請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83770完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳 | zh_TW |
| dc.contributor.advisor | Yang-Fang Chen | en |
| dc.contributor.author | 李序彥 | zh_TW |
| dc.contributor.author | Hsu-Yen Lee | en |
| dc.date.accessioned | 2023-03-19T21:17:18Z | - |
| dc.date.available | 2023-12-27 | - |
| dc.date.copyright | 2022-08-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Liu, Y.; Pharr, M.; Salvatore, G. A., Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 2017, 11 (10), 9614-9635.
2. Rogers, J. A.; Someya, T.; Huang, Y., Materials and Mechanics for Stretchable Electronics. Science 2010, 327 (5973), 1603-1607. 3. Sekitani, T.; Someya, T., Stretchable, Large-Area Organic Electronics. Adv Mater 2010, 22 (20), 2228-2246. 4. Kudo, H.; Sawada, T.; Kazawa, E.; Yoshida, H.; Iwasaki, Y.; Mitsubayashi, K., A Flexible and Wearable Glucose Sensor Based on Functional Polymers with Soft-MEMS Techniques. Biosens Bioelectron 2006, 22 (4), 558-562. 5. White, M. S.; Kaltenbrunner, M.; Głowacki, E. D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D. A. M.; Miron, M. C.; Major, Z.; Scharber, M. C.; Sekitani, T.; Someya, T.; Bauer, S.; Sariciftci, N. S., Ultrathin, Highly Flexible and Stretchable PLEDs. Nat. Photonics 2013, 7 (10), 811-816. 6. Donati, S., Photodetectors: Devices, Circuits and Applications. John Wiley & Sons: 2021. 7. Fossum, E. R., CMOS Image Sensors: Electronic Camera-on-a-Chip. IEEE Trans. Electron Devices 1997, 44 (10), 1689-1698. 8. Melchior, H.; Fisher, M. B.; Arams, F. R., Photodetectors for Optical Communication Systems. Proc. IEEE 1970, 58 (10), 1466-1486. 9. Shinar, J.; Shinar, R., Organic Light-Emitting Devices (OLEDs) and OLED-Based Chemical and Biological Sensors: An Overview. J. Phys. D: Appl. Phys. 2008, 41 (13). 10. Koppens, F. H.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M., Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat Nanotechnol 2014, 9 (10), 780-793. 11. Grigorenko, A. N.; Polini, M.; Novoselov, K. S., Graphene Plasmonics. Nat. Photonics 2012, 6 (11), 749-758. 12. Geim, A. K.; Novoselov, K. S., The Rise of Graphene. Nat Mater 2007, 6 (3), 183-191. 13. De Sanctis, A.; Mehew, J. D.; Craciun, M. F.; Russo, S., Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance. Materials 2018, 11 (9), 1762. 14. Kuzmenko, A. B.; van Heumen, E.; Carbone, F.; van der Marel, D., Universal Optical Conductance of Graphite. Phys Rev Lett 2008, 100 (11), 117401. 15. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320 (5881), 1308. 16. Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S.; Park, J. U., High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures. Nano Lett 2013, 13 (6), 2814-2821. 17. Lee, S. K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho, J. H.; Ahn, J. H., Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes. Nano Lett 2011, 11 (11), 4642-4646. 18. Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H., High-Performance Perovskite-Graphene Hybrid Photodetector. Adv Mater 2015, 27 (1), 41-46. 19. Zhou, C.; Wang, X.; Kuang, X.; Xu, S., High Performance Flexible Ultraviolet Photodetectors Based on TiO2/Graphene Hybrid for Irradiation Monitoring Applications. J. Micromech. Microeng. 2016, 26 (7), 075003. 20. Dou, L.; Yang, Y. M.; You, J.; Hong, Z.; Chang, W. H.; Li, G.; Yang, Y., Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat Commun 2014, 5, 5404. 21. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H., The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat Chem 2013, 5 (4), 263-275. 22. Wurstbauer, U.; Miller, B.; Parzinger, E.; Holleitner, A. W., Light–Matter Interaction in Transition Metal Dichalcogenides and Their Heterostructures. J. Phys. D: Appl. Phys. 2017, 50 (17), 173001. 23. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F., Emerging Photoluminescence in Monolayer MoS2. Nano Lett 2010, 10 (4), 1271-1275. 24. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat Nanotechnol 2012, 7 (11), 699-712. 25. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-Layer MoS2 Transistors. Nat Nanotechnol 2011, 6 (3), 147-150. 26. Hu, H. W.; Haider, G.; Liao, Y. M.; Roy, P. K.; Ravindranath, R.; Chang, H. T.; Lu, C. H.; Tseng, C. Y.; Lin, T. Y.; Shih, W. H.; Chen, Y. F., Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv Mater 2017, 29 (43), 1703549. 27. Chamorro, W.; Ghanbaja, J.; Battie, Y.; Naciri, A. E.; Soldera, F.; Mücklich, F.; Horwat, D., Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films. The Journal of Physical Chemistry C 2016, 120 (51), 29405-29413. 28. Chen, H.; Su, L.; Jiang, M.; Fang, X., Highly Desirable Photodetectors Derived from Versatile Plasmonic Nanostructures. Adv. Funct. Mater. 2017, 27 (45), 1704181. 29. Hu, K.; Chen, H.; Jiang, M.; Teng, F.; Zheng, L.; Fang, X., Broadband Photoresponse Enhancement of a High-Performance t-Se Microtube Photodetector by Plasmonic Metallic Nanoparticles. Adv. Funct. Mater. 2016, 26 (36), 6641-6648. 30. Rodriguez-Lorenzo, L.; de la Rica, R.; Alvarez-Puebla, R. A.; Liz-Marzan, L. M.; Stevens, M. M., Plasmonic Nanosensors with Inverse Sensitivity by Means of Enzyme-Guided Crystal Growth. Nat Mater 2012, 11 (7), 604-607. 31. Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu Rev Phys Chem 2007, 58, 267-297. 32. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314. 33. Cooper, D. R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E., Experimental Review of Graphene. International Scholarly Research Notices 2012, 2012. 34. Ullal, C. K.; Shi, J.; Sundararaman, R., Electron Mobility in Graphene without Invoking the Dirac Equation. Am. J. Phys. 2019, 87 (4), 291-295. 35. Malko, D.; Neiss, C.; Görling, A., Two-Dimensional Materials with Dirac Cones: Graphynes Containing Heteroatoms. Phys. Rev. B 2012, 86 (4). 36. Weiss, N. O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X., Graphene: An Emerging Electronic Material. Adv Mater 2012, 24 (43), 5782-5825. 37. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A., 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2 (8), 1-15. 38. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307 (5709), 538-544. 39. Ramirez, H. Y.; Lin, C. H.; Chao, C. C.; Hsu, Y.; You, W. T.; Huang, S. Y.; Chen, Y. T.; Tseng, H. C.; Chang, W. H.; Lin, S. D.; Cheng, S. J., Optical Fine Structures of Highly Quantized InGaAs/GaAs Self-Assembled Quantum Dots. Phys. Rev. B 2010, 81 (24). 40. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat Mater 2005, 4 (6), 435-446. 41. Rabouw, F. T.; de Mello Donega, C., Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Top Curr Chem (Cham) 2016, 374 (5), 58. 42. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics 2007, 2 (3), 107-118. 43. Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O. M.; Iati, M. A., Surface Plasmon Resonance in Gold Nanoparticles: A Review. J Phys Condens Matter 2017, 29 (20), 203002. 44. Maier, S. A., Plasmonics: Fundamentals and Applications. Springer: 2007. 45. Kittel, C.; McEuen, P.; McEuen, P., Introduction to Solid State Physics. Wiley New York: 1996. 46. Wu, Y.; Sun, X.-J.; Jia, Y.-P.; Li, D.-B., Review of Improved Spectral Response of Ultraviolet Photodetectors by Surface Plasmon. Chin. Phys. B 2018, 27 (12). 47. Hamouni, S.; Arous, O.; Abdessemed, D.; Nezzal, G.; Van der Bruggen, B. In Alcohol and Alkane Organic Extraction Using Pervaporation Process, Macromol. Symp., Wiley Online Library: 2019; p 1800247. 48. Wang, J.; Han, J.; Chen, X.; Wang, X., Design Strategies for Two‐Dimensional Material Photodetectors to Enhance Device Performance. InfoMat 2019, 1 (1), 33-53. 49. Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A., Photocurrent Generation with Two-Dimensional Van Der Waals Semiconductors. Chem Soc Rev 2015, 44 (11), 3691-3718. 50. Lu, G. Z.; Wu, M. J.; Lin, T. N.; Chang, C. Y.; Lin, W. L.; Chen, Y. T.; Hou, C. F.; Cheng, H. J.; Lin, T. Y.; Shen, J. L.; Chen, Y. F., Electrically Pumped White-Light-Emitting Diodes Based on Histidine-Doped MoS2 Quantum Dots. Small 2019, 15 (30), e1901908. 51. Chien, Y. C.; Shen, T. L.; Wu, W. K.; Li, C. Y.; Chin, H. T.; Chang, C. W.; Lin, T. Y.; Chang, S. H.; Shen, J. L.; Chen, Y. F., Ultrathin, Transparent, Flexible, and Dual-Side White Light-Responsive Two-Dimensional Molybdenum Disulfide Quantum Disk Light-Emitting Diodes. Mater. Today Nano 2022, 18, 100173. 52. Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K., Synthesis of High-Quality Monolayer and Bilayer Graphene on Copper Using Chemical Vapor Deposition. Carbon 2011, 49 (13), 4122-4130. 53. Muñoz, R.; Gómez-Aleixandre, C., Review of CVD Synthesis of Graphene. Chem. Vap. Deposition 2013, 19 (10-11-12), 297-322. 54. Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Bruno, G., Graphene CVD Growth on Copper and Nickel: Role of Hydrogen in Kinetics and Structure. Phys Chem Chem Phys 2011, 13 (46), 20836-20843. 55. Ani, M. H.; Kamarudin, M. A.; Ramlan, A. H.; Ismail, E.; Sirat, M. S.; Mohamed, M. A.; Azam, M. A., A Critical Review on the Contributions of Chemical and Physical Factors toward the Nucleation and Growth of Large-Area Graphene. J. Mater. Sci. 2018, 53 (10), 7095-7111. 56. Najim, A. A.; Muhi, M. A. H.; Gbashi, K. R.; Salih, A. T., Synthesis of Efficient and Effective γ-Mno2/Α-Bi2o3/a-Si Solar Cell by Vacuum Thermal Evaporation Technique. Plasmonics 2017, 13 (3), 891-895. 57. Yin, W.; Bai, X.; Zhang, X.; Zhang, J.; Gao, X.; Yu, W. W., Multicolor Light-Emitting Diodes with MoS2 Quantum Dots. Part. Part. Syst. Charact. 2019, 36 (2), 1800362. 58. Lin, H.; Wang, C.; Wu, J.; Xu, Z.; Huang, Y.; Zhang, C., Colloidal Synthesis of MoS2 Quantum Dots: Size-Dependent Tunable Photoluminescence and Bioimaging. New J. Chem. 2015, 39 (11), 8492-8497. 59. Haldar, D.; Dinda, D.; Saha, S. K., High Selectivity in Water Soluble MoS2 Quantum Dots for Sensing Nitro Explosives. J. Mater. Chem. C 2016, 4 (26), 6321-6326. 60. Ojha, R. P.; Mishra, R.; Singh, P.; Nirala, N. R.; Prakash, R., A Composite Prepared from MoS2 Quantum Dots and Silver Nanoparticles and Stimulated by Mercury(II) Is a Robust Oxidase Mimetic for Use in Visual Determination of Cysteine. Mikrochim Acta 2019, 187 (1), 74. 61. Liu, Q.; Hu, C.; Wang, X., A Facile One-Step Method to Produce MoS2 Quantum Dots as Promising Bio-Imaging Materials. RSC Adv. 2016, 6 (30), 25605-25610. 62. Qiao, W.; Yan, S.; Song, X.; Zhang, X.; Sun, Y.; Chen, X.; Zhong, W.; Du, Y., Monolayer MoS2 Quantum Dots as Catalysts for Efficient Hydrogen Evolution. RSC Adv. 2015, 5 (118), 97696-97701. 63. Gan, Z. X.; Liu, L. Z.; Wu, H. Y.; Hao, Y. L.; Shan, Y.; Wu, X. L.; Chu, P. K., Quantum Confinement Effects across Two-Dimensional Planes in MoS2 Quantum Dots. Appl. Phys. Lett. 2015, 106 (23), 233113. 64. Dai, W.; Dong, H.; Fugetsu, B.; Cao, Y.; Lu, H.; Ma, X.; Zhang, X., Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular Microrna Detection and Multiphoton Bioimaging. Small 2015, 11 (33), 4158-4164. 65. Su, W.; Jin, L.; Qu, X.; Huo, D.; Yang, L., Defect Passivation Induced Strong Photoluminescence Enhancement of Rhombic Monolayer MoS2. Phys Chem Chem Phys 2016, 18 (20), 14001-14006. 66. Feria, D. N.; Jhan, W.-J.; Chen, Y.-T.; Wang, H.-J.; Santiago, S. R. M.; Yuan, C.-T.; Chou, C.-L.; Shen, J.-L.; Lin, T.-Y.; Lu, G.-Z.; Chen, Y.-F., Exciton Delocalization in Amino-Functionalized Inorganic MoS2 Quantum Disks: Giant Davydov Splitting and Exchange Narrowing. Phys. Rev. Appl 2021, 15 (2), 024011. 67. Huang, X.; El-Sayed, M. A., Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1 (1), 13-28. 68. Kunwar, S.; Pandit, S.; Jeong, J. H.; Lee, J., Improved Photoresponse of UV Photodetectors by the Incorporation of Plasmonic Nanoparticles on GaN through the Resonant Coupling of Localized Surface Plasmon Resonance. Nanomicro Lett 2020, 12 (1), 91. 69. Rahmati, B.; Hajzadeh, I.; Taheri, M.; Karimzadeh, R.; Mohajerzadeh, S.; Mohseni, S. M., Plasmonic Improvement Photoresponse of Vertical-MoS2 Nanostructure Photodetector by Au Nanoparticles. Appl. Surf. Sci. 2019, 490, 165-171. 70. Liu, S.; Li, M. Y.; Su, D.; Yu, M.; Kan, H.; Liu, H.; Wang, X.; Jiang, S., Broad-Band High-Sensitivity ZnO Colloidal Quantum Dots/Self-Assembled Au Nanoantennas Heterostructures Photodetectors. ACS Appl Mater Interfaces 2018, 10 (38), 32516-32525. 71. Gogurla, N.; Sinha, A. K.; Santra, S.; Manna, S.; Ray, S. K., Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature No Sensing Devices. Sci Rep 2014, 4, 6483. 72. Wang, W.; Fang, J.; Huang, X., Different Behaviors between Interband and Intraband Transitions Generated Hot Carriers on g-C3N4/Au for Photocatalytic H2 Production. Appl. Surf. Sci. 2020, 513, 145830. 73. Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X., Plasmon Resonance Enhanced Multicolour Photodetection by Graphene. Nat Commun 2011, 2, 579. 74. Li, D.; Sun, X.; Song, H.; Li, Z.; Chen, Y.; Jiang, H.; Miao, G., Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement. Adv Mater 2012, 24 (6), 845-849. 75. Ghosh, R.; Yadav, K.; Kataria, M.; Lin, H. I.; Paul Inbaraj, C. R.; Liao, Y. M.; Nguyen, Y.; Lu, C. H.; Hofmann, M.; Sankar, R.; Shih, W. H.; Hsieh, Y. P.; Chen, Y. F., Heavy Mediator at Quantum Dot/Graphene Heterojunction for Efficient Charge Carrier Transfer: Alternative Approach for High-Performance Optoelectronic Devices. ACS Appl Mater Interfaces 2019, 11 (29), 26518-26527. 76. Kataria, M.; Yadav, K.; Haider, G.; Liao, Y. M.; Liou, Y.-R.; Cai, S.-Y.; Lin, H.-i.; Chen, Y. H.; Paul Inbaraj, C. R.; Bera, K. P.; Lee, H. M.; Chen, Y.-T.; Wang, W.-H.; Chen, Y. F., Transparent, Wearable, Broadband, and Highly Sensitive Upconversion Nanoparticles and Graphene-Based Hybrid Photodetectors. ACS Photonics 2018, 5 (6), 2336-2347. 77. Katsnelson, M. I.; Geim, A. K., Electron Scattering on Microscopic Corrugations in Graphene. Philos Trans A Math Phys Eng Sci 2008, 366 (1863), 195-204. 78. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain. Nat Nanotechnol 2012, 7 (6), 363-368. 79. De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K.; Kis, A.; Ferrari, A. C., High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors. ACS Nano 2016, 10 (9), 8252-8262. 80. Sahatiya, P.; Jones, S. S.; Badhulika, S., 2D MoS2–Carbon Quantum Dot Hybrid Based Large Area, Flexible UV–vis–NIR Photodetector on Paper Substrate. Appl. Mater. Today 2018, 10, 106-114. 81. Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J. J.; Bouwens, M.; Durduran, T.; Konstantatos, G.; Goossens, S.; Koppens, F., Flexible Graphene Photodetectors for Wearable Fitness Monitoring. Sci Adv 2019, 5 (9), eaaw7846. 82. Park, M. J.; Park, K.; Ko, H., Near-Infrared Photodetector Achieved by Chemically-Exfoliated Multilayered MoS2 Flakes. Appl. Surf. Sci. 2018, 448, 64-70. 83. Deshpande, P.; Suri, P.; Jeong, H. H.; Fischer, P.; Ghosh, A.; Ghosh, A., Investigating Photoresponsivity of Graphene-Silver Hybrid Nanomaterials in the Ultraviolet. J Chem Phys 2020, 152 (4), 044709. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83770 | - |
| dc.description.abstract | 可拉伸式元件為未來新穎的可穿戴技術,包含各種電子、光電元件,目前已經得到廣泛的關注。其中由於石墨烯和過渡金屬硫化物等二維材料出色的柔韌性,在可拉伸元件的製程中能提供高穩定性和耐用性。然而,就以二維材料製備的光電元件而言,由於其厚度只有少數幾層所造成的弱吸收率,導致其低光響應度。為了克服此一缺點,在此設計並展示了一種基於二硫化鉬量子碟和石墨烯結合的可拉伸式高靈敏度二維混合異質結構和褶皺光感測器。為了實現、超過使用類似材料製作元件的已發表文獻中的拉伸性和靈敏度,首先在二硫化鉬量子碟上摻雜合適的分子可以大大減少表面缺陷,並且經過摻雜後二硫化鉬量子碟表現出明顯的吸收增強。接著,石墨烯層作為高導電通道,可將二硫化鉬量子碟中的光生載子能易於傳輸到石墨烯層。第三,除了表現出超過100%的拉伸能力外,褶皺結構還有助於產生光捕獲效應、產生更多的電子-電洞對進而增強光靈敏度。此外,在將石墨烯/過渡金屬硫化物的褶皺異質結構光感測器和金奈米粒子結合後,由於表面電漿共振效應,可以獲得光電流大幅增強的結果。因此我們在此顯示的結果對於未來發展超高靈敏度的可拉伸、可穿戴式電子產品非常有效益。 | zh_TW |
| dc.description.abstract | Stretchable devices are an emerging class of future wearable technology, which have attracted a great attention, including all kinds of electronic and optoelectronic devices. Especially, owing to the excellent flexibility, 2D materials such as graphene and transition metal dichalcogenide (TMDC) are suitable to provide high stability and durability in the fabrication of stretchable devices. However, in terms of 2D based optoelectronic devices, the photoresponsivity is low due to the weak absorption of their few layer thickness. To overcome this shortcoming, herein, a highly sensitive and stretchable hybrid 2D heterostructured and wrinkled photodetector based on MoS2 quantum disks and graphene has been designed and demonstrated. There exist several factors combined together simultaneously to achieve the stretchability and sensitivity exceeding all published reports made with similar materials. First, the surface defects can be greatly reduced by doping suitable molecules on MoS2 quantum disks, and the doped MoS2 quantum disks show a largely enhanced absorption. Second, the photogenerated carriers in MoS2 quantum disks can easily transfer to graphene layer, and the graphene layer serves as a highly conducting channel. Third, in addition to exhibit the stretchable capability of more than 100%, the wrinkled structure is useful to induce light trapping effect, generate more electron-hole pairs and enhance photosensitivity. Moreover, strong photocurrent enhancement can be obtained after incorporating gold nanoparticles into the graphene/TMDC-based wrinkled heterostructured photodetectors due to surface plasmon resonance effect. Our results shown here are therefore useful for developing future stretchable and wearable electronics with ultrahigh sensitivity. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:17:18Z (GMT). No. of bitstreams: 1 U0001-0408202213510800.pdf: 3588743 bytes, checksum: 347bc39db25d1a95e7720b09e595b9f4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 摘要 iii Abstract iv Contents vi List of Figures and Tables ix Chapter 1 Introduction 1 Chapter 2 Theoretical Background 4 2.1 Graphene 4 2.2 Transition Metal Dichalcogenides 6 2.3 Quantum Disk 9 2.4 Surface Plasmon Resonance 10 2.5 Polydimethylsiloxane Stretchable Substrate 13 2.6 Graphene-based Hybrid Photodetector 13 2.7 Photodetection Performance Calculation 15 2.7.1 Responsivity 15 2.7.2 Detectivity 15 Chapter 3 Experimental Details 16 3.1 Synthesis of MoS2 Quantum Disks and Histidine-Doped MoS2 Quantum Disks 16 3.2 Synthesis of Polydimethylsiloxane Stretchable Substrate 17 3.3 Chemical Vapor Deposition of Graphene 17 3.4 Thermal Evaporation for Electrode Deposition 20 3.5 Electrical and Photoresponse Measurement 22 3.6 Device Fabrication and Structure 23 Chapter 4 Results and Discussions 25 4.1 Material Characterization 25 4.1.1 Intrinsic Properties of Graphene 25 4.1.2 Characterization of MoS2 QDs and Optical Measurements of Au Nanoparticles 27 4.2 Electrical Properties of the Wrinkled Hybrid Heterostructured Photodetectors 30 4.2.1 Hybrid Photodetectors Based on Pristine MoS2 QDs 30 4.2.2 Hybrid Photodetectors Based on Histidine-Doped MoS2 QDs 33 4.3 Performance Comparison and Enhancement Mechanism 36 4.3.1 General Comparisons of the Wrinkled Hybrid Photodetectors 36 4.3.2 Strain Performance 39 4.3.3 Power Dependency 42 Chapter 5 Conclusion 45 Reference 46 | - |
| dc.language.iso | en | - |
| dc.subject | 二硫化鉬量子碟 | zh_TW |
| dc.subject | 電漿共振增強 | zh_TW |
| dc.subject | 可拉伸式靈敏光感測器 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 二硫化鉬量子碟 | zh_TW |
| dc.subject | 褶皺二維異質結構 | zh_TW |
| dc.subject | 電漿共振增強 | zh_TW |
| dc.subject | 可拉伸式靈敏光感測器 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 褶皺二維異質結構 | zh_TW |
| dc.subject | graphene | en |
| dc.subject | plasmonic enhancement | en |
| dc.subject | wrinkled 2D heterostructure | en |
| dc.subject | plasmonic enhancement | en |
| dc.subject | stretchable and sensitive photodetectors | en |
| dc.subject | graphene | en |
| dc.subject | MoS2 quantum disks | en |
| dc.subject | MoS2 quantum disks | en |
| dc.subject | stretchable and sensitive photodetectors | en |
| dc.subject | wrinkled 2D heterostructure | en |
| dc.title | 用於可拉伸式靈敏光感測器的褶皺二維混合異質結構 | zh_TW |
| dc.title | Wrinkled 2D Hybrid Heterostructures for Stretchable and Sensitive Photodetectors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 沈志霖;許芳琪 | zh_TW |
| dc.contributor.oralexamcommittee | Ji-Lin Shen;Fang-Chi Hsu | en |
| dc.subject.keyword | 褶皺二維異質結構,二硫化鉬量子碟,石墨烯,可拉伸式靈敏光感測器,電漿共振增強, | zh_TW |
| dc.subject.keyword | wrinkled 2D heterostructure,MoS2 quantum disks,graphene,stretchable and sensitive photodetectors,plasmonic enhancement, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202202054 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-08-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 3.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
