Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢(Tsung-Hsien Lin)
dc.contributor.authorWei-En Leeen
dc.contributor.author李瑋恩zh_TW
dc.date.accessioned2023-03-19T21:18:42Z-
dc.date.copyright2022-08-03
dc.date.issued2022
dc.date.submitted2022-08-01
dc.identifier.citation[1] A. H. Ropper, M. A. Samuels, J. P. Klein, and S. Prasad, Adams and Victor's Principles of Neurology, 10th ed. New York, NY, USA: McGraw-Hill, 2014. [2] E. Beghi, “The epidemiology of epilepsy,” Neuroepidemiology, vol. 54, no. 2, pp. 185-191, Mar. 2020. [3] K. M. Fiest, K. M. Sauro, S. Wiebe, S. B. Patten, C.-S. Kwon, J. Dykeman, T. Pringsheim, D. L. Lorenzetti, and N. Jett?, “Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies,” Neurology, vol. 88, no. 3, pp. 296-303, Jan. 2017. [4] E. Trinka, P. Kwan, B. Lee, and A. Dash, “Epilepsy in Asia: Disease burden, management barriers, and challenges,” Epilepsia, vol. 60, pp. 7-21, Mar. 2019. [5] E. Beghi, G. Giussani, E. Nichols, F. Abd-Allah, J. Abdela, A. Abdelalim, H. N. Abraha, M. G. Adib, S. Agrawal, F. Alahdab, and A. Awasthi, “Global, regional, and national burden of epilepsy, 1990-2016: A systematic analysis for the global burden of disease study 2016,” Lancet Neurol., vol. 18, no. 4, pp. 357-375, Apr. 2019. [6] K.-O. Cho, and H.-J. Jang, “Comparison of different input modalities and network structures for deep learning-based seizure detection,” Sci. Rep., vol. 10, no. 1, p. 122, Jan. 2020, doi: 10.1038/s41598-019-56958-y. [7] S. Wong, R. Mani, and S. Danish, “Comparison and selection of current implantable anti-epileptic devices,” Neurotherapeutics, vol. 16, no. 2, pp. 369-380, Apr. 2019. [8] Medtronic website for DBS systems: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/deep-brain-stimulation-systems.html [9] NeuroPace website for RNS systems: https://neuropace.com/providers/rns-system-neuromodulation/ [10] M.-C. Kuo, T. Jao, and H.-H. Liu, “Update of Neurositmulation for Refractory Epilepsy: Deep Brain Stimulation and Responsive Neurostimulation,” Acta Neurologica Taiwanica, vol. 25, no. 1, pp. 38-48, Mar. 2016. [11] W.-E. Lee, C. Tsou, Z.-X. Liao, P.-Y. Lu, T.-H. Lin, S.-Y. Lee, C.-C. Lin, and G.-S. Shieh, “Intelligent wireless EEG measurement system with electrical and optogenetic stimulation for epileptic seizure detection and suppression,” IEEE Access, vol. 9, pp. 80264-80274, May 2021. [12] L. Dalic and M. Cook, “Managing drug-resistant epilepsy: Challenges and solutions,” Neuropsychiatric Disease Treat., vol. 12, pp. 2605-2616, Oct. 2016. [13] M. Mohan, S. Keller, A. Nicolson, S. Biswas, D. Smith, J. O. Farah, P. Eldridge, and U. Wieshmann, “The long-term outcomes of epilepsy surgery,” PLoS ONE, vol. 13, no. 5, May 2018, Art. no. e0196274. [14] P. Rajdev, M. Ward, and P. Irazoqui, “Effect of stimulus parameters in the treatment of seizures by electrical stimulation in the kainate animal model,” Int. J. Neural Syst., vol. 21, no. 2, pp. 151-162, Apr. 2011. [15] H. Khosravani, P. L. Carlen, and J. L. P.Velazquez, “The control of seizure-like activity in the rat hippocampal slice,” Biophys. J., vol. 84, no. 1, pp. 687-695, Jan. 2003. [16] M. T. Salam, J. L. P. Velazquez, and R. Genov, “Seizure suppression efficacy of closed-loop versus open-loop deep brain stimulation in a rodent model of epilepsy,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 6, pp. 710-719, Jun. 2016. [17] F. T. Sun and M. J. Morrell, “The RNS system: Responsive cortical stimulation for the treatment of refractory partial epilepsy,” Expert Rev. Med. Devices, vol. 11, no. 6, pp. 563-572, Nov. 2014. [18] K. Starnes, K. Miller, L. Wong-Kisiel, and B. N. Lundstrom, “A review of neurostimulation for epilepsy in pediatrics,” Brain Sci., vol. 9, no. 10, p. 283, Oct. 2019. [19] T. Yu, X. Wang, Y. Li, G. Zhang, G. Worrell, P. Chauvel, D. Ni, L. Qiao, C. Liu, L. Li, L. Ren, and Y. Wang, “High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans,” Brain, vol. 141, pp. 2631-2643, Jul. 2018. [20] S. Toprani and D. M. Durand, “Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation,” J. Physiol., vol. 591, no. 22, pp. 5765-5790, Nov. 2013. [21] J. Yamamoto, A. Ikeda, T. Satow, K. Takeshita, M. Takayama, M. Matsuhashi, R. Matsumoto, S. Ohara, N. Mikuni, J. Takahashi, S. Miyamoto, W. Taki, N. Hashimoto, J. C. Rothwell, and H. Shibasaki, “Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy,” Epilepsia, vol. 43, no. 5, pp. 491-495, May 2002. [22] J. T. Paz and J. R. Huguenard, “Optogenetics and epilepsy: Past, present and future,” Epilepsy Currents, vol. 15, no. 1, pp. 34-38, Jan. 2015. [23] M. C. Walker and D. M. Kullmann, “Optogenetic and chemogenetic therapies for epilepsy,” Neuropharmacology, vol. 168, May 2020, Art. no. 107751. [24] S.-Y. Lee, C. Tsou, Z.-X. Liao, P.-H. Cheng, P.-W. Huang, H.-Y. Lee, C.-C. Lin, and G.-S. Shieh, “A programmable EEG monitoring SoC with optical and electrical stimulation for epilepsy control,” IEEE Access, vol. 8, pp. 92196-92211, May 2020. [25] A. C. Thompson, P. R. Stoddart, and E. D. Jansen, “Optical stimulation of neurons,” Current Mol. Imag., vol. 3, no. 2, pp. 162-177, Feb. 2015. [26] R. Ramezani, A. Jackson, T. G. Constandinou, P. Degenaar, Y. Liu, F. Dehkhoda, A. Soltan, D. Haci, H. Zhao, D. Firfilionis, A. Hazra, and M. O. Cunningham, “On-probe neural interface ASIC for combined electrical recording and optogenetic stimulation,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 3, pp. 576-588, Jun. 2018. [27] G. Gagnon-Turcotte, Y. LeChasseur, C. Bories, Y. Messaddeq, Y. De Koninck, and B. Gosselin, “A wireless headstage for combined optogenetics and multichannel electrophysiological recording,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 1, pp. 1-14, Feb. 2017. [28] H. Kassiri, F. D. Chen, M. T. Salam, M. Chang, B. Vatankhahghadim, P. Carlen, T. A. Valiante, and R. Genov, “Arbitrary-waveform electro-optical intracranial neurostimulator with load-adaptive high-voltage compliance,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 4, pp. 582-593, Apr. 2019. [29] Y. Jia and M. Ghovanloo, “Towards a mm-sized free-floating wireless implantable opto-electro stimulation device,” in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2019, pp. 1-4. [30] C.-P. Young, S.-F. Liang, D.-W. Chang, Y.-C. Liao, F.-Z. Shaw, and C.-H. Hsieh, “A portable wireless online closed-loop seizure controller in freely moving rats,” IEEE Trans. Instrum. Meas., vol. 60, no. 2, pp. 513-521, Feb. 2011. [31] V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Trans. Inf. Technol. Biomed., vol. 11, no. 3, pp. 288-295, May 2007. [32] M. S. Akter, M. R. Islam, Y. Iimura, H. Sugano, K. Fukumori, D. Wang, T. Tanaka, and A. Cichocki, “Multiband entropy-based feature-extraction method for automatic identification of epileptic focus based on high-frequency components in interictal iEEG,” Sci. Rep., vol. 10, no. 1, p.7044, Apr. 2020, doi: 10.1038/s41598-020-62967-z. [33] A. Bagheri, S. R. I. Gabran, M. T. Salam, J. L. P. Velazquez, R. R. Mansour, M. M. A. Salama, and R. Genov, “Massively-parallel neuromonitoring and neurostimulation rodent headset with nanotextured flexible microelectrodes,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 601-609, Oct. 2013. [34] C.-H. Cheng, P.-Y. Tsai, T.-Y. Yang, W.-H. Cheng, T.-Y. Yen, Z. Luo, X.-H. Qian, Z.-X. Chen, T.-H. Lin, W.-H. Chen, W.-M. Chen, S.-F. Liang, F.-Z. Shaw, C.-S. Chang, Y.-L. Hsin, C.-Y. Lee, M.-D. Ker, and C.-Y. Wu, “A fully integrated 16-channel closed-loop neural-prosthetic CMOS SoC with wireless power and bidirectional data telemetry for real-time efficient human epileptic seizure control,” IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3314-3326, Nov. 2018. [35] T. Zhan, S. Z. Fatmi, S. Guraya, and H. Kassiri, “A resource-optimized VLSI implementation of a patient-specific seizure detection algorithm on a custom-made 2.2 cm2 wireless device for ambulatory epilepsy diagnostics,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1175-1185, Dec. 2019. [36] R. Ameli, A. Mirbozorgi, J.-L. Neron, Y. LeChasseur, and B. Gosselin, “A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording,” in Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2013, pp. 5662-5665. [37] G. Gagnon-Turcotte, A. Kisomi, R. Ameli, C.-O. Camaro, Y. LeChasseur, J.-L. N?ron, P. Bareil, P. Fortier, C. Bories, Y. de Koninck, and B. Gosselin, “A wireless optogenetic headstage with multichannel electrophysiological recording capability,” Sensors, vol. 15, no. 9, pp. 22776-22797, Sep. 2015. [38] Y.-T. Hsiao, P.-L. Yi, C.-L. Li, and F.-C. Chang, “Effect of cannabidiol on sleep disruption induced by the repeated combination tests consisting of open field and elevated plus-maze in rats,” Neuropharmacology, vol. 62, no. 1, pp. 373-384, Jan. 2012. [39] J.-K. Cho and D. Baek, “Analysis of memory effect in amplifier-shared discrete-time sigma-delta modulators,” Analog Integr. Circuits Signal Process., vol. 90, no. 1, pp. 55–63, 2017. [40] D. De Dorigo, C. Moranz, H. Graf, M. Marx, D. Wendler, B. Shui, A. S. Herbawi, M. Kuhl, P. Ruther, O. Paul, and Y. Manoli, “Fully immersible subcortical neural probes with modular architecture and a delta-sigma ADC integrated under each electrode for parallel readout of 144 recording sites,” IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3111–3125, Nov. 2018. [41] G. Gagnon-Turcotte, M. N. N. Khiarak, C. Ethier, Y. De Koninck, and B. Gosselin, “A 0.13-?m CMOS SOC for simultaneous multichannel optogenetics and neural recording,” IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3087–3100, Nov. 2018. [42] J. G. Webster, Medical Instrumentation: Application and Design. Hoboken, 4th ed., NJ, USA: Wiley, 2009. [43] M. A. Bin Altaf and J. Yoo, 'A 1.83 μJ Classification, 8-Channel, Patient-Specific Epileptic Seizure Classification SoC Using a Non-Linear Support Vector Machine,' IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp. 49-60, Feb. 2016. [44] C.-Y. Wu, C.-H. Cheng, and Z.-X. Chen, “A 16-channel CMOS chopper-stabilized analog front-end ECoG acquisition circuit for a closed-loop epileptic seizure control system,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 3, pp. 543–553, Jun. 2018. [45] M. Tohidi, J. Kargaard Madsen, and F. Moradi, ‘‘Low-power high-input impedance EEG signal acquisition SoC with fully integrated IA and signal specific ADC for wearable applications,’’ IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1437–1450, Dec. 2019. [46] BioPro Scientific website for NeuLive brain recording/stimulation system: https://www.bioproweb.com/series/neulive/ [47] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010. [48] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-b ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739-747, Apr. 2007. [49] Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500 KS/s low power SAR ADC for bio-medical application,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 228-231. [50] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012. [51] J. He, S. Zhan, D. Chen, and R. Geiger, “Analyses of static and dynamic random offset voltages in dynamic comparators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 5, pp. 911-919, May 2009. [52] H. J. Jeon, Y. B. Kim, and M. Choi, “Offset voltage analysis of dynamic latched comparator,” in Proc. 54th Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2011, pp. 1-4. [53] S.-Y. Lee, C. Tsou, and Y.-C. Li, “Single-Bin DFT-Based Digital Calibration Technique for CDAC in SAR ADCs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 12, pp. 4582-4591, Dec. 2019. [54] D. Aksin, M. Al-Shyoukh and F. Maloberti, 'Switch Bootstrapping for Precise Sampling Beyond Supply Voltage,' IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1938-1943, Aug. 2006. [55] S.-H. Wan, C.-H. Kuo, S.-J. Chang, G.-Y. Huang, C.-P. Huang, G. J. Ren, K.-T. Chiou, and C.-H, Ho, “A 10-bit 50-ms/s SAR ADC with techniques for relaxing the requirement on driving capability of reference voltage buffers,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2013, pp. 293–296. [56] Y.-H. Chung, C.-W. Yen, P.-K. Tsai, and B.-W. Chen, “A 12-bit 40-MS/s SAR ADC with a fast-binary-window DAC switching scheme,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 10, pp. 1989–1998, Oct. 2018. [57] Y. L. Tsai, F. W. Lee, T. Y. Chen, and T. H. Lin, “A 2-Channel ?83.2dB Crosstalk 0.061 mm2 CCIA with an Orthogonal Frequency Chopping Technique,” in 2015 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2015, pp. 1-3. [58] T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, and S.-Y. Peng, “A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications,” IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1743–1754, Jun. 2018. [59] P.-C. Lee, J.-Y. Lin, and C.-C. Hsieh, “A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with input-range-adaptive switching,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2149–2157, Dec. 2016. [60] Z. Ding, X. Zhou, and Q. Li, “A 0.5–1.1-V adaptive bypassing SAR ADC utilizing the oscillation-cycle information of a VCO-based comparator,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 968–977, Apr. 2019. [61] Q. Fan, Y. Hong, and J. Chen, “A Time-Interleaved SAR ADC With Bypass-Based Opportunistic Adaptive Calibration,” IEEE J. Solid-State Circuits, vol. 55, no. 8, pp. 2082-2093, Aug. 2020. [62] Y. Chung, Q. Zeng, and Y. Lin, “A 12-bit SAR ADC With a DAC-Configurable Window Switching Scheme,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 2, pp. 358-368, Feb. 2020. [63] W.-B. Liu, P.-L. Huang, and Y. Chiu, “A 12-bit, 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2661–2672, 2011. [64] G. Wang, F. Kacani, and Y. Chiu, “IRD digital background calibration of SAR ADC with coarse reference ADC acceleration,” IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 61, no. 1, pp. 11–15, Jan. 2014. [65] A. Zhou, S. R. Santacruz, B. C. Johnson, G. Alexandrov, A. Moin, F. L. Burghardt, J. M. Rabaey, J. M. Carmena, and R. Muller, “A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates,” Nature Biomed. Eng., vol. 3, no. 1, pp. 15–26, 2019. [66] Y.-H. Chung, C.-W. Yen, and P.-K. Tsai, “A 12-bit 10-MS/s SAR ADC with a binary-window DAC switching scheme in 180-nm CMOS,” Int. J. Circuit Theory Appl., vol. 46, no. 4, pp. 748–763, Apr. 2018. [67] S. Culaclii, B. Kim, Y. -K. Lo, L. Li, and W. Liu, “Online artifact cancelation in same-electrode neural stimulation and recording using a combined hardware and software architecture,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 3, pp. 601-613, June 2018. [68] W. Y. Hsu and A. Schmid, “Compact, energy-efficient high-frequency switched capacitor neural stimulator with active charge balancing,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 4, pp. 878–888, Aug. 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83804-
dc.description.abstract癲癇為一種起因於大腦皮質神經細胞活動過度或放電異常而產生的神經系統疾病,為減輕此疾病對患者之影響,許多文獻提出不同種類的腦電訊號感測與回授系統,監測患者之腦電訊號並在癲癇發生時甚至發生前給予電或光刺激。根據之前的這些研究,本論文針對腦電訊號感測與回授系統及應用於腦電訊號感測之類比數位轉換器進一步進行研究與設計。 本論文可分為兩個部分,第一部分完成一個利用市售元件組成之無線腦電訊號監測與刺激系統,此系統包含使用者介面、癲癇偵測演算法、藍芽無線傳輸電路、腦電訊號感測電路、光刺激與電刺激電路及電源管理電路。為了驗證此系統功能,亦對此系統的各個部份進行量測。除此之外,也執行動物實驗證明此系統在臨床實驗之可行性。 第二部分則為用於癲癇監測系統之類比數位轉換器的晶片設計與量測。前段實作一顆採用台積電180奈米製程的3.3伏特供應電源12位元逐漸趨近式類比數位轉換器,以及利用此類比數位轉換器與八通道前端訊號放大電路和彭盛裕教授實驗室提供之四通道電刺激電路整合的台積電180奈米製程系統晶片。除此之外,本論文研究亦改良前述之逐漸趨近式類比數位轉換器,結合節省功率消耗之跳躍式視窗架構與解決電容不匹配之離散傅立葉轉換校正,並為了進一步降低功率消耗而將供應電壓降至0.6伏,實現一個和前一次的類比數位轉換器相比,功耗更低及性能上更優化的12位元逐漸趨近式類比數位轉換器。zh_TW
dc.description.abstractEpilepsy is a kind of nervous system disease due to excessive or abnormal electrical activities of the neurons in cerebral cortex. To alleviate the impact of this disease to the patients, different kinds of electroencephalography (EEG) sensing and feedback systems have been proposed by several studies to monitor the EEG signal and perform the electrical or optogenetic stimulation during or even before the epileptic seizure. Based on these previous works, this thesis focuses on the study and design of the EEG sensing and feedback system and the analog-to-digital converter (ADC) for the EEG signal recording. This thesis can be divided into two parts. The first part is the realization of a wireless EEG signal recording and stimulation system utilizing off-the-shelf components. This system includes the user interface, Bluetooth wireless transmission circuit, EEG signal sensing circuit, optogenetic stimulation circuit, electrical stimulation circuit, and power management circuit. To verify the function of this system, several measurements on different parts of this system have been conducted. In addition, animal experiments have been performed to prove the feasibility of the proposed system on clinical trials. The second part is the chip design and measurements of the ADCs for the epilepsy monitoring system. The forepart is the implementation of a 12-bit successive-approximation register (SAR) ADC with 3.3-V supply voltage fabricated in TSMC 180-nm process. This SAR ADC was also integrated with 8-channel analog front-end amplification circuit and 4-channel stimulator from professor Sheng-Yu Peng’s lab. The integrated chip was also fabricated in TSMC 180-nm process. Besides, this thesis also improves the previous SAR ADC by combining the bypass window technique for power reduction and discrete-time-Fourier-transform-based calibration for the capacitor mismatch issue. The supply voltage of this ADC is also scaled down to 0.6 V to further reduce the power consumption. The new 12-bit SAR ADC exhibits lower power consumption and better performance compared to the previous one.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:18:42Z (GMT). No. of bitstreams: 1
U0001-3107202216181700.pdf: 11267291 bytes, checksum: f643976ba0b517edda9837a97e970c98 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents中文審定書 i 英文審定書 iii 誌謝 v 摘要 vii Abstract ix List of Figures xiii List of Tables xx Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Overview 3 Chapter 2 System for Epileptic Seizure Detection and Suppression 5 2.1 Background of the EEG Recording and Stimulation System 5 2.2 Proposed Wireless System for Epileptic Seizure Detection and Suppression 8 2.3 Implementation of Functional Blocks in the Proposed System 10 2.3.1 Two-Channel Analog-Front-End Circuit 10 2.3.2 Electrical Stimulation 11 2.3.3 Optical Stimulation 13 2.3.4 Software and Firmware Implementation 15 2.4 Measurement Results 18 2.4.1 System Measurement Results 19 2.4.2 Verification of Seizure Suppression with In Vivo Experiments 23 2.5 Summary 35 Chapter 3 Design of a SAR ADC for the DBS System 36 3.1 Background of DBS System on Integrated Chip 36 3.2 SAR ADC Design for DBS System 38 3.2.1 Specifications for SAR ADC in DBS System 38 3.2.2 Implementation of SAR ADC for the DBS System 44 3.2.3 Measurement Results 48 3.3 Integration of SAR ADC with 8-Channel Amplification Circuit and 4-Channel Stimulator 54 3.3.1 System with 8-Channel AFE Circuit and 4-Channel Stimulator 54 3.3.2 Verification on ADC Functions via Measurement 56 3.4 Discussion and Summary 61 Chapter 4 Design of a Set-and-Down SAR ADC with DAC-Based Bypass Window Switching Method and DFT-Based Digital Calibration on CDAC 63 4.1 Introduction 63 4.2 Design of the Techniques for the Proposed SAR ADC 67 4.2.1 Bypass-Switching Technique on Set-and-Down SAR ADC 67 4.2.2 SBDFT Digital Calibration for Capacitor Mismatch 77 4.3 Implementation and Simulation Result of the Proposed SAR ADC 85 4.3.1 Architecture of the Proposed SAR ADC 85 4.3.2 Simulation Results of the Proposed ADC 88 4.4 Measurement Results 95 4.4.1 Die Photo 95 4.4.2 Measurement Environment Setup 96 4.4.3 Measured Results 99 4.5 Simulation and Measurement After Oral Defense 108 4.6 Discussion and Summary 120 Chapter 5 Conclusions and Future Works 123 5.1 Conclusions 123 5.2 Future Works 124 References 126
dc.language.isoen
dc.subject離散傅立葉轉換數位校正zh_TW
dc.subject癲癇zh_TW
dc.subject腦電訊號感測與回授系統zh_TW
dc.subject光刺激zh_TW
dc.subject電刺激zh_TW
dc.subject逐漸趨近式類比數位轉換器zh_TW
dc.subject跳躍式視窗zh_TW
dc.subjectElectroencephalography (EEG) Sensing and Feedback Systemen
dc.subjectDiscrete-Time-Fourier-Transformation-Based (DFT-Based) Calibrationen
dc.subjectBypass Windowen
dc.subjectSuccessive Approximation Register Analog-to-Digital Converter (SAR ADC)en
dc.subjectElectrical Stimulationen
dc.subjectOptogenetic Stimulationen
dc.subjectEpilepsyen
dc.title0.6伏十二位元50-kS/s之逐漸趨近式類比數位轉換器設計及應用於腦深層刺激系統之腦電訊號量測與刺激模組設計zh_TW
dc.titleDesign of a 0.6-V 12-bit 50-kS/s SAR ADC and Implementation of EEG Measurement and Stimulation Modules for DBS Applicationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李泰成(Tai-Cheng Lee),劉深淵(Shen-Iuan Liu),陳景然(Ching-Jan Chen),彭盛裕(Sheng-Yu Peng)
dc.subject.keyword癲癇,腦電訊號感測與回授系統,光刺激,電刺激,逐漸趨近式類比數位轉換器,跳躍式視窗,離散傅立葉轉換數位校正,zh_TW
dc.subject.keywordEpilepsy,Electroencephalography (EEG) Sensing and Feedback System,Optogenetic Stimulation,Electrical Stimulation,Successive Approximation Register Analog-to-Digital Converter (SAR ADC),Bypass Window,Discrete-Time-Fourier-Transformation-Based (DFT-Based) Calibration,en
dc.relation.page135
dc.identifier.doi10.6342/NTU202201910
dc.rights.note未授權
dc.date.accepted2022-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-3107202216181700.pdf
  未授權公開取用
11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved