Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳美如(Mei-Ru Chen)
dc.contributor.authorDan-fang Weien
dc.contributor.author魏丹芳zh_TW
dc.date.accessioned2023-03-19T21:19:24Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-07-28
dc.identifier.citationAmon, W., and P.J. Farrell. 2005. Reactivation of Epstein-Barr virus from latency. Rev Med Virol. 15:149-156. Bhende, P.M., W.T. Seaman, H.J. Delecluse, and S.C. Kenney. 2004. The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet. 36:1099-1104. Bouazoune, K., A. Mitterweger, G. L?ngst, A. Imhof, A. Akhtar, P.B. Becker, and A. Brehm. 2002. The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. Embo j. 21:2430-2440. Brady, G., G.J. MacArthur, and P.J. Farrell. 2007. Epstein-Barr virus and Burkitt lymphoma. J Clin Pathol. 60:1397-1402. Chang, L.K., J.Y. Chung, Y.R. Hong, T. Ichimura, M. Nakao, and S.T. Liu. 2005. Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res. 33:6528-6539. Chang, Y.N., D.L. Dong, G.S. Hayward, and S.D. Hayward. 1990. The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol. 64:3358-3369. Chen, Y., Q. Wu, S.Y. Song, and W.J. Su. 2002. Activation of JNK by TPA promotes apoptosis via PKC pathway in gastric cancer cells. World J Gastroenterol. 8:1014-1018. Clapier, C.R., and B.R. Cairns. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem. 78:273-304. Darr, C.D., A. Mauser, and S. Kenney. 2001. Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol. 75:6135-6142. Dembowski, J.A., S.E. Dremel, and N.A. DeLuca. 2017. Replication-Coupled Recruitment of Viral and Cellular Factors to Herpes Simplex Virus Type 1 Replication Forks for the Maintenance and Expression of Viral Genomes. PLoS Pathog. 13:e1006166. Dheekollu, J., A. Wiedmer, K. Ayyanathan, J.S. Deakyne, T.E. Messick, and P.M. Lieberman. 2021. Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell. 184:643-654.e613. Dunmire, S.K., K.A. Hogquist, and H.H. Balfour. 2015. Infectious Mononucleosis. Curr Top Microbiol Immunol. 390:211-240. Flanagan, J.F., L.Z. Mi, M. Chruszcz, M. Cymborowski, K.L. Clines, Y. Kim, W. Minor, F. Rastinejad, and S. Khorasanizadeh. 2005. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature. 438:1181-1185. Gao, X., K. Ikuta, M. Tajima, and T. Sairenji. 2001. 12-O-tetradecanoylphorbol-13-acetate induces Epstein-Barr virus reactivation via NF-kappaB and AP-1 as regulated by protein kinase C and mitogen-activated protein kinase. Virology. 286:91-99. Gonnella, R., M. Granato, A. Farina, R. Santarelli, A. Faggioni, and M. Cirone. 2015. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction. Biochim Biophys Acta. 1853:1586-1595. Hall, J.A., and P.T. Georgel. 2007. CHD proteins: a diverse family with strong ties. Biochem Cell Biol. 85:463-476. Hota, S.K., and B.G. Bruneau. 2016. ATP-dependent chromatin remodeling during mammalian development. Development. 143:2882-2897. Houen, G., and N.H. Trier. 2020. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol. 11:587380. Johannsen, E., M. Luftig, M.R. Chase, S. Weicksel, E. Cahir-McFarland, D. Illanes, D. Sarracino, and E. Kieff. 2004. Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A. 101:16286-16291. Kirschner, A.N., J. Omerovic, B. Popov, R. Longnecker, and T.S. Jardetzky. 2006. Soluble Epstein-Barr virus glycoproteins gH, gL, and gp42 form a 1:1:1 stable complex that acts like soluble gp42 in B-cell fusion but not in epithelial cell fusion. J Virol. 80:9444-9454. Kraus, R.J., X. Yu, B.A. Cordes, S. Sathiamoorthi, T. Iempridee, D.M. Nawandar, S. Ma, J.C. Romero-Masters, K.G. McChesney, Z. Lin, K.R. Makielski, D.L. Lee, P.F. Lambert, E.C. Johannsen, S.C. Kenney, and J.E. Mertz. 2017. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog. 13:e1006404. Lai, A.Y., and P.A. Wade. 2011. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer. 11:588-596. Lieberman, P.M., and A.J. Berk. 1991. The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev. 5:2441-2454. Lin, T.Y., Y.Y. Chu, Y.C. Yang, S.W. Hsu, S.T. Liu, and L.K. Chang. 2014. MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One. 9:e90698. Low, J.K.K., A.P.G. Silva, M. Sharifi Tabar, M. Torrado, S.R. Webb, B.L. Parker, M. Sana, C. Smits, J.W. Schmidberger, L. Brillault, M.J. Jackman, D.C. Williams, Jr., G.A. Blobel, S.B. Hake, N.E. Shepherd, M.J. Landsberg, and J.P. Mackay. 2020. The Nucleosome Remodeling and Deacetylase Complex Has an Asymmetric, Dynamic, and Modular Architecture. Cell Rep. 33:108450. Marfella, C.G., and A.N. Imbalzano. 2007. The Chd family of chromatin remodelers. Mutat Res. 618:30-40. Masoud, G.N., and W. Li. 2015. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378-389. Matsuura, H., A.N. Kirschner, R. Longnecker, and T.S. Jardetzky. 2010. Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proc Natl Acad Sci U S A. 107:22641-22646. Meng, M., S. Zhang, X. Dong, W. Sun, Y. Deng, W. Li, R. Li, D. Annane, Z. Wu, and D. Chen. 2022. COVID-19 associated EBV reactivation and effects of ganciclovir treatment. Immun Inflamm Dis. 10:e597. Murawska, M., and A. Brehm. 2011. CHD chromatin remodelers and the transcription cycle. Transcription. 2:244-253. Naik, N.G., T.H. Nguyen, L. Roberts, L.T. Fischer, K. Glickman, G. Golas, B. Papp, and Z. Toth. 2020. Epigenetic factor siRNA screen during primary KSHV infection identifies novel host restriction factors for the lytic cycle of KSHV. PLoS Pathog. 16:e1008268. Nijland, M.L., M.J. Kersten, S.T. Pals, F.J. Bemelman, and I.J. Ten Berge. 2016. Epstein-Barr Virus-Positive Posttransplant Lymphoproliferative Disease After Solid Organ Transplantation: Pathogenesis, Clinical Manifestations, Diagnosis, and Management. Transplant Direct. 2:e48. Paolucci, S., I. Cassaniti, F. Novazzi, L. Fiorina, A. Piralla, G. Comolli, R. Bruno, R. Maserati, R. Gulminetti, S. Novati, F. Mojoli, and F. Baldanti. 2021. EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count. Int J Infect Dis. 104:315-319. Pe?a, P.V., F. Davrazou, X. Shi, K.L. Walter, V.V. Verkhusha, O. Gozani, R. Zhao, and T.G. Kutateladze. 2006. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature. 442:100-103. Polo, S.E., A. Kaidi, L. Baskcomb, Y. Galanty, and S.P. Jackson. 2010. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. Embo j. 29:3130-3139. Rea, D., H.J. Delecluse, S.J. Hamilton-Dutoit, L. Marelle, I. Joab, L. Edelman, J.F. Finet, and M. Raphael. 1994. Epstein-Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin's lymphomas. French Study Group of Pathology for HIV-associated Tumors. Ann Oncol. 5 Suppl 1:113-116. Reyes, A.A., R.D. Marcum, and Y. He. 2021. Structure and Function of Chromatin Remodelers. J Mol Biol. 433:166929. Russo, R., V. Russo, F. Cecere, M. Valletta, M.T. Gentile, L. Colucci-D'Amato, C. Angelini, A. Riccio, P.V. Pedone, A. Chambery, and I. Baglivo. 2021. ZBTB2 protein is a new partner of the Nucleosome Remodeling and Deacetylase (NuRD) complex. Int J Biol Macromol. 168:67-76. Saber, S., M. Nasr, A.S. Saad, A.A.E. Mourad, N.A. Gobba, A. Shata, A.M. Hafez, R.N. Elsergany, H.I. Elagamy, E. El-Ahwany, N.A. Amin, S. Girgis, Y.H.A. Elewa, M.H. Mahmoud, G.E. Batiha, M.A. El-Rous, I. Kamal, M.M.Y. Kaddah, and A.E. Khodir. 2021. Albendazole-loaded cubosomes interrupt the ERK1/2-HIF-1α-p300/CREB axis in mice intoxicated with diethylnitrosamine: A new paradigm in drug repurposing for the inhibition of hepatocellular carcinoma progression. Biomed Pharmacother. 142:112029. Salamun, S.G., J. Sitz, C.F. De La Cruz-Herrera, J. Yockteng-Melgar, E. Marcon, J. Greenblatt, A. Fradet-Turcotte, and L. Frappier. 2019. The Epstein-Barr Virus BMRF1 Protein Activates Transcription and Inhibits the DNA Damage Response by Binding NuRD. J Virol. 93. Sami, A.A., S. Arabia, R.H. Sarker, and T. Islam. 2021. Deciphering the role of helicases and translocases: A multifunctional gene family safeguarding plants from diverse environmental adversities. Curr Plant Biol. 26. Shi, X., T. Hong, K.L. Walter, M. Ewalt, E. Michishita, T. Hung, D. Carney, P. Pe?a, F. Lan, M.R. Kaadige, N. Lacoste, C. Cayrou, F. Davrazou, A. Saha, B.R. Cairns, D.E. Ayer, T.G. Kutateladze, Y. Shi, J. C?t?, K.F. Chua, and O. Gozani. 2006. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature. 442:96-99. Sillibourne, J.E., B. Delaval, S. Redick, M. Sinha, and S.J. Doxsey. 2007. Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity. Mol Biol Cell. 18:3667-3680. Spruijt, C.G., S.J. Bartels, A.B. Brinkman, J.V. Tjeertes, I. Poser, H.G. Stunnenberg, and M. Vermeulen. 2010. CDK2AP1/DOC-1 is a bona fide subunit of the Mi-2/NuRD complex. Mol Biosyst. 6:1700-1706. Straus, S.E., J.I. Cohen, G. Tosato, and J. Meier. 1993. NIH conference. Epstein-Barr virus infections: biology, pathogenesis, and management. Ann Intern Med. 118:45-58. Su, M.T., Y.T. Wang, Y.J. Chen, S.F. Lin, C.H. Tsai, and M.R. Chen. 2017. The SWI/SNF Chromatin Regulator BRG1 Modulates the Transcriptional Regulatory Activity of the Epstein-Barr Virus DNA Polymerase Processivity Factor BMRF1. J Virol. 91. Sun, K., K. Jia, H. Lv, S.Q. Wang, Y. Wu, H. Lei, and X. Chen. 2020. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front Oncol. 10:583463. Sundaramoorthy, R., A.L. Hughes, H. El-Mkami, D.G. Norman, H. Ferreira, and T. Owen-Hughes. 2018. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. Elife. 7. Terhune, S.S., N.J. Moorman, I.M. Cristea, J.P. Savaryn, C. Cuevas-Bennett, M.P. Rout, B.T. Chait, and T. Shenk. 2010. Human cytomegalovirus UL29/28 protein interacts with components of the NuRD complex which promote accumulation of immediate-early RNA. PLoS Pathog. 6:e1000965. Tsai, P.F., S.J. Lin, P.L. Weng, S.C. Tsai, J.H. Lin, Y.C. Chou, and C.H. Tsai. 2011. Interplay between PKCδ and Sp1 on histone deacetylase inhibitor-mediated Epstein-Barr virus reactivation. J Virol. 85:2373-2385. Verma, D., T.M. Church, and S. Swaminathan. 2021. Epstein-Barr Virus Lytic Replication Induces ACE2 Expression and Enhances SARS-CoV-2 Pseudotyped Virus Entry in Epithelial Cells. J Virol. 95:e0019221. Vockerodt, M., F.Z. Cader, C. Shannon-Lowe, and P. Murray. 2014. Epstein-Barr virus and the origin of Hodgkin lymphoma. Chin J Cancer. 33:591-597. Wagner, L.M., and N.A. DeLuca. 2013. Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription. PLoS One. 8:e78242. Wang, Y., H. Zhang, Y. Chen, Y. Sun, F. Yang, W. Yu, J. Liang, L. Sun, X. Yang, L. Shi, R. Li, Y. Li, Y. Zhang, Q. Li, X. Yi, and Y. Shang. 2009. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell. 138:660-672. White, D.W., R. Suzanne Beard, and E.S. Barton. 2012. Immune modulation during latent herpesvirus infection. Immunol Rev. 245:189-208. Whitley, R.J. 1996. Herpesviruses. In Medical Microbiology. S. Baron, editor. University of Texas Medical Branch at Galveston Copyright ? 1996, The University of Texas Medical Branch at Galveston., Galveston (TX). Xue, Y., J. Wong, G.T. Moreno, M.K. Young, J. C?t?, and W. Wang. 1998. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell. 2:851-861. Yen, W.F., R. Sharma, M. Cols, C.M. Lau, A. Chaudhry, P. Chowdhury, W.T. Yewdell, B. Vaidyanathan, A. Sun, M. Coffre, J.N. Pucella, C.C. Chen, M. Jasin, J.C. Sun, A.Y. Rudensky, S.B. Koralov, and J. Chaudhuri. 2019. Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Rep. 27:1472-1486.e1475. Yokoyama, H., K. Nakos, R. Santarella-Mellwig, S. Rybina, J. Krijgsveld, M.D. Koffa, and I.W. Mattaj. 2013. CHD4 is a RanGTP-dependent MAP that stabilizes microtubules and regulates bipolar spindle formation. Curr Biol. 23:2443-2451. Young, K.A., X.S. Chen, V.M. Holers, and J.P. Hannan. 2007. Isolating the Epstein-Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21). J Biol Chem. 282:36614-36625. Young, L.S., and C.W. Dawson. 2014. Epstein-Barr virus and nasopharyngeal carcinoma. Chin J Cancer. 33:581-590. Zerby, D., C.J. Chen, E. Poon, D. Lee, R. Shiekhattar, and P.M. Lieberman. 1999. The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus. Mol Cell Biol. 19:1617-1626.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83822-
dc.description.abstractEB病毒(EBV)是人類第四型皰疹病毒,感染後會引起傳染性單核細胞增多癥,並與各種惡性腫瘤高度相關。EBV的生命周期分為潛伏期和溶裂期,分別具有不同的基因表現。病毒從潛伏期被激活後,病毒DNA聚合?輔助因子BMRF1會穩定DNA聚合?BALF5與DNA的結合,以促進EBV的DNA復製。此外,BMRF1作為一個轉錄調節因子,會激活幾個病毒溶裂期早期和晚期基因的表達。在我們以前的研究中,通過免疫沈澱法結合質譜分析,染色質重塑復合物NuRD的成員CHD4和RBBP4被確定與BMRF1間存在相互作用。本實驗中我們會進一步探討CHD4在EBV從潛伏期到溶裂期轉變中的調控作用。在此,我們發現利用shRNA降低CHD4的表基因現,減少了TW01-EBV和AGS-BX1細胞中EBV溶裂期蛋白質表現量。用shRNA抗性的CHD4(rCHD4)進行回補實驗,可以拯救Rta誘導的TW01-EBV中CHD4的表達水平。此外,熒光素?報導基因檢測實驗顯示,CHD4以ATP?活性依賴的方式促進了Rta介導的Zta啟動子的反式激活和Zta,Rta介導的BMRF1啟動子的反式激活。此外,CHD4以劑量依賴的方式影響Zta介導的BMRF1啟動子的轉活性。最後,Rta、Zta和BMRF1分別與CHD4免疫共沈澱。總之,這些結果表明,CHD4通過促進Zta和BMRF1的啟動子活性來支持EB病毒溶裂期的基因表現。其他NuRD成員是否參與在其中則需要進一步研究。zh_TW
dc.description.abstractEpstein-Barr virus (EBV) is a gamma-herpesvirus that causes infectious mononucleosis and is highly associated with various malignancies. The life cycle of EBV is divided into latent and lytic stages with different gene expression profiles. Upon lytic reactivation, BMRF1, the viral DNA polymerase processivity factor, stabilizes the DNA binding ability of DNA polymerase BALF5 to facilitate EBV DNA replication. In addition, BMRF1 functions as a transcriptional regulator to activate the expression of several viral early and late genes. In our previous study, CHD4 and RBBP4, the components of the chromatin remodeling complex NuRD, were identified as BMRF1-interacting proteins by IP-mass spectrometry analysis. We are interested in further exploring the regulatory role of CHD4 in the EBV lytic cycle switch. Here we found knockdown of CHD4 reduced the lytic protein expression in both EBV-reactivated TW01-EBV and AGS-BX1cells. Complementation with shRNA-resistant form of CHD4 (rCHD4) rescue the expression level of CHD4 in Rta-induced TW01-EBV. Furthermore, luciferase reporter assays reveal that CHD4 contributes to Rta-mediated transactivation of Zta promoter and Zta- and Rta-mediated transactivation on BMRF1 promoter in an ATPase activity dependent manner. In addition, CHD4 affect Zta-mediated transactivation on BMRF1 in a dose-dependent manner. Moreover, Rta, Zta and BMRF1 are co-immunoprecipitated with CHD4 respectively. Taken together, the results suggest that CHD4 supports EBV lytic cycle by promoting the promoter activity of Zta and BMRF1. The role of other NuRD components in EBV lytic cycle needs further investigation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:19:24Z (GMT). No. of bitstreams: 1
U0001-2707202214042000.pdf: 11515078 bytes, checksum: 37b856223e726d3483096cc92e58602e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 2 中文摘要 3 ABSTRACT 4 1. Introduction 9 1.1. Epstein-Barr Virus 9 1.1.1. Latent stage 10 1.1.2. Lytic switch 10 1.1.3. Reactivation of EBV 11 1.1.4. EBV associated diseases 12 1.2. ATP-dependent chromatin remodeling 13 1.2.1. The CHD (Chromatin-Helicase-DNA binding) family 13 1.3. Nucleosome remodeling and deacetylase (NuRD) complex 14 1.3.1. CHD4/ NuRD 15 1.3.2. Herpesvirus and NuRD 15 1.4. Aims of this study 16 2. MATERIALS AND METHODS 18 2.1. Antibodies 18 2.2. Primers 18 2.3. Plasmids 19 2.4. Cell lines and induction into lytic cycle 21 2.5. Lentivirus shRNA knockdown 21 2.6. Lytic cycle induction 22 2.7. Cell transfection 22 2.8. Co-immunoprecipitation 23 2.9. Luciferase reporter assay 23 2.10. Preparation of whole cell extracts for western blot 24 2.11. SDS-PAGE and Western blot analysis 24 2.12. Intracellular EBV DNA extraction and quantitative real-time PCR (q-PCR) analysis 25 3. Results 27 3.1. shRNA-mediated knockdown of CHD4 affects EBV lytic replication in both TW01-EBV and AGS-BX1 cells 27 3.2. shRNA-mediated knockdown of CHD4 in Akata cells did not affect lytic protein expression after anti-human IgG treatment 28 3.3. Complementation of rCHD4 rescues EBV lytic replication in CHD4-KD TWO1-EBV cells 29 3.4. The role of CHD4 in Zta and Rta mediated transactivation on BMRF1 promoter 31 3.5. Zta, Rta and BMRF1 were co-immunoprecipitated with CHD4 in 293T cells respectively 34 4. Discussion 36 5. Figures 41 41 Figure 1. shRNA-mediated knockdown of CHD4 attenuates Rta transfection-mediated EBV reactivation and mildly affects EBV lytic replication in TSA-induced TW01-EBV cells. 41 Figure 2. shRNA-mediated knockdown of CHD4 significantly reduced EBV lytic replication in DFO and pSIN-Zta transduced but not in TSA treated AGS-BX1 cells. 43 Figure 3. shRNA-mediated knockdown of CHD4 does not affect anti-human IgG reactivated lytic gene expression in Akata cells. 45 Figure 4. The design of shRNA-resistant CHD4 and ATPase-dead CHD4. 46 Figure 5. Complementation of rCHD4 rescues EBV lytic replication in CHD4-KD TWO1-EBV cells. 48 Figure 6. The shRNA-mediated knockdown of CHD4 significantly reduces the transactivation activity of Rta on the Zta promoter. 49 Figure 7. shRNA-mediated knockdown of CHD4 did not significantly affect the transactivation activity of Rta on ZII element in reporter assay. 51 Figure 8. Transactivation activities of Rta and Zta on BMRF1 promoter showed different results in shCHD4 knockdown and rescue experiments. 53 Figure 9. The pattern of Zta and Rta co-transactivation on pBMRF1 is similar to that of Rta on pBMRF1. 55 Figure 10. shRNA-mediated knockdown of CHD4 significantly decreased the transactivation activities of Zta on Zta responsive elements and Rta on Rta responsive element of BMRF1 promoter. 57 Figure 11. Rta, Zta, and BMRF1 was co-immunoprecipitated with CHD4 respectively in transiently transfected 293T cells. 58 Figure 12. Rta was co-immunoprecipitated with CHD4 in 293T cells. 60 Figure 13. The hypothetic model for the regulation of CHD4 on pBMRF1 promoters. 61 Reference 62
dc.language.isoen
dc.title染色質重塑蛋白CHD4在EB病毒溶裂期的調控zh_TW
dc.titleThe role of chromatin remodeler CHD4 in EBV lytic cycleen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳紀如(Chi-Ju Chen),張麗冠(Li-Kwan Chang),李建國(Chien-Kuo Li)
dc.subject.keywordEB病毒,染色質重塑,CHD4,Zta,BMRF1輔助聚合?因子,zh_TW
dc.subject.keywordEBV,chromatin remodeling,CHD4,Zta,BMRF1,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202201773
dc.rights.note未授權
dc.date.accepted2022-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
U0001-2707202214042000.pdf
  目前未授權公開取用
11.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved