Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor湯森林(Sen-Lin Tang)
dc.contributor.authorYu-Jing Chiouen
dc.contributor.author邱育敬zh_TW
dc.date.accessioned2021-05-20T00:53:16Z-
dc.date.available2025-08-10
dc.date.available2021-05-20T00:53:16Z-
dc.date.copyright2020-09-22
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationAgostini S, Suzuki Y, Higuchi T, Casareto BE, Yoshinaga K, Nakano Y, Fujimura H (2012) Biological and chemical characteristics of the coral gastric cavity. Coral Reefs 31:147-156
Ainsworth T, Fine M, Blackall L, Hoegh-Guldberg O (2006) Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol 72:3016-3020
Alcolombri U, Laurino P, Lara-Astiaso P, Vardi A, Tawfik DS (2014) DddD is a CoA-transferase/lyase producing dimethyl sulfide in the marine environment. Biochemistry 53:5473-5475
Appolinario LR, Tschoeke DA, Rua CPJ, Venas T, Campeao ME, Amaral GRS, Leomil L, de Oliveira L, Vieira VV, Otsuki K, Swings J, Thompson FL, Thompson CC (2016) Description of Endozoicomonas arenosclerae sp nov using a genomic taxonomy approach. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 109:431-438
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic acids research 44:W16-W21
Barott KL, Venn AA, Perez SO, Tambutte S, Tresguerres M (2015) Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proceedings of the National Academy of Sciences of the United States of America 112:607-612
Bartz J-O, Blom J, Busse H-J, Mvie JB, Hardt M, Schubert P, Wilke T, Goessmann A, Wilharm G, Bender J (2018) Parendozoicomonas haliclonae gen. nov. sp. nov. isolated from a marine sponge of the genus Haliclona and description of the family Endozoicomonadaceae fam. nov. comprising the genera Endozoicomonas, Parendozoicomonas, and Kistimonas. Systematic and applied microbiology 41:73-84
Bayer T, Arif C, Ferrier-Pages C, Zoccola D, Aranda M, Voolstra CR (2013) Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar Ecol-Prog Ser 479:75-+
Besson M (2018) The Gills of Reef Fish Support a Distinct Microbiome Influenced by Host-Specific Factors. Applied and Environmental Microbiology 84
Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environmental microbiology 7:1162-1174
Broadbent AD, Jones GB, Jones RJ (2002) DMSP in corals and benthic algae from the Great Barrier Reef. Estuarine, Coastal and Shelf Science 55:547-555
Brown B (1997) Coral bleaching: causes and consequences. Coral reefs 16:S129-S138
Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. Journal of Biological Chemistry 283:7309-7313
Cappuccino J, Sherman N (2004) Microbiology, Laboratory manual. Person education. INC, New Delhi:282-283
Carpenter RC (1985) Relationships between primary production and ii radiance in coral reef algal communities 1. Limnology and Oceanography 30:784-793
Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Molecular microbiology 49:277-300
Chiu H-H, Mette A, Shiu J-H, Tang S-L (2012) Bacterial Distribution in the Epidermis and Mucus of the Coral Euphyllia glabrescens by CARD-FISH. Zool Stud 11
Curson AR, Todd JD, Sullivan MJ, Johnston AW (2011) Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nature Reviews Microbiology 9:849-859
Daly M, Fautin DG, Cappola VA (2003) Systematics of the hexacorallia (Cnidaria: Anthozoa). Zoological Journal of the Linnean Society 139:419-437
Ding J-Y, Shiu J-H, Chen W-M, Chiang Y-R, Tang S-L (2016) Genomic insight into the host–endosymbiont relationship of endozoicomonas montiporae CL-33T with its Coral Host. Frontiers in microbiology 7:251
Dishaw LJ, Flores-Torres J, Lax S, Gemayel K, Leigh B, Melillo D, Mueller MG, Natale L, Zucchetti I, De Santis R (2014) The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS One 9
dos Santos AJ, Dalla Valentina O, Veriano L, Schulz H, Alayo A, Tomaz Duarte MA (2017) From Obtaining to Degradation of PHB: Material Properties. Part I. Ingeniería y Ciencia 13:269-298
Du Z, Zhang W, Xia H, Lü G, Chen G (2010) Isolation and diversity analysis of heterotrophic bacteria associated with sea anemones. Acta Oceanologica Sinica 29:62-69
Eakin CM, Sweatman HP, Brainard RE (2019) The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38:539-545
Forget NL, Juniper K (2013) Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. Microbiologyopen 2:259-275
Frade P, Schwaninger V, Glasl B, Sintes E, Hill R, Simó R, Herndl GJ (2016) Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus. Environ Chem 13:252-265
Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and environmental microbiology 74:2461-2470
Gajigan AP, Diaz LA, Conaco C (2017) Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. MicrobiologyOpen 6:e00478
Garren M, Son K, Raina J-B, Rusconi R, Menolascina F, Shapiro OH, Tout J, Bourne DG, Seymour JR, Stocker R (2014) A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. The ISME journal 8:999-1007
Glynn PW (1991) Coral reef bleaching in the 1980s and possible connections with global warming. Trends in Ecology Evolution 6:175-179
Gong S, Jin X, Ren L, Tan Y, Xia X (2020) Unraveling Heterogeneity of Coral Microbiome Assemblages in Tropical and Subtropical Corals in the South China Sea. Microorganisms 8:604
Hofer U (2016) Marine microbiology: Microbiome'coral'ations. Nature Reviews Microbiology 14:266
Hooper PM, Ross SH, Feist SW, Cano I (2019) Shedding and survival of an intracellular pathogenic Endozoicomonas-like organism infecting king scallop Pecten maximus. Diseases of aquatic organisms 134:167-173
Hopkins FE, Bell TG, Yang M, Suggett DJ, Steinke M (2016) Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Scientific reports 6:36031
Hyun DW, Shin NR, Kim MS, Oh SJ, Kim PS, Whon TW, Bae JW (2014) Endozoicomonas atrinae sp nov., isolated from the intestine of a comb pen shell Atrina pectinata. International Journal of Systematic and Evolutionary Microbiology 64:2312-2318
Jeng M-S, Huang H-D, Dai C-F, Hsiao Y-C, Benayahu Y (2011) Sclerite calcification and reef-building in the fleshy octocoral genus Sinularia (Octocorallia: Alcyonacea). Coral reefs 30:925-933
Johnston I, Rohwer F (2007) Microbial landscapes on the outer tissue surfaces of the reef-building coral Porites compressa. Coral Reefs 26:375-383
Katharios P, Seth-Smith HM, Fehr A, Mateos JM, Qi W, Richter D, Nufer L, Ruetten M, Soto MG, Ziegler U (2015) Environmental marine pathogen isolation using mesocosm culture of sharpsnout seabream: striking genomic and morphological features of novel Endozoicomonas sp. Scientific reports 5:1-13
Kim M, Oh H-S, Park S-C, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International journal of systematic and evolutionary microbiology 64:346-351
Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254-5259
Kurahashi M, Yokota A (2007) Endozoicomonas elysicola gen. nov., sp nov., a gamma-proteobacterium isolated from the sea slug Elysia ornata. Systematic and Applied Microbiology 30:202-206
Littman RA, Willis BL, Pfeffer C, Bourne DG (2009) Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS microbiology ecology 68:152-163
Magnusson SH, Fine M, Kühl M (2007) Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol-Prog Ser 332:119-128
Martínez-Cano DJ, Reyes-Prieto M, Martínez-Romero E, Partida-Martínez LP, Latorre A, Moya A, Delaye L (2015) Evolution of small prokaryotic genomes. Frontiers in microbiology 5:742
McDermott A (2020) Inner Workings: A microscopic mystery at the heart of mass-coral bleaching. Proceedings of the National Academy of Sciences 117:2232-2235
Meistertzheim AL, Lartaud F, Arnaud-Haond S, Kalenitchenko D, Bessalam M, Le Bris N, Galand PE (2016) Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species. Deep-Sea Research Part I-Oceanographic Research Papers 114:12-22
Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, Greenberg EP, Banin E (2009) Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol 75:5704-5707
Nakamura T (2017) Mass coral bleaching event in Sekisei lagoon observed in the summer of 2016. Journal of the Japanese Coral Reef Society 19:29-40
Neave MJ, Apprill A, Ferrier-Pages C, Voolstra CR (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Applied Microbiology and Biotechnology 100:8315-8324
Neave MJ, Michell CT, Apprill A, Voolstra CR (2014) Whole-genome sequences of three symbiotic Endozoicomonas strains. Genome Announc 2:e00802-00814
Neave MJ, Michell CT, Apprill A, Voolstra CR (2017a) Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Scientific reports 7:40579
Neave MJ, Rachmawati R, Xun LP, Michell CT, Bourne DG, Apprill A, Voolstra CR (2017b) Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. Isme Journal 11:186-200
Ngugi DK, Ziegler M, Duarte CM, Voolstra CR (2020) Genomic blueprint of glycine betaine metabolism in coral metaorganisms and their contribution to reef nitrogen budgets. Iscience:101120
Nguyen‐Kim H, Bouvier T, Bouvier C, Doan‐Nhu H, Nguyen‐Ngoc L, Rochelle‐Newall E, Baudoux AC, Desnues C, Reynaud S, Ferrier‐Pages C (2014) High occurrence of viruses in the mucus layer of scleractinian corals. Environmental Microbiology Reports 6:675-682
Nishijima M, Adachi K, Katsuta A, Shizuri Y, Yamasato K (2013) Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. International journal of systematic and evolutionary microbiology 63:709-714
Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, Sedrlova Z, Koller M (2020) Novel unexpected functions of PHA granules. Applied Microbiology and Biotechnology:1-16
Ochsenkühn MA, Röthig T, D’Angelo C, Wiedenmann J, Voolstra CR (2017) The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Science Advances 3:e1602047
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic acids research 42:D206-D214
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome research 25:1043-1055
Paul JH, DeFlaun MF, Jeffrey WH (1986) Elevated levels of microbial activity in the coral surface microlayer. Mar Ecol-Prog Ser 33:29
Peixoto RS, Rosado PM, Leite DCD, Rosado AS, Bourne DG (2017) Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Frontiers in Microbiology 8
Peters EC, Oprandy JJ, Yevich PP (1983) Possible causal agent of “white band disease” in Caribbean acroporid corals. Journal of Invertebrate Pathology 41:394-396
Pike RE, Haltli B, Kerr RG (2013) Description of Endozoicomonas euniceicola sp nov and Endozoicomonas gorgoniicola sp nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas. International Journal of Systematic and Evolutionary Microbiology 63:4294-4302
Piola AR, Gordon AL (1984) Pacific and Indian Ocean upper-layer salinity budget. Journal of Physical Oceanography 14:747-753
Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, Thurber RV, Zaneveld JR (2018) Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nature Communications 9
Raina J-B, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492-3501
Raina J-B, Tapiolas DM, Forêt S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL (2013) DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502:677-680
Rajasabapathy R, Ramasamy KP, Manikandan B, Mohandass C, James RA (2020) Bacterial Communities Associated With Healthy and Diseased (Skeletal Growth Anomaly) Reef Coral Acropora cytherea From Palk Bay, India. Frontiers in Marine Science
Schreiber L, Kjeldsen KU, Funch P, Jensen J, Obst M, López-Legentil S, Schramm A (2016a) Endozoicomonas are specific, facultative symbionts of sea squirts. Frontiers in microbiology 7:1042
Schreiber L, Kjeldsen KU, Obst M, Funch P, Schramm A (2016b) Description of Endozoicomonas ascidiicola sp nov., isolated from Scandinavian ascidians. Systematic and Applied Microbiology 39:313-318
Schreiber L, Kjeldsen KU, Obst M, Funch P, Schramm A (2016c) Description of Endozoicomonas ascidiicola sp. nov., isolated from Scandinavian ascidians. Systematic and applied microbiology 39:313-318
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-2069
Shiu J-H, Keshavmurthy S, Chiang P-W, Chen H-J, Lou S-P, Tseng C-H, Hsieh HJ, Chen CA, Tang S-L (2017) Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Scientific reports 7:1-13
Shiu J-H, Tang S-L (2019) The bacteria Endozoicomonas: community dynamics, diversity, genomes, and potential impacts on corals. Symbiotic microbiomes of coral reefs sponges and corals. Springer
Shiu JH, Ding JY, Tseng CH, Lou SP, Mezaki T, Wu YT, Wang HI, Tang SL (2018) A Newly Designed Primer Revealed High Phylogenetic Diversity of Endozoicomonas in Coral Reefs. Microbes and Environments 33:172-185
Solomon S, Qin D, Manning M (2007) Climate change 2007: the physical science basis-Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC Working Groups Reports
Spalding M, Grenfell A (1997) New estimates of global and regional coral reef areas. Coral reefs 16:225-230
Sunda W, Kieber D, Kiene R, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317-320
Sweet M, Bythell J (2017) The role of viruses in coral health and disease. Journal of invertebrate pathology 147:136-144
Tandon K, Lu CY, Chiang PW, Wada N, Yang SH, Chan YF, Chen PY, Chang HY, Chiou YJ, Chou MS, Chen WM, Tang SL (2020) Comparative genomics: Dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). Isme Journal
Thompson JR, Rivera HE, Closek CJ, Medina M (2015) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Frontiers in Cellular and Infection Microbiology 4
Tout J, Jeffries TC, Petrou K, Tyson GW, Webster NS, Garren M, Stocker R, Ralph PJ, Seymour JR (2015) Chemotaxis by natural populations of coral reef bacteria. The ISME journal 9:1764-1777
Van Der Merwe R, Röthig T, Voolstra CR, Ochsenkühn MA, Lattemann S, Amy GL (2014) High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment. Frontiers in Marine Science 1:58
van Teeseling MC, de Pedro MA, Cava F (2017) Determinants of bacterial morphology: from fundamentals to possibilities for antimicrobial targeting. Frontiers in microbiology 8:1264
Wada N, Ishimochi M, Matsui T, Pollock FJ, Tang SL, Ainsworth TD, Willis BL, Mano N, Bourne DG (2019) Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Scientific Reports 9
Wijgerde T, Silva CI, Scherders V, van Bleijswijk J, Osinga R (2014) Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biology open 3:489-493
Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol-Prog Ser 287:87-98
Woo S, Yang S-H, Chen H-J, Tseng Y-F, Hwang S-J, De Palmas S, Denis V, Imahara Y, Iwase F, Yum S (2017) Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum. PloS one 12
Work TM, Aeby GS (2014) Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific. Mar Ecol-Prog Ser 500:1-9
Wu H-J, Seib KL, Edwards JL, Apicella MA, McEwan AG, Jennings MP (2005) Azurin of pathogenic Neisseria spp. is involved in defense against hydrogen peroxide and survival within cervical epithelial cells. Infection and immunity 73:8444-8448
Yancey PH, Heppenstall M, Ly S, Andrell RM, Gates RD, Carter VL, Hagedorn M (2010) Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. Physiological and Biochemical Zoology 83:167-173
Yang CS, Chen MH, Arun AB, Chen CA, Wang JT, Chen WM (2010) Endozoicomonas montiporae sp nov., isolated from the encrusting pore coral Montipora aequituberculata. International Journal of Systematic and Evolutionary Microbiology 60:1158-1162
Yang S-H, Tandon K, Lu C-Y, Wada N, Shih C-J, Hsiao SS-Y, Jane W-N, Lee T-C, Yang C-M, Liu C-T (2019) Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 7:1-13
Yang SH, Lee ST, Huang CR, Tseng CH, Chiang PW, Chen CP, Chen HJ, Tang SL (2016) Prevalence of potential nitrogen‐fixing, green sulfur bacteria in the skeleton of reef‐building coral I sopora palifera. Limnology and oceanography 61:1078-1086
Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660-703
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8383-
dc.description.abstract珊瑚擁有不同的微生物夥伴,比如真菌、藻類及細菌等,且彼此有著複雜的交互作用。珊瑚的不同部位居住著不同的微生物,其中有一屬的細菌被稱為內生桿菌,常被發現在珊瑚的黏液及組織中。內生桿菌群集的豐度會隨著珊瑚的健康程度而有所不同,相比於生病的或受環境壓迫的珊瑚,健康的珊瑚體具有較高豐度的內生桿菌,因此內生桿菌被認為與珊瑚健康有關係,並且被認為是一群珊瑚健康的益生菌。近年來,環境快速變遷導致珊瑚大量死亡,益生菌成為其中一個拯救或復育珊瑚的手段。內生桿菌為珊瑚益生菌的重要候選菌種之一,但目前由石珊瑚分離的可培養內生桿菌只有兩株,其中Endozoicomonas montiporae CL-33T為第一株具有基因體序列的內生桿菌,並且在基因體分析中發現E. montiporae CL-33T具有與宿主互動的基因而且可能在珊瑚遇到逆境時保護宿主的粒線體,來防止其失去功能,並且當珊瑚沒有足夠的葡萄糖時可以促使宿主轉而利用脂質,促進糖質新生。今年另一個研究從基因體方面證實了內生桿菌藉由代謝二甲基巯基丙酸(dimethylsulfoniopropionate, DMSP ),產生氣候調節化合物,二甲基醚(dimethyl suldife, DMS)參與珊瑚的硫循環。
鑑於目前只有兩株由珊瑚分離的內生桿菌,分離更多可培養的內生桿菌可以幫助我們更暸解其與珊瑚可能的互動關係。在這個研究中,我們分別由澎湖及墾丁分離兩株新的內生桿菌,E. penghunesis 4G與E. ruthgatesii 8E ,兩株菌與最近的內生桿菌E. euniceicola 16S rRNA的親緣關係相似性分別為96.68%及96.99%。兩株菌在最適生長溫度、鹽度及酸鹼值上展現了不同的特性,E. ruthgatesii 8E的最適生長溫度為25°C、pH值7、鹽度1-2%,而E. penghunesis 4G則最適合生長於20至25°C,pH值8、鹽度1-2%。除此之外,我們也將兩株新菌進行基因體定序,並且獲得低污染(污染<1%),接近完整(>97%)的基因體。在基因體大小上,E. penghunesis 4G為5.73 Mb,E. ruthgatesii 8E則具有目前內生桿菌中最大的基因體,7.1Mb,也具有假定可以將DMSP當成碳源並代謝成DMS的基因操縱組。進一步我們量化從珊瑚分離出的這四株內生桿菌消耗DMSP與產生DMS的濃度,並發現E. ruthgatesii 8E 相比於E. acroporae Acr-14T可以消耗更多的DMSP。最後本論文提出兩株內生桿菌屬新種,並首度量化珊瑚優勢共棲菌的DMSP消耗量及DMS產生量。
zh_TW
dc.description.abstractCorals harbor diverse microbial partners (e.g., fungi, algae, and bacteria), leading to complex yet intriguing mesh of interactions among and within coral holobiont. Different organs of coral harbor diverse microbial communities, such as members of genus Endozoicomonas are abundant in coral mucus and epidermal tissues. Interestingly, Endozoicomonas are often abundant in healthy corals and their abundance declines in diseased or stressed corals, consequently, members of this genus are hypothesized to be potential probiotics of coral health. Recently, the identification of beneficial microorganisms for coral has been at the center of developing probiotics for coral reefs to mitigate stress from heat-induced coral bleaching. Endozoicomonas species which are potential candidates for coral probiotics lack cultured isolates with only two species isolated from scleractinian corals. Endozoicomonas montiporae CL-33T the first cultured and genome sequenced isolate has been shown to have the potential to internalize and interact with host cells and harbor genes to protect mitochondrial dysfunction and promote gluconeogenesis in the host. A recent study provided first genomic and functional evidence of the role of Endozoicomonas in the coral sulfur cycle by metabolizing dimethylsulfoniopropionate (DMSP) to climate active gas dimethylsulfide (DMS).
With only two cultured isolates to date, it becomes important to identify and culture new species from this diverse genus in order to ascertain its role in coral reefs. In this study, we isolated and cultured two novel bacteria species, E. penghuensis 4G and E. ruthgatesii 8E from dominant coral Acroporae sp. of the coast of Penghu Archipelago and Kenting, Taiwan, respectively. The nearest neighbor of these new species is E. eunicicola (16S rRNA gene identity: 96.68%, 96.99% respectively).
The two isolates exhibit different physiological and biochemical characteristics (optimal pH, temperature and salinity). E. ruthgatesii 8E grows in on optimal temperature of 25 °C, with an optimal pH of 7 and salinity 1-2 %, whereas E. penghuensis 4G grows at a temperature of 20-25 °C, a pH, and salinity of 8 and 1-2%, respectively. Furthermore, we sequenced and assembled high-quality (contamination <1%) near-complete (>97%) draft genomes of the two species. E. ruthgatesii 8E has the largest genome (7.1 Mb) in cultured species of Endozoicomonas to date, but E. penghuensis 4G has a genome size (5.73 Mb) comparable other species. E. ruthgatesii 8E harbors a putative operon to metabolize DMSP to DMS and use it as a carbon source. Quantification of DMSP usage by E. ruthgatesii 8E shows that it can metabolize more DMSP than previously characterized E. acroporae. Further, genomic analysis is being conducted to answer the intriguing question, why does E. ruthgatesii 8E have a disproportionate genome size. Overall, in this study we discovered two novel Endozoicomonas species and is the first study to quantify DMSP consumption and DMS production by a coral-associated dominant bacterium.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:53:16Z (GMT). No. of bitstreams: 1
U0001-2707202016002700.pdf: 30966099 bytes, checksum: 7282f83570a83d5d87bb7e86914afaa5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
中英文對照表 xii
一、前人研究 1
1.1 珊瑚簡介 1
1.1.1  珊瑚礁生態系 1
1.1.2  造礁珊瑚 1
1.2 珊瑚與其微生物 2
1.2.1 珊瑚共生體 2
1.2.2 珊瑚不同部位的共棲菌 3
1.3 內生桿菌 5
1.3.1 內生桿菌與其宿主的關係 6
1.3.2 內生桿菌之區域性 7
1.3.3  內生桿菌基因體特性 7
1.4 內生桿菌屬與珊瑚之間的互動 8
1.5 研究動機與目的 10
二、材料與方法 11
2.1 採樣時間、地點及物種 11
2.2.1 富營養培養基配方 11
2.2.2 基本培養基配方 11
2.2 內生桿菌分離培養 11
2.2.1 菌種純化 11
2.2.2 菌株保存 12
2.2.3 富營養培養基配方 12
2.2.4 聚合酶連鎖反應 13
2.2.5 基本培養基配方 13
2.3 微生物形態觀察 14
2.3.1 穿透式電子顯微鏡菌體觀察 14
2.3.2 穿透式電子顯微鏡菌體切片觀察 14
2.3.3 場發射掃描式電子顯微鏡菌落觀察 15
2.3.4 解剖式顯微鏡菌落形態觀察 16
2.3.5 革蘭氏染色 16
2.4 生長與生理生化特性分析 16
2.4.1 生長曲線 16
2.4.2 最佳溫度生長測試 17
2.4.3 最佳鹽度生長測試 17
2.4.4 最佳酸鹼值生長測試 17
2.4.5 氧氣需求測試 18
2.4.6 氧化酶測試 18
2.4.7 觸酶測試 18
2.4.8 運動性觀察-軟洋菜運動性觀察 19
2.4.9 API ZYM 套組試驗 19
2.4 基因體分析 19
2.5.1 全基因體次世代定序 19
2.5.2 基因體序列組裝 20
2.5.3 基因體組裝品質鑑定 20
2.5.4 基因體註解 20
2.5.5 原噬菌體分析 21
2.5.6 第三型分泌蛋白 (Type III Secretion System proteins, T3SS) 21
2.5.7 16S rRNA 親緣關係樹 22
2.5.8 DddD親緣關係樹 22
2.6 DMSP代謝成DMS的能力 22
2.6.1  DMSP共培養 22
2.6.2 鹼調控裂解DMSP減量線製備 23
2.6.3 DMS減量線製備 23
2.6.4 鹼調控裂解DMSP及DMS定量 24
三、結果 26
3.1 菌種分離及初步鑑定 26
3.1.1 PCR初步鑑定結果 26
3.2 形態學分析 26
3.2.1 菌落形態 26
3.2.2 革蘭氏染色 27
3.2.3 穿透式電子顯微鏡菌體形態 27
3.2.4 超薄切片穿透式電子顯微鏡鏡檢 27
3.2.5 場發式發射掃描式電子顯微鏡菌落觀察 28
3.3 生理生化特性分析 28
3.3.1 最適生長鹽度 28
3.3.2 最適生長pH 28
3.3.3 最適生長溫度 29
3.3.4 生長曲線 29
3.3.5 氧氣耐受性 29
3.3.6 氧化酶與催化酶測定 30
3.3.7 軟培養基運動性觀察 30
3.3.8 API ZYM 酵素活性反應套組反應結果 30
3.4 基因體分析 31
3.4.1 全基因體次世代定序 31
3.4.2 基因體組裝結果 31
3.4.3 基因體品質鑑定 31
3.4.4 基因體註解及基因預測 32
3.4.5 原噬菌體分析 32
3.4.6 第三型分泌系統分析 (T3SS) 分析 33
3.4.7  16S rRNA 親緣關係樹 33
3.4.8 DddD親緣關係樹 34
3-5  DMSP分解成DMS的活性 34
3.5.1 DMSP不同濃度試驗 34
3.5.2 鹼調控裂解DMSP減量線 35
3.5.3 鹼調控裂解DMSP定量 35
3.5.4 DMS減量線 36
3.5.5 DMS定量 36
四、討論 38
4.1 電子顯微鏡觀察的菌體形態學 38
4.2 生理生化特徵 39
4.3 基因體功能 41
4.3.1 原噬菌體 41
4.3.2 移動能力及化學趨性 42
4.3.3 滲透壓調節物質 43
4.4  DMSP與DMS定量 43
4.4.1 DMSP消耗量 44
結論與展望 46
圖與表 47
參考文獻 98
dc.language.isozh-TW
dc.title兩株台灣軸孔珊瑚內生桿菌新種之特性與基因體分析zh_TW
dc.titleCharacterization and Genomic Analysis of Two Novel Endozoicomonas Species from coral Acropora in Taiwanen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor謝志豪(Chih-hao Hsieh)
dc.contributor.oralexamcommittee陳俊堯(Chun-Yao Chen),楊姍樺(Shan-Hua Yang),吳羽婷(Yu-Ting Wu)
dc.subject.keyword內生桿菌,軸孔珊瑚,基因體分析,生理特性分析,zh_TW
dc.subject.keywordEndozoiocmonas,Acropora sp.,genomic analysis,physiological analysis,en
dc.relation.page103
dc.identifier.doi10.6342/NTU202001918
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
dc.date.embargo-lift2025-08-10-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
U0001-2707202016002700.pdf30.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved