Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83832
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙玲(Ling Chao)
dc.contributor.authorYu-Shan Changen
dc.contributor.author張郁姍zh_TW
dc.date.accessioned2023-03-19T21:19:47Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-07-26
dc.identifier.citationReferences 1. Chang, Y.S., H.C. Yang, and L. Chao, Formation of Supported Thylakoid Membrane Bioanodes for Effective Electron Transfer and Stable Photocurrent. ACS Appl Mater Interfaces, 2022. 2. Reece, J., et al., Campbell Biology. 10th ed. 2014, New York: Campbell. 3. Allen, M.J., J.A. Curtis, and M.W. Keer, Electrochemical Phenomena Associated with the “Light Reaction” in Chloroplast Thylakoids. Bioelectrochemistry and Bioenergetics, 1974. 1(3): p. 408-417. 4. Mimeault, M. and R. Carpentier, Electrochemical monitoring of electron transfer in thylakoid membranes. Enzyme and Microbial Technology, 1988. 10(11): p. 691-694. 5. Pankratov, D., et al., Supercapacitive Biosolar Cell Driven by Direct Electron Transfer between Photosynthetic Membranes and CNT Networks with Enhanced Performance. ACS Energy Letters, 2017. 2(11): p. 2635-2639. 6. Calkins, J.O., et al., High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy & Environmental Science, 2013. 6(6): p. 1891-1900. 7. Pinhassi, R.I., et al., Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat Commun, 2016. 7: p. 12552. 8. Grattieri, M., H. Chen, and S.D. Minteer, Chloroplast biosolar cell and self-powered herbicide monitoring. Chem Commun (Camb), 2020. 56(86): p. 13161-13164. 9. Hasan, K., et al., Photobioelectrocatalysis of Intact Chloroplasts for Solar Energy Conversion. ACS Catalysis, 2017. 7(4): p. 2257-2265. 10. Amao, Y., et al., Artificial photosynthesis by using chloroplasts from spinach adsorbed on a nanocrystalline TiO2 electrode for photovoltaic conversion. Research on Chemical Intermediates, 2014. 40(9): p. 3257-3265. 11. Pankratova, G., et al., Three-Dimensional Graphene Matrix-Supported and Thylakoid Membrane-Based High-Performance Bioelectrochemical Solar Cell. ACS Applied Energy Materials, 2018. 1(2): p. 319-323. 12. Kirchhofer, N.D., et al., The photobioelectrochemical activity of thylakoid bioanodes is increased via photocurrent generation and improved contacts by membrane-intercalating conjugated oligoelectrolytes. Energy & Environmental Science, 2015. 8(9): p. 2698-2706. 13. Li, G., et al., Interfacial Assembly of Photosystem II with Conducting Polymer Films toward Enhanced Photo-Bioelectrochemical Cells. Advanced Materials Interfaces, 2017. 4(1): p. 1600619. 14. LeBlanc, G., et al., Integration of Photosystem I with Graphene Oxide for Photocurrent Enhancement. Advanced Energy Materials, 2014. 4(9): p. 1301953. 15. Kim, Y.J., et al., Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems. Adv Mater, 2020: p. e2005919. 16. Sekar, N. and R.P. Ramasamy, Recent advances in photosynthetic energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015. 22: p. 19-33. 17. Gombos, Z., et al., The Unsaturation of Membrane Lipids Stabilizes Photosynthesis against Heat Stress. Plant Physiology, 1994. 104(2): p. 563-567. 18. Takeuchi, R., et al., Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes. Bioelectrochemistry, 2018. 122: p. 158-163. 19. Pankratov, D., et al., The influence of surface composition of carbon nanotubes on the photobioelectrochemical activity of thylakoid bioanodes mediated by osmium-complex modified redox polymer. Electrochimica Acta, 2019. 310: p. 20-25. 20. Kanso, H., et al., Sunlight photocurrent generation from thylakoid membranes on gold nanoparticle modified screen-printed electrodes. Journal of Electroanalytical Chemistry, 2018. 816: p. 259-264. 21. Hamidi, H., et al., Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes. ChemSusChem, 2015. 8(6): p. 990-3. 22. Pankratova, G., et al., Supercapacitive Photo-Bioanodes and Biosolar Cells: A Novel Approach for Solar Energy Harnessing. Advanced Energy Materials, 2017. 7(12). 23. Pankratov, D., G. Pankratova, and L. Gorton, Thylakoid membrane–based photobioelectrochemical systems: Achievements, limitations, and perspectives. Current Opinion in Electrochemistry, 2020. 19: p. 49-54. 24. Bunea, A.-I., et al., Micropatterned Carbon-on-Quartz Electrode Chips for Photocurrent Generation from Thylakoid Membranes. ACS Applied Energy Materials, 2018. 1(7): p. 3313-3322. 25. Cai, P., et al., Co-assembly of thylakoid and graphene oxide as a photoelectrochemical composite film for enhanced mediated electron transfer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 555: p. 37-42. 26. Rasmussen, M., A. Wingersky, and S.D. Minteer, Improved Performance of a Thylakoid Bio-Solar Cell by Incorporation of Carbon Quantum Dots. ECS Electrochemistry Letters, 2013. 3(2): p. H1-H3. 27. Hasan, K., et al., Photoelectrochemical Communication between Thylakoid Membranes and Gold Electrodes through Different Quinone Derivatives. ChemElectroChem, 2014. 1(1): p. 131-139. 28. Bard, A.J. and L.R. Faulkner, Electrochemical methods, fundamentals and applications. 2nd ed. 2001, New York: John Wiley & Sons. 29. Orazem, M.E. and T. B., Electrochemical Impedance Spectroscopy. 2008, New Jersey: John Wiley & Sons. 30. Ryu, D., et al., Thylakoid-Deposited Micro-Pillar Electrodes for Enhanced Direct Extraction of Photosynthetic Electrons. Nanomaterials (Basel), 2018. 8(4). 31. Tschortner, J., B. Lai, and J.O. Kromer, Biophotovoltaics: Green Power Generation From Sunlight and Water. Front Microbiol, 2019. 10: p. 866. 32. Bombelli, P., et al., Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy & Environmental Science, 2011. 4(11). 33. McCormick, A.J., et al., Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy & Environmental Science, 2011. 4(11). 34. Kim, H., et al., Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. Journal of Applied Physics, 1999. 86(11): p. 6451-6461. 35. Klein, A., et al., Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment. Materials (Basel), 2010. 3(11): p. 4892-4914. 36. Rajendran, V.M.A., Materials science. 2004, New Delhi: Tata McGraw-Hill Pub. 37. Kahn, A., Fermi level, work function and vacuum level. Materials Horizons, 2016. 3(1): p. 7-10. 38. Thirumoorthi, M. and J. Thomas Joseph Prakash, Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. Journal of Asian Ceramic Societies, 2018. 4(1): p. 124-132. 39. Malik, O. and F.J.D.l. Hidalga-Wade, Surface-Barrier Photodiodes with Transparent Electrodes for High-Performance Detection in the UV-NIR Spectrum, in Optoelectronics - Advanced Device Structures. 2017. 40. Lin, J.J. and Z.Q. Li, Electronic conduction properties of indium tin oxide: single-particle and many-body transport. J Phys Condens Matter, 2014. 26(34): p. 343201. 41. Gao, J., et al., UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires. Nanotechnology, 2011. 22(19): p. 195706. 42. Burstein, E., Anomalous Optical Absorption Limit in InSb. Physical Review, 1954. 93(3): p. 632-633. 43. Moss, T.S., The Interpretation of the Properties of Indium Antimonide. Proceedings of the Physical Society. Section B, 1954. 67(10): p. 775-782. 44. Zardetto, V., et al., Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. Journal of Polymer Science Part B: Polymer Physics, 2011. 49(9): p. 638-648. 45. Biyikli, N., et al., ITO-Schottky Photodiodes for High-Performance Detection in the UV–IR Spectrum. IEEE Journal of Selected Topics in Quantum Electronics, 2004. 10(4): p. 759-765. 46. Lichtenthaler, H.K. and C. Buschmann, Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 2001. 1(1): p. F4.3.1-F4.3.8. 47. Bombelli, P., et al., Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys Chem Chem Phys, 2012. 14(35): p. 12221-9. 48. Escalona-Villalpando, R.A., et al., Clean energy from human sweat using an enzymatic patch. Journal of Power Sources, 2019. 412: p. 496-504. 49. Serp, P., 7.13 - Carbon, in Comprehensive Inorganic Chemistry II (Second Edition), J. Reedijk and K. Poeppelmeier, Editors. 2013, Elsevier: Amsterdam. p. 323-369. 50. Kittel, C., Introduction to solid state physics. 2004, Hoboken, NJ: John Wiley & Sons. 51. Klemenz, S., et al., The Role of Delocalized Chemical Bonding in Square-Net-Based Topological Semimetals. J Am Chem Soc, 2020. 142(13): p. 6350-6359. 52. Danielsson, R., et al., Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochim Biophys Acta, 2004. 1608(1): p. 53-61. 53. Badura, A., et al., Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels. Energy & Environmental Science, 2011. 4(7): p. 2435-2440. 54. Bengis, C. and N. Nelson, Purification and properties of the photosystem I reaction center from chloroplasts. Journal of Biological Chemistry, 1975. 250(8): p. 2783-2788. 55. R?gner, M., P.J. Nixon, and B.A. Diner, Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. Journal of Biological Chemistry, 1990. 265(11): p. 6189-6196. 56. Kuhl, H., et al., Towards Structural Determination of the Water-splitting Enzyme. Journal of Biological Chemistry, 2000. 275(27): p. 20652-20659. 57. Badura, A., et al., Photo?induced electron transfer between photosystem 2 via cross?linked redox hydrogels. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2008. 20(10): p. 1043-1047. 58. Kern, J., et al., Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2005. 1706(1): p. 147-157. 59. Arnon, D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 1949. 24(1): p. 1. 60. Fleischman, D., Chapter 51 - Photosynthesis, in Cell Physiology Source Book (Fourth Edition), N. Sperelakis, Editor. 2012, Academic Press: San Diego. p. 909-924. 61. Austin, J.R. and L.A. Staehelin, Three-Dimensional Architecture of Grana and Stroma Thylakoids of Higher Plants as Determined by Electron Tomography. Plant Physiology, 2011. 155(4): p. 1601-1611. 62. Nelson, D.L. and M.M. Cox, Lehninger Principles of Biochemistry. 2012, New York: W.H. Freeman. 63. Boron, W.F. and E.L. Boulpaep, Medical Physiology. third ed. 2017: Elsevier 64. Szabo, I. and C. Spetea, Impact of the ion transportome of chloroplasts on the optimization of photosynthesis. J Exp Bot, 2017. 68(12): p. 3115-3128. 65. Kyawt Nwe, K., et al., Determination of Semiconductor Type and Optical Properties of SnO2:F(FTO) and SnO2:In(ITO). International Journal of Scientific and Research Publications (IJSRP), 2019. 9(2). 66. Yang, S.-H., et al., Enhanced optical and electrical properties of ITO on a PET substrate by hydrogen plasma and HCl treatment. Journal of Physics D: Applied Physics, 2013. 46(12). 67. Ameta, R., et al., Photocatalysis, in Advanced Oxidation Processes for Waste Water Treatment. 2018. p. 135-175. 68. Miyasaka, T., et al., PHOTOELECTROCHEMICAL STUDY OF CHLOROPHYLL-a MULTILAYERS ON SnO2 ELECTRODE. Photochemistry and Photobiology, 1980. 32(2): p. 217-222. 69. Miyasaka, T., et al., Light energy conversion with chlorophyll monolayer electrodes. In vitro electrochemical simulation of photosynthetic primary processes. Journal of the American Chemical Society, 1978. 100(21): p. 6657-6665. 70. Kobayashi, M., et al., Redox potential of chlorophyll d in vitro. Biochim Biophys Acta, 2007. 1767(6): p. 596-602. 71. Wakerley, D.W. and E. Reisner, Oxygen-tolerant proton reduction catalysis: much O2 about nothing? Energy & Environmental Science, 2015. 8(8): p. 2283-2295. 72. Muthukumar, C., et al., Statistical analysis of photodegradation of methylene blue dye under natural sunlight. Optical Materials, 2021. 122. 73. Borg, G., S. Kiss, and A. Rochman, Filament Development for Laser Assisted FFF 3D Printing. Journal of Manufacturing and Materials Processing, 2021. 5(4). 74. Ishikawa, R., et al., Layer dependency of graphene layers in perovskite/graphene solar cells. Carbon, 2021. 172: p. 597-601.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83832-
dc.description.abstract光合作用的起始步驟是將光轉換為在類囊體膜中移動的光電子,透過結合類囊體膜與基材製作生物陽極,該光電子可被提取且其後續應用多元,其中光燃料電池是常見的一個。目前本領域多數研究著重利用各種材料來修飾基材以增加光電流,極少人研究類囊體膜的結構與基材本身對紫外光的吸收會如何影響光電流。本研究透過滲透壓將類囊體膨脹,並將其在電極上鋪成平面支撐式膜來增進光電子在膜與基材間的傳遞。透過螢光影像我們觀察到類囊體透過滲透壓控制成功膨脹,且形成之平面支撐式膜具有高表面積;此外我們利用電化學阻抗譜發現平面支撐式膜製成的生物陽極較以原始類囊體膜製成者具有更小的光電子傳遞障礙,這個結果意味平面支撐式膜可以促進光電子傳遞。此外我們亦將類囊體膜和濺鍍於聚對苯二甲酸乙二酯的氧化銦錫(ITO-PET)或碳紙結合,製作類囊體光燃料電池,並透過測量I-V曲線與功率曲線來了解這些電池的特性,我們發現若電極基材的能隙在紫外光區間,將紫外光濾除可以增進光電流和功率。zh_TW
dc.description.abstractPhotosynthesis is initiated by the conversion of light to photoelectrons that travel in the thylakoid membrane (TM). By combining the TM and electrode substrates to construct bioanodes, the photoelectrons may be extracted for many applications. To increase the photocurrent collected, most studies in this research field currently focus on the modification of the electrode substrates with various materials. Seldom studies have examined how the physical structure of TM and the UV light absorption of the electrode substrates could affect the photocurrent collection. Here, we improved the transfer of photoelectrons from the TM to the electrode substrates by depositing expanded thylakoids onto a planar supported membrane, denoted by expanded-TM, onto an electrode substrate. Through fluorescence images, we observed that the thylakoids were successfully expanded via osmotic pressure and the expanded-TM possessed high surface area. Moreover, with electrochemical impedance spectroscopy, we found the TM-based bioanode constructed with the expanded-TM showed a lower photoelectron transfer resistance compared to that constructed by depositing natural stacked thylakoids. The result suggests that the expanded-TM could facilitate more photoelectron transfer between the TM and the electrode substrates. In addition, we also integrated TM with tin-doped indium oxide coated polyethylene terephthalate (ITO-PET) or carbon paper (CP) to construct TM-based photo fuel cells and removed UV light during illumination. Through measuring I-V curves and power curves of the TM-based photo fuel cells, we found blocking out the UV light during illumination enhanced photocurrents and thus powers when the electrode substrate has a band gap in the UV region. Part of the results in this thesis is reprinted with permission from Formation of Supported Thylakoid Membrane Bioanodes for Effective Electron Transfer and Stable Photocurrent by Yu-Shan Chang, Hao-Cin Yang, and Ling Chao, ACS Applied Materials & Interfaces 2022 14 (19), 22216-22224. DOI:10.1021/acsami.2c04764. Copyright 2022 American Chemical Society.[1](Article Link: https://pubs.acs.org/articlesonrequest/AOR-3TGFSV3FTNVVQPJJ36M3 )en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:19:47Z (GMT). No. of bitstreams: 1
U0001-2607202217202200.pdf: 3684222 bytes, checksum: 79e5bd207519b2dbc7cf01d0253a6e02 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsTable of Content 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv Table of Content vi List of Figures viii List of Tables xii Chapter 1. Introduction 1 1.1 The Light Reactions of Photosynthesis 1 1.2 Bioanodes 3 1.2.1 Common photosynthetic components of bioanodes 4 1.2.2 Development and Challenges of TM-based bioanodes 4 1.3 Electrochemical Impedance Spectroscopy (EIS) 6 1.4 TM-based Photo Fuel Cells 12 1.4.1 ITO-PET as the Electrode Substrate for Photo Fuel Cells 14 1.4.2 Carbon Paper as the Electrode Substrate for Photo Fuel Cells 17 Chapter 2. Materials and Methods 19 2.1 Materials 19 2.2 Apparatus 20 2.3 Preparation of Polydimethylsiloxane (PDMS) 22 2.4 Fabrication of Gold Electrodes 22 2.5 Preparation and Expansion of Thylakoids 23 2.6 Pretreatment of Electrode Substrates 25 2.7 Deposition of Thylakoid Membranes 25 2.8 Microscope Images 27 2.9 Electrochemical Measurements 27 Chapter 3. Results and Discussions 30 3.1 Physical Structures of Thylakoids and Deposited Thylakoids 30 3.1.1 Surface Topology of Deposited Thylakoids 34 3.2 Electrochemical Impedance Spectroscopy (EIS) 38 3.2.1 Construction of An Equivalent Circuit 41 3.2.2 Fitting Results 43 3.3 Band gap of ITO-PET 44 3.3.1 TM/ITO-PET Photo Fuel Cells 46 3.3.2 Photocurrents of TM/ITO-PET Photo Fuel Cells Enhanced by Blocking Out UV Light 49 3.3.3 Broad Light Absorption of Carbon Paper 54 3.3.4 TM/CP Photo Fuel Cells 55 3.3.5 Photocurrents of TM/CP Photo Fuel Cells Reduced by Blocking Out UV Light 58 Chapter 4. Conclusion 62 References 64
dc.language.isoen
dc.subject光燃料電池zh_TW
dc.subject類囊體zh_TW
dc.subject類囊體膜zh_TW
dc.subject光合作用zh_TW
dc.subject生物陽極zh_TW
dc.subjectThylakoiden
dc.subjectPhoto Fuel Cellen
dc.subjectBioanodeen
dc.subjectPhotosynthesisen
dc.subjectThylakoid Membraneen
dc.title以支撐式類囊體膜製備生物陽極與其在可撓式光燃料電池之應用zh_TW
dc.titleUsing Supported Thylakoid Membrane to Prepare Bioanodes and the Application in Flexible Photo Fuel Cellsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝之真(Chih-Chen Hsieh),闕居振(Chu-Chen Chueh)
dc.subject.keyword類囊體,類囊體膜,光合作用,生物陽極,光燃料電池,zh_TW
dc.subject.keywordThylakoid,Thylakoid Membrane,Photosynthesis,Bioanode,Photo Fuel Cell,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202201742
dc.rights.note未授權
dc.date.accepted2022-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2607202217202200.pdf
  未授權公開取用
3.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved