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 10, pp. 1725–1729, Oct. 2020. [16] Y. -Z. Lin et al., “Active-matrix micro-LED display driven by metal oxide TFTs using digital PWM method,” IEEE Trans. Electron Devices, vol. 68, no. 11, pp. 5656-5661, Nov. 2021. [17] K. -H. Koo, J. -H. Seo, M. -L. Ko and J. -W. Kim, “A new level-up shifter for high speed and wide range interface in ultra deep sub-micron,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1063-1065 Vol. 2, May 2005. [18] D. Pan, H. W. Li and B. M. Wilamowski, “A low voltage to high voltage level shifter circuit for MEMS application,” in Proc. 15th Biennial University/Government/ Industry Microelectronics Symp., pp. 128-131, July 2003. [19] Z. Luo and M. Ker, “A high-voltage-tolerant and precise charge-balanced neuro-stimulator in low voltage CMOS process,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 6, pp. 1087-1099, Dec. 2016. [20] P. Allen and D. Holberg, “CMOS analog circuit design, 3/e,” Aug. 2011. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83936 | - |
dc.description.abstract | 本論文提出一個微發光二極體面板驅動晶片系統,其具備十個通道的電流抽載能力,並在其中的六個通道中提供微發光二極體狀態偵測與自我修復功能。一個完整的微發光二極體面板驅動電路至少須包含以下幾個子電路:負責產生各項電源偏壓的電源產生 ( Power Generation ) 電路、產生同步控制訊號的時序控制( Timing Control )電路、控制面板上薄膜電晶體( Thin Film Transistor, TFT )開關的閘極驅動器( Gate Driver )、提供像素驅動能力的源極驅動器( Source Driver )以及珈瑪校正( Gamma Correction )電路。本論文就其中的閘級驅動器、源極驅動器與時序控制功能進行改良,提供雙極性之閘極電壓控制以及發光二極體狀態偵測、修復和驅動功能,以期達到較佳的顯示效果與顯示壽命。 發光二極體顯示面板的源極驅動方式大致可分為三種,分別為恆定電流驅動( Constant Current Driving )、恆定電壓控制( Constant Voltage Driving )以及脈波調變控制( Pulse Width Modulation Driving ),本論文採用恆定電流方式進行驅動。本論文設計的恆定電流控制電路由電流抽載器( Current Sink )以及位準移位器( Level Shifter )兩者組成,藉由調整電流抽載器的抽載電流大小以控制發光二極體的亮度,並同時配合時序控制電路以及位準移位器正確驅動薄膜電晶體的閘級開關,以達到控制灰階和驅動薄膜電晶體開關的功能。 其中為延長面板顯示壽命,本篇提出在一個像素內( Pixel )內多植入一倍的發光二極體,在一般情況下同色的兩顆發光二極體會同時被驅動發光,而在有其中一顆損毀的情況時則會偵測並停止驅動損毀的該顆發光二極體,僅驅動完好的另一顆發光二極體,以此方式達到延長面板顯示壽命的目的。 本晶片使用台積電0.18微米互補式金屬氧化物半導體( Complementary Metal Oxide Semiconductor, CMOS )製程實現,晶片面積為1.75×2.5 mm2,共可同時抽載十個通道,並在其中的六個通道提供發光二極體狀態偵測與修復功能。數位時序控制時脈為25 MHz,準位為0至1.8V,外部直流偏壓共使用5種,分別為12 V、3 V、2.5 V、1.8 V和-3 V。本設計之閘級驅動輸出準位均為-3至12V,依據驅動薄膜電晶體之不同共分為三種負載規格,此處分別稱為RGB-TFT、RE-TFT、G-TFT,其中負責控制三色開關的RGB-TFT模擬之上升和下降時間分別為20.45 ns和22.66 ns,負責控制開啟或關閉損壞的發光二極體的RE-TFT模擬之上升和下降時間分別為23.87 ns和19.89 ns,負責逐列驅動的G-TFT模擬之上升和下降時間分別為23.01 ns和25.4 ns。電流抽載器切換頻率為1.04 MHz,最大抽載電流為483.5 μA,解析度為8位元,即本晶片可提供0到255的灰階控制。 | zh_TW |
dc.description.abstract | This thesis present a driving chip for Micro-LED displays, with the ability to drive 10 channels simultaneously. Among the 10 channels, 6 of them have the additional self-repairing and LED condition sensing functions. Most of the Micro-LED display driving systems include the following building blocks: a power generation circuit to provide biases, a timing control circuit to provide synchronous control signals, a gate driver to control the gate of the TFTs on the panel, a source driver to drive the pixel and a gamma correction circuit. The research aims to improve the gate driver, source driver and timing control design to provide a better gate driving ability with bipolar voltage output and a more long-life driving system with the proposed repair function. The driving schemes of micro-LEDs can be roughly divided into three types, which are constant current driving, constant voltage driving and pulse width modulation driving. The thesis adopts the constant current scheme. The constant current driving scheme in the thesis consists of current sink circuits and level shifter circuits. The current sink circuits are in charge of the driving current control, which directly related to the luminance of the micro-LED, and the level shifter circuits are required to effectively turn on and off the TFT switches according to the applied digital control signal. Besides, to lengthen the lifetime of the display, the thesis proposed a novel pixel structure with an additional set of micro-LEDs planted inside. When both micro-LEDs are in good conditions, the chip will drive the two micro-LEDs simultaneously, but when one of the micro-LED burns out, the chip will detect the situation, stop driving the broken one, and increase the driving current of the good one. The chip in the thesis is implemented with TSMC 0.18 m CMOS technology, and occupies an area of 1.75×2.5 mm2. The chip has the ability to sink 10 channels at the same time and provides the micro-LED detecting and repairing functions for the 6 out of the 10 channels. The chip is fed with 25 MHz, 1.8 V serial digital signals and 5 DC biases, which are 12 V, 3 V, 2.5 V, 1.8 V and -3 V, respectively. Three different level shifters are designed to drive three different loadings, however the output levels of the level shifter circuits are all from -3 V to 12 V. The simulated rise time and fall time of the level shifter with RGB-TFT loading are 20.45 ns and 22.66 ns, with RE-TFT loading are 23.87 ns and 19.89 ns, and with G-TFT loading are 23.01 ns and 25.4 ns. The switching speed of the current sink is 1.04 MHz, and it can sink a maximum current of 483.5 A with 8-bit resolution control, which means gray level control of 0 to 255 is achievable with the chip. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:24:13Z (GMT). No. of bitstreams: 1 U0001-2806202213424700.pdf: 24606513 bytes, checksum: ac7009977d2521e3fa5696b54a3f7531 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 摘要 I ABSTRACT III 目錄 V 圖目錄 VII 表目錄 XIV Chapter 1 緒論 1 1.1 研究動機 1 1.2 論文架構與貢獻 2 Chapter 2 顯示器與驅動電路介紹 3 2.1 平面顯示器種類介紹 3 2.2 薄膜電晶體及發光二極體簡介 7 2.2.1 薄膜電晶體 7 2.2.2 發光二極體 8 2.3 液晶顯示器驅動電路 10 2.3.1 液晶顯示器像素結構 10 2.3.2 液晶顯示器驅動系統 12 2.4 發光二極體顯示器驅動電路 17 2.4.1 發光二極體顯示器像素架構 17 2.4.2 發光二極體顯示器驅動系統 18 2.5 文獻回顧 21 Chapter 3 驅動電路設計與模擬 36 3.1 系統應用及設計規格 36 3.2 時序電路與修復功能 40 3.3 電壓位準移位器 42 3.4 電流抽載器 55 3.5 發光二極體狀態偵測器 57 3.5.1 電壓數位類比轉換器 60 3.5.2 電壓比較器 65 3.6 電路模擬結果 66 3.6.1 驅動時序 66 3.6.2 電壓位準移位器 77 3.6.3 電流抽載器 85 3.6.4 發光二極體狀態偵測器 88 Chapter 4 晶片佈局與晶片量測 101 4.1 晶片佈局 101 4.2 晶片量測 102 4.3 電壓位準移位器獨立晶片 110 4.4 抽載電流量測 116 Chapter 5 討論與結論 117 參考文獻 120 | - |
dc.language.iso | zh_TW | - |
dc.title | 微發光二極體顯示器之0.18 μm CMOS雙極性高壓驅動微晶片 | zh_TW |
dc.title | A 0.18 μm CMOS Bipolar High-Voltage Driver Chiplet for Micro-LED Displays | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳勇志;劉邦榮 | zh_TW |
dc.contributor.oralexamcommittee | Yung-Chih Chen;Pang-Jung Liu | en |
dc.subject.keyword | 位準移位器,顯示器驅動器, | zh_TW |
dc.subject.keyword | Level Shifter,Display Driver, | en |
dc.relation.page | 122 | - |
dc.identifier.doi | 10.6342/NTU202201173 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2022-07-03 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電子工程學研究所 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 目前未授權公開取用 | 24.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。