請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83812
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳家揚(Chia-Yang Chen) | |
dc.contributor.author | You-Ru Chang | en |
dc.contributor.author | 張又儒 | zh_TW |
dc.date.accessioned | 2023-03-19T21:19:02Z | - |
dc.date.copyright | 2022-10-17 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-27 | |
dc.identifier.citation | 1. Latini, G., Monitoring phthalate exposure in humans. Clinica Chimica Acta, 2005. 361(1-2): p. 20-9. 2. Heudorf, U., Mersch-Sundermann, V.,Angerer, J., Phthalates: toxicology and exposure. International Journal of Hygiene and Environmental Health, 2007. 210(5): p. 623-634. 3. Frery, N., Santonen, T., Porras, S.P., Fucic, A., Leso, V., Bousoumah, R., et al., Biomonitoring of occupational exposure to phthalates: a systematic review. International Journal of Hygiene and Environmental Health, 2020. 229: p. 22. 4. Organisation for economic co-operation and development. Socio-economic assessment of phthalates. Available from: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/WKP(2018)7&docLanguage=En. Accessed [13 April 2022] 5. Wang, Y., Zhu, H.,Kannan, K., A Review of Biomonitoring of Phthalate Exposures. Toxics, 2019. 7(2): p. 21-48. 6. Li, X., Zhang, Q., Chen, L., Zhaoa, J.,Lia, H., Determination of 16 phthalate esters in sesame oil by isotope dilution liquid chromatography with tandem mass spectrometry. Analytical Methods, 2018. 10(26): p. 3197-3206. 7. Sui, H.X., Zhang, L., Wu, P.G., Song, Y., Yong, L., Yang, D.J., et al., Concentration of di(2-ethylhexyl) phthalate (DEHP) in foods and its dietary exposure in China. International Journal of Hygiene and Environmental Health, 2014. 217(6): p. 695-701. 8. Chen, D.W., Miao, H.J., Zou, J.H., Miao, H., Lu, L., Zhao, Y.F., et al., Determination of phthalate esters in liquor by high resolution mass spectrometry. Analytical Letters, 2015. 48(5): p. 739-751. 9. Lemos, L., Gantiva, L., Kaylor, C., Sanchez, A.,Quinete, N., American oysters as bioindicators of emerging organic contaminants in Florida, United States. Science of the Total Environment, 2022. 835: p. 16. 10. Ma, Y.W., Hashi, Y., Ji, F.,Lin, J.M., Determination of phthalates in fruit jellies by dispersive SPE coupled with HPLC-MS. Journal of Separation Science, 2010. 33(2): p. 251-257. 11. Xu, D.M., Deng, X.J., Fang, E.H., Zheng, X.H., Zhou, Y., Lin, L.Y., et al., Determination of 23 phthalic acid esters in food by liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2014. 1324: p. 49-56. 12. Cao, X.L., Phthalate esters in foods: sources, occurrence, and analytical methods. Comprehensive Reviews in Food Science and Food Safety, 2010. 9(1): p. 21-43. 13. Castillo, M.,Barcel?, D., Analysis of industrial effluents to determine endocrine-disrupting chemicals. TrAC Trends in Analytical Chemistry, 1997. 16(10): p. 574-583. 14. Pe?alver, A., Pocurull, E., Borrull, F.,Marc?, R.M., Determination of phthalate esters in water samples by solid-phase microextraction and gas chromatography with mass spectrometric detection. Journal of Chromatography A 2000. 872(1-2): p. 191-201. 15. Serrano, S.E., Braun, J., Trasande, L., Dills, R.,Sathyanarayana, S., Phthalates and diet: a review of the food monitoring and epidemiology data. Environmental Health, 2014. 13(1): p. 43. 16. Fan, Y.L., Ma, M., Cui, H.Z., Liu, S., Yang, M.L.,Hou, X.F., Simultaneous determination of 22 phthalate esters in polystyrene food-contact materials by ultra-performance convergence chromatography with tandem mass spectrometry. Journal of Separation Science, 2018. 41(14): p. 11. 17. Mirparizi, E., Rajabi, M., Bazregar, M.,Asghari, A., Centrifugeless ultrasound-assisted emulsification microextraction based on salting-out phenomenon followed by high-performance liquid chromatography for the simple determination of phthalate esters in aqueous samples. Journal of Separation Science, 2017. 40(9): p. 2022-2029. 18. Wu, P., Yang, D., Zhang, L., Shen, X., Pan, X., Wang, L., et al., Simultaneous determination of 17 phthalate esters in edible vegetable oils by GC-MS with silica/PSA-mixed solid-phase extraction. Journal of Separation Science, 2012. 35(21): p. 2932-2939. 19. Farajzadeh, M.A., Sorouraddin, S.M.,Mogaddam, M.R.A., Microextraction methods for the determination of phthalate esters in liquid samples: A review. Journal of Separation Science, 2015. 38(14): p. 2470-2487. 20. Alp, A.C.,Yerlikaya, P., Phthalate ester migration into food: effect of packaging material and time. European Food Research and Technology, 2020. 246(3): p. 425-435. 21. Cao, X.L., Zhao, W., Churchill, R.,Hilts, C., Occurrence of Di-(2-ethylhexyl) adipate and phthalate plasticizers in samples of meat, fish, and cheese and their packaging films. Journal of Food Protection, 2014. 77(4): p. 610-620. 22. Tang, Z.T., Gong, Z.G., Jia, W., Shen, W.X., Han, Q.R., Fang, F., et al., Occurrence and exposure risk assessment of phthalate esters in edible plant oils with a high-frequency import rate in west China. Rsc Advances, 2022. 12(12): p. 7383-7390. 23. Mondal, R., Chakraborty, D.,Majumdar, D., Phthalate esters from packaged milk and associated human health risk: a monte carlo probabilistic simulation approach. Journal of Metrology Society of India: p. 11. 24. Hauser, R., Meeker, J.D., Duty, S., Silva, M.J.,Calafat, A.M., Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology, 2006. 17(6): p. 682-691. 25. van Wezel, A.P., van Vlaardingen, P., Posthumus, R., Crommentuijn, G.H.,Sijm, D., Environmental risk limits for two phthalates, with special emphasis on endocrine disruptive properties. Ecotoxicology and Environmental Safety, 2000. 46(3): p. 305-321. 26. Taiwan Ministry of Health and Welfare. Sanitation Standard for Food Utensils, Containers and Packages. Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040019. Accessed [11 September 2022] 27. EFSA Panel on Food Contact Materials, E., Flavourings,Aids, P., Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 2015. 13(1): p. 3978. 28. Vilarinho, F., Sendon, R., van der Kellen, A., Vaz, M.F.,Silva, A.S., Bisphenol A in food as a result of its migration from food packaging. Trends in Food Science & Technology, 2019. 91: p. 33-65. 29. Cunha, S.C.,Fernandes, J.O., Assessment of bisphenol A and bisphenol B in canned vegetables and fruits by gas chromatography-mass spectrometry after QuEChERS and dispersive liquid -liquid microextraction. Food Control, 2013. 33(2): p. 549-555. 30. Beltifa, A., Feriani, A., Machreki, M., Ghorbel, A., Ghazouani, L., Di Bella, G., et al., Plasticizers and bisphenol A, in packaged foods sold in the Tunisian markets: study of their acute in vivo toxicity and their environmental fate. Environmental Science and Pollution Research, 2017. 24(28): p. 22382-22392. 31. Ma, Y., Liu, H., Wu, J., Yuan, L., Wang, Y., Du, X., et al., The adverse health effects of bisphenol A and related toxicity mechanisms. Environmental Research, 2019. 176: p. 108575. 32. Ferrer, E., Santoni, E., Vittori, S., Font, G., Manes, J.,Sagratini, G., Simultaneous determination of bisphenol A, octylphenol, and nonylphenol by pressurised liquid extraction and liquid chromatography-tandem mass spectrometry in powdered milk and infant formulas. Food Chemistry, 2011. 126(1): p. 360-367. 33. Andujar, N., Galvez-Ontiveros, Y., Zafra-Gomez, A., Rodrigo, L., Alvarez-Cubero, M.J., Aguilera, M., et al., Bisphenol A analogues in food and their hormonal and obesogenic effects: a review. Nutrients, 2019. 11(9): p. 18. 34. Bolognesi, C., Castle, L., Cravedi, J.P., Engel, K.H., Fowler, P.A.F., Franz, R., et al., Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Executive summary. EFSA Journal, 2015. 35. Hoekstra, E.J.,Simoneau, C., Release of bisphenol A from polycarbonate-a review. Critical Reviews in Food Science and Nutrition, 2013. 53(4): p. 386-402. 36. Kitahara, Y., Takahashi, S., Tsukagoshi, M.,Fujii, T., Formation of bisphenol A by thermal degradation of poly(bisphenol A carbonate). Chemosphere, 2010. 80(11): p. 1281-1284. 37. Nam, S.H., Seo, Y.M.,Kim, M.G., Bisphenol A migration from polycarbonate baby bottle with repeated use. Chemosphere, 2010. 79(9): p. 949-952. 38. Maia, J., Cruz, J.M., Sendon, R., Bustos, J., Sanchez, J.J.,Paseiro, P., Effect of detergents in the release of bisphenol A from polycarbonate baby bottles. Food Research International, 2009. 42(10): p. 1410-1414. 39. Geens, T., Aerts, D., Berthot, C., Bourguignon, J.P., Goeyens, L., Lecomte, P., et al., A review of dietary and non-dietary exposure to bisphenol-A. Food and Chemical Toxicology, 2012. 50(10): p. 3725-3740. 40. Padhye, L.P., Yao, H., Kung'u, F.T.,Huang, C.H., Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 2014. 51: p. 266-276. 41. Husoy, T., Andreassen, M., Hjertholm, H., Carlsen, M.H., Norberg, N., Sprong, C., et al., The norwegian biomonitoring study from the EU project EuroMix: Levels of phenols and phthalates in 24-hour urine samples and exposure sources from food and personal care products. Environment International, 2019. 132: p. 13. 42. Vandenberg, L.N., Chahoud, I., Heindel, J.J., Padmanabhan, V., Paumgartten, F.J.R.,Schoenfelder, G., Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Ciencia & Saude Coletiva, 2012. 17(2): p. 407-434. 43. van Leeuwen, S.P., Bovee, T.F.H., Awchi, M., Klijnstra, M.D., Hamers, A.R.M., Hoogenboom, R., et al., BPA, BADGE and analogues: a new multi-analyte LC-ESI-MS/MS method for their determination and their in vitro (anti)estrogenic and (anti)androgenic properties. Chemosphere, 2019. 221: p. 246-253. 44. Hao, P.P., Determination of bisphenol A in barreled drinking water by a SPE-LC-MS method. Journal of Environmental Science and Health, Part A, 2020. 55(6): p. 697-703. 45. Vilarinho, F., Lestido-Cardama, A., Sendon, R., de Quiros, A.R.B., Vaz, M.D.,Sanches-Silva, A., HPLC with fluorescence detection for determination of bisphenol A in canned vegetables: optimization, validation and application to samples from portuguese and Spanish Markets. Coatings, 2020. 10(7): p. 12. 46. Lane, R.F., Adams, C.D., Randtke, S.J.,Carter, R.E., Bisphenol diglycidyl ethers and bisphenol A and their hydrolysis in drinking water. Water Research, 2015. 72: p. 331-339. 47. Azevedo, L.F., Masiero, M.M., Cherkaoui, S., Carneiro, M.F.H., Jr, F.B.,Zamboni, N., The alternative analog plasticizer BPS displays similar phenotypic and metabolomic responses to BPA in HepG2 and INS-1E cells. Food and Chemical Toxicology, 2022. 167: p. 14. 48. Li, S.H., Bian, L.L., Yang, C.X., Van Schepdael, A.,Wang, X., Migration study of phenolic endocrine disruptors from pacifiers to saliva simulant by solid phase microextraction with amino-functionalized microporous organic network coated fiber. Journal of Hazardous Materials, 2022. 438: p. 10. 49. Han, C.,Hong, Y.C., Bisphenol A, hypertension, and cardiovascular diseases: epidemiological, laboratory, and clinical trial evidence. Current Hypertension Reports, 2016. 18(2): p. 5. 50. Wu, W.T., Li, M.M., Liu, A.M., Wu, C.L., Li, D.N., Deng, Q.W., et al., Bisphenol A and the risk of obesity a systematic review with meta-analysis of the epidemiological evidence. Dose-Response, 2020. 18(2): p. 10. 51. Farrugia, F., Aquilina, A., Vassallo, J.,Pace, N.P., Bisphenol A and type 2 diabetes mellitus: a review of epidemiologic, functional, and early life factors. International Journal of Environmental Research and Public Health, 2021. 18(2): p. 26. 52. European Commission, Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. 2011, Official Journal of the European Union. 53. European Commission, Commission Directive 2011/8/EU of 28 January 2011 amending directive 2002/72/EC as regards the restriction of use of Bisphenol A in plastic infant feeding bottles. 2011, Official Journal of the European Union. p. 11-14. 54. European Food Safety Authority, Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 2015. 13(1). 55. European Food Safety Authority, Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 2015. 13(1): p. 3978. 56. European Food Safety Authority. Bisphenol A: EFSA draft opinion proposes lowering the tolerable daily intake. Available from: https://www.efsa.europa.eu/en/news/bisphenol-efsa-draft-opinion-proposes-lowering-tolerable-daily-intake. Accessed [21 August 2022] 57. Garcia-Corcoles, M.T., Cipa, M., Rodriguez-Gomez, R., Rivas, A., Olea-Serrano, F., Vilchez, J.L., et al., Determination of bisphenols with estrogenic activity in plastic packaged baby food samples using solid-liquid extraction and clean-up with dispersive sorbents followed by gas chromatography tandem mass spectrometry analysis. Talanta, 2018. 178: p. 441-448. 58. Noszczy?ska, M.,Piotrowska-Seget, Z., Bisphenols: application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers. Chemosphere, 2018. 201: p. 214-223. 59. Frenzilli, G., Martorell-Ribera, J., Bernardeschi, M., Scarcelli, V., Jonsson, E., Diano, N., et al., Bisphenol A and bisphenol S induce endocrine and chromosomal alterations in brown trout. Frontiers in Endocrinology, 2021. 12: p. 13. 60. Liao, C.Y.,Kannan, K., Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. Journal of Agricultural and Food Chemistry, 2013. 61(19): p. 4655-4662. 61. Liao, C.Y.,Kannan, K., A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Food Additives and Contaminants, Part A, 2014. 31(2): p. 319-329. 62. Shaaban, H., Mostafa, A., Alqarni, A., Almohamed, Y., Abualrahi, D., Hussein, D., et al., Simultaneous determination of bisphenol A and its analogues in foodstuff using UPLC-MS/MS and assessment of their health risk in adult population. Journal of Food Composition and Analysis, 2022. 110: p. 104549. 63. Thoene, M., Dzika, E., Gonkowski, S.,Wojtkiewicz, J., Bisphenol S in food causes hormonal and obesogenic effects comparable to or worse than bisphenol A: a literature review. Nutrients, 2020. 12(2): p. 14. 64. Liao, C.Y., Liu, F., Alomirah, H., Loi, V.D., Mohd, M.A., Moon, H.B., et al., Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures. Environmental Science & Technology, 2012. 46(12): p. 6860-6866. 65. Kojima, H., Takeuchi, S., Sanoh, S., Okuda, K., Kitamura, S., Uramaru, N., et al., Profiling of bisphenol A and eight its analogues on transcriptional activity via human nuclear receptors. Toxicology, 2019. 413: p. 48-55. 66. Pelch, K., Wignall, J.A., Goldstone, A.E., Ross, P.K., Blain, R.B., Shapiro, A.J., et al., A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. Toxicology, 2019. 424: p. 17. 67. Punt, A., Aartse, A., Bovee, T.F.H., Gerssen, A., van Leeuwen, S.P.J., Hoogenboom, R., et al., Quantitative in vitro-to-in vivo extrapolation (QIVIVE) of estrogenic and anti-androgenic potencies of BPA and BADGE analogues. Archives of Toxicology, 2019. 93(7): p. 1941-1953. 68. Korkmaz, S.D.,Kuplulu, O., Determination of phthalates in some milk products by liquid chromatography/tandem mass spectrometry. Ankara Universitesi Veteriner Fakultesi Dergisi, 2019. 66(3): p. 231-236. 69. Hidalgo-Serrano, M., Borrull, F., Marc?, R.M.,Pocurull, E., Simple method for determining phthalate diesters and their metabolites in seafood species using QuEChERS extraction and liquid chromatography-high resolution mass spectrometry. Food Chemistry, 2021. 336: p. 127722. 70. Xu, L., Qi, X., Li, X., Bai, Y.,Liu, H., Recent advances in applications of nanomaterials for sample preparation. Talanta, 2016. 146: p. 714-726. 71. Chisvert, A., Bened?, J.L.,Salvador, A., Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques–A review. Analytica Chimica Acta, 2018. 1034: p. 22-38. 72. Petrarca, M.H., Perez, M.A.F.,Tfouni, S.A.V., Bisphenol A and its structural analogues in infant formulas available in the Brazilian market: optimisation of a UPLC-MS/MS method, occurrence, and dietary exposure assessment. Food Research International, 2022. 160: p. 10. 73. Li, X.M., Zhang, Q.H., Chen, L., Zhao, J.Y.,Li, H.M., Determination of 16 phthalate esters in sesame oil by isotope dilution liquid chromatography with tandem mass spectrometry. Analytical Methods, 2018. 10(26): p. 3197-3206. 74. Batlle, R.,Nerin, C., Application of single-drop microextraction to the determination of dialkyl phthalate esters in food simulants. Journal of Chromatography A, 2004. 1045(1-2): p. 29-35. 75. Uansiri, S., Vichapong, J.,Kanchanamayoon, W., HS-SPME for the Determination of Phthalate Esters in Vegetable Oil and Soft Drink Samples. Chiang Mai Journal of Science, 2018. 45(2): p. 1052-1061. 76. Shao, B., Han, H., Li, D.M., Ma, Y., Tu, X.M.,Wu, Y.G., Analysis of alkylphenol and bisphenol A in meat by accelerated solvent extraction and liquid chromatography with tandem mass spectrometry. Food Chemistry, 2007. 105(3): p. 1236-1241. 77. Pil-Bala, B., Khandaghi, J.,Mogaddam, M.R.A., analysis of endocrine-disrupting compounds from cheese samples using pressurized liquid extraction combined with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. Food Analytical Methods, 2019. 12(7): p. 1604-1611. 78. Mustafa, A.,Turner, C., Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Analytica Chimica Acta, 2011. 703(1): p. 8-18. 79. U.S. Food and Drug Administration. Guidelines for the validation of chemical methods in food, feed, cosmetics, and veterinary products. Available from: https://www.fda.gov/media/81810/download. Accessed [0802 2022] 80. Taiwan Food and Drug Administration. 食品化學檢驗方法之確效規範. Available from: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f637713826789525112&type=2&cid=38868. Accessed [02 August 2022] 81. European Commission. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. SANTE/12682/2019. Available from: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf. Accessed [24 August 2022] 82. 趙冠萍, 以QuEChERS萃取搭配極致液相層析/串聯式質譜儀分析食品中全氟碳化合物、鄰苯二甲酸酯、壬基酚及雙酚A. 國立臺灣大學環境衛生研究所, 2017. Chao, K.P., A Determination of Perfluoroalkyl Substances, Phthalate Esters, Nonylphenol and Bisphenol A in Foods Using QuEChERS Extraction and UPLC-MS/MS. 2017 83. 陳則穎, 以固相萃取搭配極致液相層析/串聯式質譜儀分析水中全氟碳化合物、鄰苯二甲酸酯、壬基酚與雙酚A. 國立臺灣大學環境衛生研究所, 2017. Chen. Z.Y., A Determination of Perfluoroalkyl Substances, Phthalate Esters, Nonylphenol, and Bisphenol A in Water by Solid-Phase Extraction and UPLC-MS/MS. 2017. 84. 蔡耕文, 全氟烷基化合物、鄰苯二甲酸酯、雙酚類、鎵與銦之環境與食品監測. 國立臺灣大學環境衛生研究所, 2019. Tsai, K.W., Food and Environmental Monitoring of Perfluoroalkyl Substances, Phthalate Esters, Bisphenol analogues, Gallium, and Indium. 2019. 85. 廖士翔, 以即時直接分析質譜術與極致液相層析/串聯式質譜術定量血清及尿液中環境荷爾蒙. 國立臺灣大學環境與職業健康科學研究所, 2021. Liao, S.H., Determination of endocrine disruptors in serum and urine with direct analysis in real time/tandem mass spectrometry and ultra-performance liquid chromatography/ tandem mass spectrometry. 2021. 86. Zhao, B., Tan, X.K., Fu, Y., Xue, M., Xu, D.H., Liang, X.C., et al., Rapid determination of bisphenols in fruits and vegetables by QuEChERS-ultra-high performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Analytical Chemistry, 2022. 50(5): p. 810-818. 87. Tang, Z.G., Han, Q., Xie, L., Chu, L.L., Wang, Y., Sun, Y., et al., Simultaneous determination of five phthalate esters and bisphenol A in milk by packed-nanofiber solid-phase extraction coupled with gas chromatography and mass spectrometry. Journal of Separation Science, 2019. 42(4): p. 851-861. 88. Wei, L.Y., Li, Z.H., Sun, J.T.,Zhu, L.H., Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. Science of the Total Environment, 2020. 726: p. 8. 89. Lee, Y.M., Lee, J.E., Choe, W., Kim, T., Lee, J.Y., Kho, Y., et al., Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environment International, 2019. 126: p. 635-643. 90. Gorecki, S., Bemrah, N., Roudot, A.C., Marchioni, E., Le Bizec, B., Faivre, F., et al., Human health risks related to the consumption of foodstuffs of animal origin contaminated by bisphenol A. Food and Chemical Toxicology, 2017. 110: p. 333-339. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83812 | - |
dc.description.abstract | 鄰苯二甲酸酯是目前使用最廣泛、種類最多、產量最大的塑化劑 (plasticizers),主要用於塑膠製品中以提高產品的彈性、耐用性,常用來軟化聚氯乙烯 (PVC),例如:食品包裝(如保鮮膜)、醫療用品(如血袋、點滴管)、塑膠玩具中。雙酚類這一類化學物質被用來製造聚碳酸酯(Polycarbonate, PC)塑膠和環氧樹脂 (epoxy resins),應用範圍相當廣泛與普遍。聚碳酸酯可用來製造食品接觸材料,例如:餐具;環氧樹脂則被使用於食品容器的內塗層來避免內容物與金屬直接接觸。人體可能透過攝食、吸入及皮膚接觸暴露到鄰苯二甲酸酯及雙酚類,而飲食是最主要的暴露來源。包裝材料與食物接觸後,這兩類化學物質可能轉移到食品和飲料中,在人們食入水或食物後進而暴露到這些化學物質。先前的研究證實鄰苯二甲酸酯及雙酚類為內分泌干擾物,會影響人類的內分泌系統、增加癌症發生率、降低免疫功能並且對生殖造成影響。目前同時分析上述兩類化學物質之方法仍有限,因此本研究欲開發一方法同時檢測各類食物中鄰苯二甲酸酯及雙酚類,評估基質效應及萃取效率並進行準確度 (accuracy) 及精密度 (precision) 之方法卻效。本研究進行食物前處理方法之優化,以提升食物中鄰苯二甲酸酯及雙酚類的萃取效率。1 g之均質食物樣本透過自動加壓流體萃取系統,使用 5 mL 丙酮在 65℃、30 psi 下萃取 5 分鐘,進行兩個循環。萃取完成後,使用分散式固相萃取去除油脂、蛋白質及色素等雜質。將 4 mL 萃取液移至 15 mL 分散式固相萃取淨化管中 (植物性樣本使用 900 mg MgSO4, 150 mg PSA, 45 mg GCB 做為吸附劑;動物性樣本使用 Agilent Bond Elut EMR-Lipid做為吸附劑),震盪 1 分鐘後以 5000 rpm (2,234 g-force) 離心 10 分鐘。離心後將上清液取出濃縮至 1 mL,使用 0.2 μm PTFE 過濾盤進行過濾後上機分析。本研究使用 Waters I-Class 極致液相層析搭配Waters Xevo TQ-XS串聯式質譜儀,分析食物中 12 種鄰苯二甲酸酯及 6 種雙酚類,層析使用Ascentis Express F5 (30 × 2.1 mm, 2.0 μm)管柱。12 種鄰苯二甲酸酯類及 BADGE 之分析,游離源為 UniSpray 正電,有機動相為甲醇,水性動相為 0.1% 醋酸水溶液混合 5 mM 醋酸胺水溶液,pH 4.19,梯度流析流速為 0.5 mL/min,管柱溫度為 35℃,層析時間共需 8.5 分鐘;5 種雙酚類之分析,游離源為 UniSpray 負電,有機動相為甲醇,水性動相為去離子水,梯度流析流速為 0.5 mL/min,管柱溫度為 40℃,層析時間共需 6.4 分鐘。標準品檢量線之線性範圍在0.5–300 ng/mL (DEHT 為 10–500 ng/mL),決定係數 r2 皆達到 0.994 以上,儀器偵測極限為0.3–1972 fg,儀器定量極限在 2.4–6575 fg 之間。12 種鄰苯二甲酸酯及 6 種雙酚類於地瓜葉、豬肝、鮭魚的基質效應因子介於 10% 到 666% 之間;而萃取效果介於 N.D. 至 151% 之間。同日和異日之回收率在52.2%–1318%,準確度則在 0.73%–131% 之間。地瓜葉、豬肝、鮭魚之方法偵測極限範圍與定量極限範圍為0.05–9.37 ng/g 及 0.08–48.5 ng/g。實驗結果顯示,F5管柱可同時進行鄰苯二甲酸酯及雙酚類之層析;在食物前處理方法的部分,利用 EDGE 萃取系統使用 5 mL 的丙酮在 65℃ 下萃取可以最有效的萃取食物中的鄰苯二甲酸酯及雙酚類,且跟乙?和甲醇相比不會萃取太多雜質;使用 PRiME HLB cartridge 進行淨化會導致鄰苯二甲酸酯及雙酚類被留在 cartridge 中而無法有效定量。使用 900 mg MgSO4、150 mg PSA、45 mg GCB 做為植物性食品樣本的淨化吸附劑,可以有效去除萃取液中的色素。前處理過程使用之試劑及食物中的鄰苯二甲酸酯背景濃度對準確度 (accuracy) 及精密度 (precision) 評估造成影響而無法進行後續之食物分析,例如:環己烷-1,2-二羧酸二異壬酯 (DINCH)、鄰苯二甲酸二異壬酯 (DINP)、鄰苯二甲酸二(2-乙基己基)酯 (DEHP)、鄰苯二甲酸丁基苯酯 (BBP)、鄰苯二甲酸二丁酯 (DnBP/DiBP) 及鄰苯二甲酸二乙酯 (DEP) 在食物中之濃度。除了食物中內生性的鄰苯二甲酸酯外,萃取溶劑及淨化粉劑中皆有鄰苯二甲酸酯,主要為鄰苯二甲酸二異壬酯 (DINP)、對苯二甲酸二(2-乙基己基)酯 (DEHT)、鄰苯二甲酸二(2-乙基己基)酯 (DEHP)、鄰苯二甲酸二丁酯 (DnBP/DiBP),而在實驗前使用甲醇及丙酮清洗淨化粉劑可以有效降低淨化粉劑中的鄰苯二甲酸酯。若要將此方法應用於食物之分析,仍需要進一步的方法優化。 | zh_TW |
dc.description.abstract | Phthalate esters (PAEs) are the most widely used plasticizers with the largest variety and production for improving the elasticity and durability of products, such as food packaging, medical appliance and toys, etc. Bisphenols (BPs) are a family of chemicals used to make polycarbonate plastics and epoxy resins and the applications are quite wide and common. Polycarbonate plastics are used to produce food contact appliances such as dinner plates. Epoxy resins are frequently used in the inner coating for food and beverage cans and they can protect the contents from direct contact with metal. Humans exposed to PAEs and BPs through ingestion, inhalation, and skin contact, and ingestion was the major exposure route. PAEs and BPs migrated into food and beverages when the food packaging was in contact with food, and people exposed to these chemicals through the drinking water or food. Previous studies have confirmed that PAEs and BPs are endocrine disruptors that can interfere with the endocrine system of humans, increase cancer rate, decrease immune functions as well as influence reproduction. The methods for analyzing two types of chemicals simultaneously are still limited. This study developed a method to detect PAEs and BPs in various food simultaneously, and validated the matrix effect, extraction efficiency, and the accuracy and precision method. The preparation methods were optimized to improve the extraction efficiency of PAEs and BPs in food. One gram of homogenized sample was extracted by the EDGE system with 5-mL acetone at 65℃ and 30-35 psi for 5 min per cycle and repeated once. After extraction, the d-SPE clean-up method was used to remove impurities such as oils and proteins, and pigments. The 4-mL of the extract was transferred into a 15-mL d-SPE tube (animal food used EMR-Lipid as clean-up adsorbent, planted food used 900 MgSO4, 150 mg PSA, 45 mg GCB as clean-up adsorbent), and was vortexed one minute. Then, the samples were centrifuged for 10 minutes at 5000 rpm (2,234 g-force) and were concentrated to 1-mL. Finally, the extracts were filtered through the filters and analyzed.In this study, 12 PAEs and 6 BPs were detected and quantified by ultra-high performance liquid chromatography coupled with tandem mass spectrometer (UPLC-MS/MS) in multiple reaction monitoring (MRM) mode were analyzed by Ascentis Express F5 column (30 × 2.1 mm, 2.0 μm). The analysis of PAEs and BADGE performed with 0.1% acetic acid/5-mM ammonium acetate (PH 4.19) and methanol as mobile phase at positive Unispray ionization (UniSpray+). The parameters of chromatography have been optimized so that the flow rate was 0.5 mL/min, the column temperature was 35℃, and the time of analysis was 8.5 minutes. The analysis of BPs performed with Milli-Q water and methanol as mobile phase at negative UniSpray ionization (UniSpray-). The parameters of chromatography have been optimized so that the flow rate was 0.5 mL/min, the column temperature was 40℃, and the time of analysis was 6.4 minutes. Furthermore, the linear ranges of calibration curves were 0.5?300 ng/mL (except for DEHT was 10–500 ng/mL) with the coefficient of determination (r2) greater than 0.994. The instrument detection limits (IDLs) were 0.3–1972 fg, and the instrument quantitation limits (IQLs) were 2.4–6575 fg. The matrix effect factors of 12 PAEs and six BPs in sweet potato leaves, pork liver, and salmon ranged from 10% to 666%; the extraction efficiency ranged from N.D. to 151%. Inter-day and Intra-day recovery ranged from 52.2% to 1318%, and accuracy ranging from 0.73% to 131%. The limit of detections (LODs) and the limit of quantitations (LOQs) in sweet potato leaves, pork liver, and salmon were 0.05–9.37 ng/g and 0.08–48.5 ng/g. The F5 column could be used to analyze PAEs and BPs simultaneously. The use of acetone at 65℃ had a better extraction efficiency of PAEs and BPs in food than that of acetone/methanol, and the impurities were lower than that at acetonitrile and methanol. Cleanup with PRiME HLB cartridge retained PAEs and BPs in the cartridge and thus could not be quantified. Using 900 mg MgSO4, 150 mg PSA, 45 mg GCB for plant food could remove pigments effectively. PAEs from the reagents used in pretreatment process and in the tested food matrixes affected the evaluation on accuracy and precision so that subsequent analysis was unable to proceed, such as DINCH, DINP, DEHP, BBP, DnBP/DiBP, and DEP. PAEs were detected in extraction solvents and cleanup adsorbents. Using methanol and acetone to clean up adsorbents could reduce the concentrations of PAEs effectively. Further method optimization is required, and apply this method for PAEs and BPs in food. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:19:02Z (GMT). No. of bitstreams: 1 U0001-2709202211590700.pdf: 4308804 bytes, checksum: ff531485dc1e5c695bb8ed52b682321b (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract v Contents viii List of figures x List of tables xii Chapter 1 Introduction 1 1.1 Phthalate esters (PAEs) 1 1.2 Bisphenols (BPs) 3 1.3 Analytical methods for PAEs and BPs in food 5 1.4 Objectives 7 Chapter 2 Material and Methods 8 2.1 Reagents and Materials 8 2.2 Sample preparation 10 2.3 Instrument analysis 12 2.4 Method validation 14 2.4.1 Matrix effect and extraction efficiency 14 2.4.2 Accuracy and precision 15 2.5 Identification and quantitation, and data analysis 16 2.6 Quality assurance and quality control 17 Chapter 3 Results and Discussion 18 3.1 Optimization of UPLC-MS/MS parameters 18 3.1.1. Phthalate esters 19 3.1.2 Bisphenols 21 3.2 Optimization of preparation steps 22 3.2.1 EDGE extraction 22 3.2.2 Clean-up method 24 3.3 Method validation 27 3.3.1 Matrix effect and extraction efficiency 27 3.3.2 Inter-day and intra-day accuracy and precision 30 3.4.1 IDLs, IQLs and range of calibration curves 33 3.4.2 LODs and LOQs 33 3.5 PAEs and BPs in foods at intra-day and inter-day analysis 34 3.6 Limitation and Future work 35 Chapter 4 Conclusions 38 References 40 Figures 49 Tables 76 Supplement 99 | |
dc.language.iso | en | |
dc.title | 以自動加壓流體萃取搭配極致液相層析/串聯式質譜術分析食品中鄰苯二甲酸酯類及雙酚類化合物 | zh_TW |
dc.title | Determination of Phthalate Esters and Bisphenols in Food Using Energized Dispersive Guided Extraction and Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李茂榮(Maw-Rong Lee),郭錦樺(Ching-Hua Kuo),陳鑫昌(Hsin-Chang Chen) | |
dc.subject.keyword | 自動加壓流體萃取系統,鄰苯二甲酸酯,雙酚類,內分泌干擾物質,極致液相層析/串聯式質譜儀, | zh_TW |
dc.subject.keyword | EDGE,Phthalate esters,Bisphenols,Endocrine disrupting chemicals,UPLC-MS/MS, | en |
dc.relation.page | 99 | |
dc.identifier.doi | 10.6342/NTU202204150 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-27 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
顯示於系所單位: | 環境與職業健康科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2709202211590700.pdf 目前未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。