Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83926
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳穎練zh_TW
dc.contributor.advisorYing-Lian Chenen
dc.contributor.author黃約翰zh_TW
dc.contributor.authorYuen-Han Huangen
dc.date.accessioned2023-03-19T21:23:48Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-19-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1.Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018; 4: 18026.
2.Silva S, Negri M, Henriques M, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012; 36: 288-305.
3.Samaranayake LP, Fidel PL, Naglik JR, et al. Fungal infections associated with HIV infection. Oral Dis. 2002; 8 Suppl 2: 151-60.
4.Liu F, Zhong L, Zhou F, et al. Clinical features, strain distribution, antifungal resistance and prognosis of patients with non-albicans candidemia: A retrospective observational study. Infect Drug Resist. 2021; 14: 3233-3246.
5.Zakhem AE, Istambouli R, Alkozah M, et al. Predominance of Candida glabrata among Non-albicans Candida species in a 16-year study of candidemia at a tertiary care center in Lebanon. Pathogens. 2021; 10: 82.
6.Liguori G, Di Onofrio V, Lucariello A, et al. Oral candidiasis: a comparison between conventional methods and multiplex polymerase chain reaction for species identification. Oral Microbiol Immunol. 2009; 24: 76-8.
7.Pais P, Galocha M, Teixeira MC. Genome-wide response to drugs and stress in the pathogenic yeast Candida glabrata. Prog Mol Subcell Biol. 2019; 58: 155-193.
8.Arendrup MC, Patterson TF. Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. The Journal of Infectious Diseases. 2017; 216: S445-S451.
9.Mota S, Alves R, Carneiro C, et al. Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate. Front Microbiol. 2015; 6: 919.
10.Farmakiotis D, Tarrand JJ, Kontoyiannis DP. Drug-resistant Candida glabrata infection in cancer patients. Emerg Infect Dis. 2014; 20: 1833-40.
11.Al Thaqafi AH, Farahat FM, Al Harbi MI, Al Amri AF, Perfect JR. Predictors and outcomes of Candida bloodstream infection: eight-year surveillance, western Saudi Arabia. Int J Infect Dis. 2014; 21: 5-9.
12.Moran C, Grussemeyer CA, Spalding JR, Benjamin DK, Jr., Reed SD. Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. Am J Infect Control. 2010; 38: 78-80.
13.Hassan Y, Chew SY, Than LTL. Candida glabrata: Pathogenicity and resistance mechanisms for adaptation and survival. Journal of Fungi. 2021; 7: 667.
14.Babior BM. NADPH oxidase. Curr Opin Immunol. 2004; 16: 42-7.
15.Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, et al. Candida glabrata antifungal resistance and virulence factors, a perfect pathogenic combination. Pharmaceutics. 2021; 13.
16.Csank C, Haynes K. Candida glabrata displays pseudohyphal growth. FEMS Microbiology Letters. 2000; 189: 115-120.
17.Bassetti M, Mikulska M, Viscoli C. Bench-to-bedside review: Therapeutic management of invasive candidiasis in the intensive care unit. Critical Care. 2010; 14: 244.
18.De Las Peñas A, Pan SJ, Castaño I, et al. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 2003; 17: 2245-58.
19.Iraqui I, Garcia-Sanchez S, Aubert S, et al. The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol Microbiol. 2005; 55: 1259-71.
20.Helmlinger D, Marguerat S, Villén J, et al. Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. Embo j. 2011; 30: 2843-52.
21.Lee KK, Sardiu ME, Swanson SK, et al. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol. 2011; 7: 503.
22.Grant PA, Duggan L, Côté J, et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 1997; 11: 1640-50.
23.Sterner DE, Grant PA, Roberts SM, et al. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol. 1999; 19: 86-98.
24.Daniel JA, Torok MS, Sun ZW, et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem. 2004; 279: 1867-71.
25.Bonnet J, Wang CY, Baptista T, et al. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription. Genes Dev. 2014; 28: 1999-2012.
26.Ingvarsdottir K, Krogan NJ, Emre NCT, et al. H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Molecular and cellular biology. 2005; 25: 1162-1172.
27.Köhler A, Pascual-García P, Llopis A, et al. The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol Biol Cell. 2006; 17: 4228-36.
28.Köhler A, Schneider M, Cabal GG, Nehrbass U, Hurt E. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat Cell Biol. 2008; 10: 707-15.
29.Thorne AW, Sautiere P, Briand G, Crane-Robinson C. The structure of ubiquitinated histone H2B. Embo j. 1987; 6: 1005-10.
30.Robzyk K, Recht J, Osley MA. Rad6-dependent ubiquitination of histone H2B in yeast. Science. 2000; 287: 501-4.
31.Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, et al. A Conserved RING Finger Protein Required for Histone H2B Monoubiquitination and Cell Size Control. Molecular Cell. 2003; 11: 261-266.
32.Maruyama T, Nakamura T, Hayashi T, Yanagida M. Histone H2B mutations in inner region affect ubiquitination, centromere function, silencing and chromosome segregation. Embo j. 2006; 25: 2420-31.
33.Tanny JC, Erdjument-Bromage H, Tempst P, Allis CD. Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation. Genes Dev. 2007; 21: 835-47.
34.Wyce A, Xiao T, Whelan KA, et al. H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell. 2007; 27: 275-88.
35.Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev. 2011; 25: 2254-65.
36.Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol. 2012; 2: 26.
37.Zhu W, Fan X, Zhao Q, et al. Bre1 and Ubp8 regulate H2B mono-ubiquitination and the reversible yeast-hyphae transition in Candida albicans. Molecular Microbiology. 2021; 115: 332-343.
38.Chen Y, Stewart JIP, Liu S, et al. Spt20, a Structural Subunit of the SAGA Complex, Regulates Aspergillus fumigatus Biofilm Formation, Asexual Development, and Virulence. Applied and Environmental Microbiology. 2022; 88: e01535-21.
39.Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts. Nature. 2004; 430: 35-44.
40.Reuss O, Vik A, Kolter R, Morschhäuser J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 2004; 341: 119-27.
41.Yu SJ C, YL CY. Deletion of ADA2 increases antifungal drug susceptibility and virulence in Candida glabrata. Antimicrob Agents Chemother. 2018; 62.
42.Briones-Martin-Del-Campo M, Orta-Zavalza E, Juarez-Cepeda J, et al. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Rev Iberoam Micol. 2014; 31: 67-71.
43.Chew SY, Chee WJY, Than LTL. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. J Biomed Sci. 2019; 26: 52.
44.Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Research. 2011; 21: 381-395.
45.Church M, Smith KC, Alhussain MM, Pennings S, Fleming AB. Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene. Nucleic Acids Res. 2017; 45: 4413-4430.
46.McMahon SJ, Pray-Grant MG, Schieltz D, Yates JR, 3rd, Grant PA. Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci U S A. 2005; 102: 8478-82.
47.Riera M, Mogensen E, d'Enfert C, Janbon G. New regulators of biofilm development in Candida glabrata. Res Microbiol. 2012; 163: 297-307.
48.Lee KK, Swanson SK, Florens L, Washburn MP, Workman JL. Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenetics Chromatin. 2009; 2: 2.
49.Pfab A, Bruckmann A, Nazet J, Merkl R, Grasser KD. The Adaptor Protein ENY2 Is a Component of the deubiquitination module of the Arabidopsis SAGA transcriptional co-activator complex but not of the TREX-2 Complex. J Mol Biol. 2018; 430: 1479-1494.
50.Mohan RD, Dialynas G, Weake VM, et al. Loss of Drosophila Ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration. Genes Dev. 2014; 28: 259-72.
51.Georgakopoulos P, Lockington RA, Kelly JM. The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex in Aspergillus nidulans. PLoS One. 2013; 8: e65221.
52.Rösler SM, Kramer K, Finkemeier I, Humpf HU, Tudzynski B. The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization. Mol Microbiol. 2016; 102: 951-974.
53.Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev. 2003; 17: 2733-40.
54.Moirangthem R, Kumar K, Kaur R. Two functionally redundant FK506-binding proteins regulate multidrug resistance gene expression and govern azole antifungal resistance. Antimicrob Agents Chemother. 2021; 65.
55.Baker KM, Hoda S, Saha D, et al. The Set1 histone H3K4 methyltransferase contributes to azole susceptibility in a species-specific manner by differentially Altering the expression of drug efflux pumps and the ergosterol gene pathway. Antimicrob Agents Chemother. 2022; 66: e0225021.
56.Hasan Obayes AL-Khikani F. Amphotericin B, the wonder of today’s pharmacology science: persisting usage for more than seven decades. Pharmaceutical and Biomedical Research. 2020; 6: 173-180.
57.Cócera M, Lopez O, Coderch L, Parra JL, de la Maza A. Influence of the level of ceramides on the permeability of stratum corneum lipid liposomes caused by a C12-betaine/sodium dodecyl sulfate mixture. Int J Pharm. 1999; 183: 165-73.
58.Sangalli-Leite F, Scorzoni L, Mesa-Arango AC, et al. Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes Infect. 2011; 13: 457-67.
59.David G, Abbas N, Stevanin G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997; 17: 65-70.
60.Ajayi A, Yu X, Lindberg S, Langel Ü, Ström A-L. Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neuroscience. 2012; 13: 86.
61.Torres-Ramos Y, Montoya-Estrada A, Cisneros B, et al. Oxidative stress in spinocerebellar Ataxia Type 7 is sssociated with disease severity. The Cerebellum. 2018; 17: 601-609.
62.Yang J, Chen D, Matar KAO, et al. The deubiquitinating enzyme MoUbp8 is required for infection-related development, pathogenicity, and carbon catabolite repression in Magnaporthe oryzae. Appl Microbiol Biotechnol. 2020; 104: 5081-5094.
63.Grant CM, Perrone G, Dawes IW. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1998; 253: 893-8.
64.De Palma A, Fanelli G, Cretella E, et al. Gcn5p and Ubp8p affect protein ubiquitylation and cell proliferation by altering the fermentative/respiratory flux balance in Saccharomyces cerevisiae. mBio. 2020; 11.
65.Canzonetta C, Leo M, Guarino SR, et al. SAGA complex and Gcn5 are necessary for respiration in budding yeast. Biochim Biophys Acta. 2016; 1863: 3160-3168.
66.Lin C-J, Hou Y-H, Chen Y-L. The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus. Medical Mycology. 2019; 58: 248-259.
67.Shivarathri R, Tscherner M, Zwolanek F, et al. The fungal histone acetyl transferase Gcn5 controls virulence of the human pathogen Candida albicans through multiple pathways. Sci Rep. 2019; 9: 9445.
68.Filler EE, Liu Y, Solis NV, et al. Identification of Candida glabrata transcriptional regulators that govern stress resistance and virulence. Infect Immun. 2021; 89.
69.Saijo T, Miyazaki T, Izumikawa K, et al. Skn7p is involved in oxidative stress response and virulence of Candida glabrata. Mycopathologia. 2010; 169: 81-90.
70.Minematsu A, Miyazaki T, Shimamura S, et al. Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata. PLoS One. 2019; 14: e0210883.
71.Pascual-García P, Rodríguez-Navarro S. A tale of coupling, Sus1 function in transcription and mRNA export. RNA Biol. 2009; 6: 141-4.
72.James N, Landrieux E, Collart MA. A SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-not complex in Saccharomyces cerevisiae. Genetics. 2007; 177: 123-35.
73.Deng X, Zhou H, Zhang G, et al. Sgf73, a subunit of SAGA complex, is required for the assembly of RITS complex in fission yeast. Sci Rep. 2015; 5: 14707.
74.Forastiero A, Garcia-Gil V, Rivero-Menendez O, et al. Rapid development of Candida krusei echinocandin resistance during caspofungin therapy. Antimicrob Agents Chemother. 2015; 59: 6975-82.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83926-
dc.description.abstract念珠菌菌血症(Candidiasis)為重要的真菌性疾病之一,泛指皮膚或黏膜組織等由念珠菌屬引起的疾病。光滑念珠菌(Candida glabrata)為伺機性病源,可附著於黏膜組織並侵入血管造成系統性感染,加上先天性耐藥性導致由原光滑念珠菌引起的感染逐漸增加。轉譯後修飾在表徵遺傳中有重要的功能,SAGA複合體調控兩種不同的轉譯後修飾包含將組蛋白乙醯化的HAT模組及去泛素化的Dub模組,其在基因調控上具決定性的作用,且在許多生物上具有高度的保守性。SAGA複合體在轉譯中具有co-activator的作用,可以依據功能分成不同的模組,其可以調控啤酒酵母菌約10%的基因表現,其中包含透過調控轉譯後修飾調控逆境相關的基因。實驗室先前研究發現SAGA複合體HAT模組中ADA2基因會調控光滑念珠菌對氧化壓力及藥物的耐受性、細胞壁的完整性和毒力,但SAGA複合體中其它模組在光滑念珠菌的作用尚未了解。本研究主要探討SAGA複合體中Dub模組基因(UBP8、SGF11、SGF73和SUS1)的功能,並發現Dub模組中會調控H2B去泛素化的基因(UBP8、SGF11、和SUS1)對於藥物耐受性、細胞壁完整性和生物膜的形成有重要的作用。另外,SGF73會影響對氧化壓力、藥物的耐受性、細胞壁完整性和生物膜形成。在小鼠系統性感染實驗中ubp8、sgf11和sus1突變株接近低毒力,而sgf73突變株並不會影響其毒力。總結,光滑念珠菌Dub模組在H2B去泛素化、細胞壁完整性、藥物耐受性及生物膜形成中扮演重要的角色。zh_TW
dc.description.abstractCandidiasis is one of the most important fungal diseases and generally refers to diseases caused by Candida species in skin or mucosal tissues. Candida glabrata is an opportunistic human fungal pathogen and due to the innate antifungal drug tolerance and the ability to adhere to mucocutaneous surface of C. glabrata, the infections caused by C. glabrata have significantly increased. SAGA complex contains two different post-translational modifications including histone acetylation (HAT module) and deubiquitination (Dub module), which are decisive in gene regulation and highly conserved in eukaryotes. Previous research in our laboratory found that the HAT module ADA2 could regulate C. glabrata oxidative stress tolerance, drug tolerance, cell wall integrity and virulence. The roles of Dub module comprised of UBP8, SGF73, SGF11 and SUS1 genes in SAGA complex are not yet understood. We found that Dub module genes UBP8, SGF11 and SUS1 are involved in H2B deubiquitination. Furthermore, ubp8, sgf11 and sus1 mutants with increased H2B ubiquitination level exhibit decreased biofilm formation and sensitive to cell wall perturbing agent SDS and antifungal drug amphotericin B. Besides, sgf73 mutant was susceptible to oxidative stresses, antifungal drugs and cell wall perturbing agents. The ubp8, sgf11 and sus1 that involved in H2B deubiquitination showed marginal hypovirulence, while sgf73 mutant exhibited virulence similar to wild type in murine systemic infection model. In conclusion, C. glabrata Dub module plays critical roles in H2B deubiquitination, cell wall integrity, biofilm formation and drug tolerance and plays minor roles in virulence.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:23:48Z (GMT). No. of bitstreams: 1
U0001-2706202217263700.pdf: 3135857 bytes, checksum: 51316d363fc341e6d2d89145b4f51e73 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝……………………………………………………………………………………………………………I
摘要…………………………………………………………………………………………………………II
Abstract…………………………………………………………………………………………………III
目錄……………………………………………………………………………………………………………IV
表目錄……………………………………………………………………………………………………………V
圖目錄……………………………………………………………………………………………………VI
1.Introduction…………………………………………………………………………………………1
2.Materials and Methods……………………………………………………………………………4
2.1Strains, media and chemicals………………………………………………………4
2.2Gene disruption and complementation in C. glabrata………………………4
2.3Serial dilution spotting assay………………………………………………………8
2.4Determination of H2B ubiquitination, H3K9 and H3K14 acetylation and total protein ubiquitination level…………………………………………………8
2.5Agar invasion assay……………………………………………………………………9
2.6Minimum inhibitory concentrations of antifungal drugs against C. glabrata……………………9
2.7Biofilm formation assay……………………………………………………………10
2.8Real-time qRT-PCR…………………………………………………………………10
2.9Murine systemic infection model…………………………………………………11
2.10Ethics statement………………………………………………………………………11
3.Results…………………………………………………………………………………………………12
3.1Distinct roles of Dub module genes in H2B deubiquitination of C. glabrata…… 12
3.2Dub module is involved in stress response of C. glabrata………………12
3.3SGF73 rather than UBP8 is involved in the respiration and utilization of alternative carbon resources in C. glabrata…………………………………13
3.4Sgf73 is required for H3K9 and H3K14 acetylation in C. glabrata………14
3.5Roles of Dub module genes in biofilm formation of C. glabrata………….14
3.6C. glabrata plays minor role in virulence……………………………………15
4.Discussions…………………………………………………………………………………………16
4.1Roles of C. glabrata Dub module in H2B deubiquitination activity……..16
4.2Roles of Dub module in drug tolerance and stress response of C. glabrata………………16
4.3Roles of C. glabrata Sgf73 in respiration………..………………………………18
4.4Roles of C. glabrata Dub module in biofilm formation and virulence…………………………………19
4.5Distinct roles of Sgf73 and other Dub module genes………………….20
5.Tables…………………………………………………………………………………………………22
6.Figures and figure legends………………………………………………………………………26
7.Supplementary data………………………………………………………………………………39
8.Future work…………………………………………………………………………………………40
9.References…………………………………………….……………………………………………41
10.Appendix……………………………………………………………………………..……………47
-
dc.language.isoen-
dc.title闡述光滑念珠菌SAGA複合體中Dub模組的功能zh_TW
dc.titleElucidating Dub module functions of SAGA complex in Candida glabrataen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝家慶;林琦然zh_TW
dc.contributor.oralexamcommitteeJia-Qing Xie;Chi-Jan Linen
dc.subject.keyword光滑念珠菌,SAGA複合體,Dub模組,生物膜形成,毒力,zh_TW
dc.subject.keywordCandida glabrata,SAGA complex,Dub module,biofilm formation,virulence,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202201152-
dc.rights.note未授權-
dc.date.accepted2022-07-05-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  目前未授權公開取用
3.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved