請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83761
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏瑞泓(Jui-Hung Yen) | |
dc.contributor.author | Yung-Ping Wang | en |
dc.contributor.author | 王詠平 | zh_TW |
dc.date.accessioned | 2023-03-19T21:17:00Z | - |
dc.date.copyright | 2022-08-15 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-08 | |
dc.identifier.citation | Abbasi, M., and Adams, W. (1998). Loss of nitrogen in compacted grassland soil by simultaneous nitrification and denitrification. Plant and Soil, 200(2), 265-277. Alef, K., and Kleiner, D. (1986). Arginine ammonification, a simple method to estimate microbial activity potentials in soils. Soil Biology and Biochemistry, 18(2), 233-235. Alef, K., and Kleiner, D. (1987). Applicability of arginine ammonification as indicator of microbial activity in different soils. Biology and Fertility of Soils, 5(2), 148-151. Alizadeh, H., Kandula, D. R., Hampton, J. G., Stewart, A., Leung, D. W., Edwards, Y., and Smith, C. (2017). Urease producing microorganisms under dairy pasture management in soils across New Zealand. Geoderma Regional, 11, 78-85. Amrhein, N., Deus, B., Gehrke, P., and Steinru?cken, H. C. (1980). The site of the inhibition of the shikimate pathway by glyphosate:II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiology, 66(5), 830-834. Annett, R., Habibi, H. R., and Hontela, A. (2014). Impact of glyphosate and glyphosate?based herbicides on the freshwater environment. Journal of Applied Toxicology, 34(5), 458-479. Antonious, G. F. (2003). Impact of soil management and two botanical insecticides on urease and invertase activity. Journal of Environmental Science and Health, Part B, 38(4), 479-488. Appleby, A. P., and Valverde, B. E. (1989). Behavior of dinitroaniline herbicides in plants. Weed Technology, 3(1), 198-206. Aquino, A., Tunega, D., Haberhauer, G., Gerzabek, M., and Lischka, H. (2007). Interaction of the 2, 4?dichlorophenoxyacetic acid herbicide with soil organic matter moieties:a theoretical study. European Journal of Soil Science, 58(4), 889-899. Arif, S., Houwen, F., and Verstraete, W. (1996). Agricultural factors affecting methane oxidation in arable soil. Biology and Fertility of Soils, 21(1), 95-102. Bateman, E., and Baggs, E. (2005). Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils, 41(6), 379-388. Beeckman, F., Motte, H., and Beeckman, T. (2018). Nitrification in agricultural soils: impact, actors and mitigation. Current Opinion in Biotechnology, 50, 166-173. Belzunces, L. P., Tchamitchian, S., and Brunet, J. L. (2012). Neural effects of insecticides in the honey bee. Apidologie, 43(3), 348-370. Boivin, A., Amellal, S., Schiavon, M., and van Genuchten, M. T. (2005). 2, 4-Dichlorophenoxyacetic acid (2, 4-D) sorption and degradation dynamics in three agricultural soils. Environmental Pollution, 138(1), 92-99. Burbank, M. B., Weaver, T. J., Williams, B. C., and Crawford, R. L. (2012). Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria. Geomicrobiology Journal, 29(4), 389-395. Burns, R. G. (1986). Interaction of enzymes with soil mineral and organic colloids. Interactions of Soil Minerals with Natural Organics and Microbes, 17, 429-451. Cameron, K. C., Di, H. J., and Moir, J. L. (2013). Nitrogen losses from the soil/plant system:a review. Annals of Applied Biology, 162(2), 145-173. Cantarella, H., Mattos, D., Quaggio, J., and Rigolin, A. (2003). Fruit yield of Valencia sweet orange fertilized with different N sources and the loss of applied N. Nutrient Cycling in Agroecosystems, 67(3), 215-223. Carter, E. L., Flugga, N., Boer, J. L., Mulrooney, S. B., and Hausinger, R. P. (2009). Interplay of metal ions and urease. Metallomics, 1(3), 207-221. Cassman, K. G., Dobermann, A., and Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. A Journal of the Human Environment, 31(2), 132-140. Chalam, A., Sasikala, C., Ramana, C. V., Uma, N., and Rao, P. R. (1997). Effect of pesticides on the diazotrophic growth and nitrogenase activity of purple nonsulfur bacteria. Bulletin of Environmental Contamination and Toxicology, 58(3), 463-468. Chen, S., Geng, P., Xiao, Y., and Hu, M. (2012). Bioremediation of beta-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Applied Microbiology Biotechnology, 94(2), 505-515. Chien, S., Prochnow, L., and Cantarella, a. H. (2009). Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Advances in Agronomy, 102, 267-322. Chowdhury, A., Pradhan, S., Saha, M., and Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian Journal of Microbiology, 48(1), 114-127. Cooper, J., and Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9), 1337-1348. Correia, M., Rodrigues, M., Pa?ga, P., and Delerue-Matos, C. (2016). Fungicides. Encyclopedia of Food and Health, 169-176. Coskun, D., Britto, D. T., Shi, W., and Kronzucker, H. J. (2017). Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants, 3, 17074. Cycon, M., and Piotrowska-Seget, Z. (2007). Effect of selected pesticides on soil microflora involved in organic matter and nitrogen transformations:pot experiment. Polish Journal of Ecology, 55(2), 207-220. Cycon, M., Zmijowska, A., and Piotrowska-Seget, Z. (2014). Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. International Journal of Environmental Science and Technology, 11(5), 1305-1316. Daims, H., Lucker, S., and Wagner, M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 24(9), 699-712. Damalas, C. A., and Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402-1419. Dec, J., Haider, K., Sch?ffer, A., Fernandes, E., and Bollag, J.-M. (1997). Use of a silylation procedure and 13C-NMR spectroscopy to characterize bound and sequestered residues of cyprodinil in soil. Environmental Science and Technology, 31(10), 2991-2997. Demanou, J., Sharma, S., Weber, A., Wilke, B.-M., Njine, T., Monkiedje, A., Munch, J. C., and Schloter, M. (2006). Shifts in microbial community functions and nitrifying communities as a result of combined application of copper and mefenoxam. FEMS Microbiology Letters, 260(1), 55-62. Dhami, N. K., Reddy, M. S., and Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707-714. Dick, R., and Quinn, J. (1995). Glyphosate-degrading isolates from environmental samples:occurrence and pathways of degradation. Applied Microbiology and Biotechnology, 43(3), 545-550. Ding, H., Zou, Y., Zheng, X., Zhang, Y., Yu, J., and Chen, D. (2019). Inhibitory effects of different types and doses of herbicides on soil nitrification potentials. Water, Air, and Soil Pollution, 230(8), 1-8. Dobbie, K., and Smith, K. (2001). The effects of temperature, water?filled pore space and land use on N2O emissions from an imperfectly drained gleysol. European Journal of Soil Science, 52(4), 667-673. Dom?nguez, M. J., Sanmart?n, C., Font, M., Palop, J. A., San Francisco, S., Urrutia, O., Houdusse, F., and Garc?a-Mina, J. M. (2008). Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors. Journal of Agricultural and Food Chemistry, 56(10), 3721-3731. Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A., and Butterbach-Bahl, K. (2011). Reactive nitrogen in the environment and its effect on climate change. Current Opinion in Environmental Sustainability, 3(5), 281-290. Ernst, J., and Massey, H. (1960). The effects of several factors on volatilization of ammonia formed from urea in the soil. Soil Science Society of America Journal, 24(2), 87-90. Fabra, A., Duffard, R., and De Duffard, A. E. (1997). Toxicity of 2, 4-dichlorophenoxyacetic acid to Rhizobium sp. in pure culture. Bulletin of Environmental Contamination and Toxicology, 59(4), 645-652. Firestone, M. (1982). Biological denitrification. Nitrogen in Agricultural Soils, 22, 289-326. Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., and Galloway, J. N. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B, 368(1621), 20130164. Fox, J. E., Starcevic, M., Kow, K. Y., Burow, M. E., and McLachlan, J. A. (2001). Nitrogen fixation:endocrine disrupters and flavonoid signalling. Nature, 413(6852), 128-130. Foy, C. (2018). Adjuvants:terminology, classification, and mode of action. Adjuvants and Agrochemicals, 1-15. Fujii, K., Yamada, T., Hayakawa, C., Nakanishi, A., and Funakawa, S. (2019). Kinetics of arginine ammonification to estimate microbial activity of N mineralization in forest and cropland soils. European Journal of Soil Biology, 92, 1-7. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A. (2008). Transformation of the nitrogen cycle:recent trends, questions, and potential solutions. Science, 320(5878), 889-892. Geisseler, D., Horwath, W. R., Joergensen, R. G., and Ludwig, B. (2010). Pathways of nitrogen utilization by soil microorganisms–a review. Soil Biology and Biochemistry, 42(12), 2058-2067. Giacomazzi, S., and Cochet, N. (2004). Environmental impact of diuron transformation: a review. Chemosphere, 56(11), 1021-1032. Gibson, T. (1934). An investigation of the Bacillus pasteurii group:II. Special physiology of the organisms. Journal of Bacteriology, 28(3), 313-322. Giesy, J. P., Dobson, S., and Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup? herbicide. Reviews of Environmental Contamination and Toxicology, 35-120. Goggin, D. E., Cawthray, G. R., and Powles, S. B. (2016). 2, 4-D resistance in wild radish:reduced herbicide translocation via inhibition of cellular transport. Journal of Experimental Botany, 67(11), 3223-3235. Goring, C. A. (1962). Control of nitrification of ammonium fertilizers and urea by 2-chloro-6-(trichloromethyl) pyridine. Soil Science, 93(6), 431-439. Grossmann, K. (2010). Auxin herbicides:current status of mechanism and mode of action. Pest Management Science, 66(2), 113-120. Hargrove, W. (1988). Soil, environmental, and management factors influencing ammonia volatilization under field conditions. Ammonia Volatilization from Urea Fertilizers, 17-36. Hart, S. C., Stark, J. M., Davidson, E. A., and Firestone, M. K. (1994). Nitrogen mineralization, immobilization, and nitrification. Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties, 5, 985-1018. Herrera-Herrera, A. V., Asensio-Ramos, M., Hern?ndez-Borges, J., and Rodr?guez-Delgado, M. ?. (2016). Pesticides and herbicides:types, uses, and determination of herbicides. Encyclopedia of Food and Health, 326-332. Hojito, M., Hayashi, K., and Matsuura, S. (2010). Ammonia exchange on grasslands in an intensive dairying region in central Japan. Soil Science and Plant Nutrition, 56(3), 503-511. Huang, X., He, J., Yan, X., Hong, Q., Chen, K., He, Q., Zhang, L., Liu, X., Chuang, S., and Li, S. (2017). Microbial catabolism of chemical herbicides:microbial resources, metabolic pathways and catabolic genes. Pesticide Biochemistry and Physiology, 143, 272-297. Hussain, S., Arshad, M., Springael, D., S?Rensen, S. R., Bending, G. D., Devers-Lamrani, M., Maqbool, Z., and Martin-Laurent, F. (2015). Abiotic and biotic processes governing the fate of phenylurea herbicides in soils:a review. Critical Reviews in Environmental Science and Technology, 45(18), 1947-1998. Hussain, S., Siddique, T., Saleem, M., Arshad, M., and Khalid, A. (2009). Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advances in Agronomy, 102, 159-200. Itoh, K., Kanda, R., Sumita, Y., Kim, H., Kamagata, Y., Suyama, K., Yamamoto, H., Hausinger, R. P., and Tiedje, J. M. (2002). tfdA-like genes in 2, 4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in α-Proteobacteria. Applied and Environmental Microbiology, 68(7), 3449-3454. Jahns, T. (1996). Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii. Journal of Bacteriology, 178(2), 403-409. Jan, M., Roberts, P., Tonheim, S., and Jones, D. (2009). Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biology and Biochemistry, 41(11), 2272-2282. Kamagata, Y., Fulthorpe, R. R., Tamura, K., Takami, H., Forney, L. J., and Tiedje, J. M. (1997). Pristine environments harbor a new group of oligotrophic 2, 4-dichlorophenoxyacetic acid-degrading bacteria. Applied and Environmental Microbiology, 63(6), 2266-2272. Kandeler, E., and Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1), 68-72. Karpouzas, D. G., and Walker, A. (2000). Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil. Soil Biology and Biochemistry, 32(11-12), 1753-1762. Keerthisinghe, D., and Blakeley, R. (1995). Inhibition of jack bean urease by phosphoric-and thiophosphorictriamides. Soil Biology and Biochemistry, 27(6), 739-742. Kellogg, C. (1937). Soil survey division staff:soil survey manual. United States Department of Agriculture, Washington, 235. Khan, M. S., Zaidi, A., and Rizvi, P. Q. (2006). Biotoxic effects of herbicides on growth, nodulation, nitrogenase activity, and seed production in chickpeas. Communications in Soil Science and Plant Analysis, 37(11-12), 1783-1793. Krapp, A. (2015). Plant nitrogen assimilation and its regulation:a complex puzzle with missing pieces. Current Opinion in Plant Biology, 25, 115-122. Kremer, R. J., and Means, N. E. (2009). Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. European Journal of Agronomy, 31(3), 153-161. Kucharski, J., Bacmaga, M., & Wyszkowska, J. (2009). Effect of herbicides on the course of ammonification in soil. Journal of Elementology, 14(3), 477-487. Kulshrestha, G., and Singh, S. (1992). Influence of soil moisture and microbial activity on pendimethalin degradation. Bulletin of Environmental Contamination and Toxicology, 48(2), 269-274. Kumar, A., Trefault, N., and Olaniran, A. O. (2016). Microbial degradation of 2, 4-dichlorophenoxyacetic acid:insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Critical Reviews in Microbiology, 42(2), 194-208. Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., and van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production:retrospects and prospects. Advances in Agronomy, 87, 85-156. Luks, A.-K., Zegarski, T., Nowak, K. M., Miltner, A., Kaestner, M., Matthies, M., Schmidt, B., and Schaeffer, A. (2021). Fate of pendimethalin in soil and characterization of non-extractable residues (NER). Science of the Total Environment, 753, 141870. Mah?a, J., Cabaneiro, A., Carballas, T., and D?az-Ravi?a, M. (2008). Microbial biomass and C mineralization in agricultural soils as affected by atrazine addition. Biology and Fertility of Soils, 45(1), 99-105. Manunza, B., Deiana, S., Pintore, M., and Gessa, C. (1999). The binding mechanism of urea, hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study. Soil Biology and Biochemistry, 31(5), 789-796. Martens, D., and Bremner, J. (1993). Influence of herbicides on transformations of urea nitrogen in soil. Journal of Environmental Science and Health Part B, 28(4), 377-395. Martens, D. A., and Bremner, J. (1984). Effectiveness of phosphoroamides for retardation of urea hydrolysis in soils. Soil Science Society of America Journal, 48(2), 302-305. Martins, M. R., Sarkis, L. F., Sant'Anna, S. A., Santos, C. A., Araujo, K. E., Santos, R. C., Araujo, E. S., Alves, B. J., Jantalia, C. P., and Boddey, R. M. (2021). Optimizing the use of open chambers to measure ammonia volatilization in field plots amended with urea. Pedosphere, 31(2), 243-254. McCarty, G. (1999). Modes of action of nitrification inhibitors. Biology and Fertility of Soils, 29(1), 1-9. Mesnage, R., Defarge, N., De Vend?mois, J. S., and S?ralini, G. (2015). Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food and Chemical Toxicology, 84, 133-153. Milo?evi?, N. A., and Govedarica, M. M. (2002). Effect of herbicides on microbiological properties of soil. Zbornik Matice Srpske za Prirodne Nauke, (102), 5-21. Mobley, H., and Hausinger, R. (1989). Microbial ureases:significance, regulation, and molecular characterization. Microbiological Reviews, 53(1), 85-108. Moir, J., Cameron, K., and Di, H. (2007). Effects of the nitrification inhibitor dicyandiamide on soil mineral N, pasture yield, nutrient uptake and pasture quality in a grazed pasture system. Soil Use and Management, 23(2), 111-120. Nelson, D. a., and Sommers, L. E. (1983). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis:Part 2 Chemical and Microbiological Properties, 9, 539-579. Nielsen, T. K., Xu, Z., G?zdereliler, E., Aamand, J., Hansen, L. H., and S?rensen, S. R. (2013). Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas. PLOS One, 8(12), e83346. Norman, R., and Stucki, J. (1981). The determination of nitrate and nitrite in soil extracts by ultraviolet spectrophotometry. Soil Science Society of America Journal, 45(2), 347-353. Nowak, J., Kaklewski, K., and Kl?dka, D. (2002). Influence of various concentrations of selenic acid (IV) on the activity of soil enzymes. Science of the Total Environment, 291(1-3), 105-110. OECD. 2002. OECD Guideline for the testing of chemicals. Test No. 216. Soil Microorganisms:Nitrogen Transformation Test. Paris, France. Oerke, E. C., and Dehne, H. W. (2004). Safeguarding production—losses in major crops and the role of crop protection. Crop Protection, 23(4), 275-285. Papadopoulou, E. S., Bachtsevani, E., Lampronikou, E., Adamou, E., Katsaouni, A., Vasileiadis, S., Thion, C., Menkissoglu-Spiroudi, U., Nicol, G. W., and Karpouzas, D. G. (2020). Comparison of novel and established nitrification inhibitors relevant to agriculture on soil ammonia- and nitrite-oxidizing isolates. Frontiers in Microbiology, 11, 581283. Pazmino, D. M., Rodr?guez-Serrano, M., Romero-Puertas, M. C., Archilla-Ruiz, A., Del Rio, L. A., and Sandalio, L. M. (2011). Differential response of young and adult leaves to herbicide 2, 4?dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species. Plant, Cell and Environment, 34(11), 1874-1889. Piotrowska-D?ugosz, A., and Charzy?ski, P. (2015). The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toru? (Poland). Journal of Soils and Sediments, 15(1), 47-59. Polacco, J. C. (1977). Is nickel a universal component of plant ureases? Plant Science Letters, 10(3), 249-255. Prosser, J. I. (2011). Soil nitrifiers and nitrification. Nitrification, 347-383. Radel, R., Gautney, J., and Peters, G. (1988). Urease inhibitor developments. Ammonia Volatilization From Urea Fertilizers, 111-136. Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., and Iqbal, A. (2020). State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability, 12(15), 6281. Raun, W. R., and Johnson, G. V. (1999). Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91(3), 357-363. Rawluk, C., Grant, C., and Racz, G. (2001). Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Canadian Journal of Soil Science, 81(2), 239-246. Reich, P. B., Grigal, D. F., Aber, J. D., and Gower, S. T. (1997). Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology, 78(2), 335-347. Roberts, P., Stockdale, R., Khalid, M., Iqbal, Z., and Jones, D. (2009). Carbon-to-nitrogen ratio is a poor predictor of low molecular weight organic nitrogen mineralization in soil. Soil Biology and Biochemistry, 41(8), 1750-1752. Robertson, G. P., and Groffman, P. M. (2015). Nitrogen Transformations. In Soil Microbiology, Ecology and Biochemistry, 421-446. Robertson, G. P., and Proctor, J. (1989). Mineral nutrients in tropical forest and savanna ecosystems. J. Procter. Blackwell Scientific, Boston, Mass, 55-70. Ruser, R., and Schulz, R. (2015). The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. Journal of Plant Nutrition and Soil Science, 178(2), 171-188. Sannino, F., and Gianfreda, L. (2001). Pesticide influence on soil enzymatic activities. Chemosphere, 45(4-5), 417-425. Santos, A., and Flores, M. (1995). Effects of glyphosate on nitrogen fixation of free?living heterotrophic bacteria. Letters in Applied Microbiology, 20(6), 349-352. Schimel, J. P., and Bennett, J. (2004). Nitrogen mineralization:challenges of a changing paradigm. Ecology, 85(3), 591-602. Schleper, C., and Nicol, G. W. (2010). Ammonia-oxidising archaea - physiology, ecology and evolution. Advances in Microbial Physiology, 57, 1-41. Schlesinger, W. H. (2009). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences, 106(1), 203-208. Shan, L., He, Y., Chen, J., Huang, Q., and Wang, H. (2015). Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Journal of Environmental Sciences, 38, 14-23. Silva, V. P., Moreira-Santos, M., Mateus, C., Teixeira, T., Ribeiro, R., and Viegas, C. A. (2015). Evaluation of Arthrobacter aurescens strain TC1 as bioaugmentation bacterium in soils contaminated with the herbicidal substance terbuthylazine. Plos One, 10(12). Sims, G., Ellsworth, T., and Mulvaney, R. (1995). Microscale determination of inorganic nitrogen in water and soil extracts. Communications in Soil Science and Plant Analysis, 26(1-2), 303-316. Singh, B. K., Walker, A., and Wright, D. J. (2006). Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates:influence of different environmental conditions. Soil Biology and Biochemistry, 38(9), 2682-2693. Singh, G., and Wright, D. (2002). In vitro studies on the effects of herbicides on the growth of rhizobia. Letters in Applied Microbiology, 35(1), 12-16. Singh, S., and Kulshrestha, G. (1991). Microbial degradation of pendimethalin. Journal of Environmental Science and Health Part B, 26(3), 309-321. Soares, J. R., Cantarella, H., and Menegale, M. L. d. C. (2012). Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 52, 82-89. Solansky, S. (1982). N-Stabilisator SKW-DIDIN verbessert die stickstoffwirkung der g?lle. Blickfeld, 61, 1-4. Soon, N. W., Lee, L. M., Khun, T. C., and Ling, H. S. (2013). Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE Journal of Civil Engineering, 17(4), 718-728. Subhani, A., El-ghamry, A. M., Changyong, H., and Jianming, X. (2000). Effects of pesticides (herbicides) on soil microbial biomass-a review. Pakistan Journal of Biological Sciences, 3(5), 705-709. Sutton, M. A., Erisman, J. W., Dentener, F., and M?ller, D. (2008). Ammonia in the environment:From ancient times to the present. Environmental Pollution, 156(3), 583-604. Terman, G. (1980). Volatilization losses of nitrogen as ammonia from surface-applied fertilizers, organic amendments, and crop residues. Advances in Agronomy, 31, 189-223. Thomas, G. W. (1983). Exchangeable cations. Methods of Soil Analysis:Part 2 Chemical and Microbiological Properties, 9, 159-165. Thomas, G. W. (1996). Soil pH and soil acidity. Methods of Soil Analysis. Part, 3(875), 475-490. Tilman, D., and Isbell, F. (2015). Recovery as nitrogen declines. Nature, 528(7582), 336-337. Tsui, M. T., and Chu, L. (2003). Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52(7), 1189-1197. Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., and Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1112. Van der Eerden, L., De Vries, W., and van Dobben, H. (1998). Effects of ammonia deposition on forests in the Netherlands. Atmospheric Environment, 32(3), 525-532. Van der Veen, R. (1956). The action of some derivatives of phenylurethan and of 3-phenyl-1, 1-dimethylurea on the Hill reaction. Biochimica et Biophysica Acta, 19(3), 548-549. Van Kessel, M., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J. M., Kartal, B., Jetten, M. S. M., and Lucker, S. (2015). Complete nitrification by a single microorganism. Nature, 528(7583), 555. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., and Tilman, D. G. (1997). Human alteration of the global nitrogen cycle:sources and consequences. Ecological Applications, 7(3), 737-750. Walkley, A., and Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. Watson, C., Miller, H., Poland, P., Kilpatrick, D., Allen, M., Garrett, M., and Christianson, C. (1994). Soil properties and the ability of the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) to reduce ammonia volatilization from surface-applied urea. Soil Biology and Biochemistry, 26(9), 1165-1171. Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. Murdoch University. Wittmann, C., and Krull, R. (2010). Biosystems Engineering I:Creating Superior Biocatalysts. Springer, 120. Xu, G., Fan, X., and Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182. Yadav, G. S., Datta, R., Imran Pathan, S., Lal, R., Meena, R. S., Babu, S., Das, A., Bhowmik, S., Datta, M., and Saha, P. (2017). Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)–rice system in north eastern region of India. Sustainability, 9(10), 1816. Zaman, M., and Blennerhassett, J. (2010). Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system. Agriculture, Ecosystems and Environment, 136(3-4), 236-246. Zerulla, W., Barth, T., Dressel, J., Erhardt, K., Horchler von Locquenghien, K., Pasda, G., R?dle, M., and Wissemeier, A. (2001). 3, 4-Dimethylpyrazole phosphate (DMPP)–a new nitrification inhibitor for agriculture and horticulture. Biology and Fertility of Soils, 34(2), 79-84. Zhenghu, D., and Honglang, X. (2000). Effects of soil properties on ammonia volatilization. Soil Science and Plant Nutrition, 46(4), 845-852. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83761 | - |
dc.description.abstract | 除草劑被廣泛的應用於雜草管理,可能會造成土壤微生物生化反應受影響,使土壤氮循環失衡,因此本篇試驗目的為藉由土壤銨化作用 (Ammonification)、土壤硝化作用 (Nitrification) 和土壤尿素水解? (Soil urease) 活性做為觀察指標,評估除草劑對土壤氮循環造成的影響。本篇研究供試土壤採集於新北市坪林區茶園 (Pinglin)、國立臺灣大學農業試驗場旱田土壤 (NTU)、彰化縣員林市果園 (Yuanlin) 與彰化縣大村鄉葡萄園 (Dacun),供試土壤經過7天前置孵育後,分別添加10倍田間推薦用量除草劑嘉磷塞 (Glyphosate)、二,四-地 (2,4-D)、施得圃 (Pendimethalin) 與達有龍 (Diuron),評估除草劑是否會影響土壤氮循環中的土壤銨化作用、土壤硝化作用與土壤尿素水解?活性。結果顯示嘉磷塞、二,四-地、施得圃與達有龍對土壤銨化作用和土壤硝化作用並沒有顯著之影響,在土壤尿素水解?活性試驗顯示施得圃與達有龍在Pinglin及Dacun供試土壤具有顯著抑制效果,而二,四-地在Pinglin、NTU及Dacun供試土壤皆具有顯著抑制效果,因此後續試驗針對二,四-地抑制土壤尿素水解?的現象進行更深入探討。在二,四-地對產尿素水解?細菌及不同種類尿素水解?影響試驗結果中,顯示二,四-地對Sporosarcina pasteurii BCRC11596與Bacillus megaterium BCRC10608的半效應濃度 (50% Effective concentration, EC50) 分別為152.4 mg L-1與> 200 mg L-1,而二,四-地對細菌源與植物源之尿素水解?在pH 4.0 - 8.0範圍下,半抑制濃度 (50% Inhibitory concentration, IC50) 皆> 200 mg L-1。於土壤氨揮失試驗,施用10倍田間推薦用量二,四-地之處理,於四種供試土壤中皆有降低氨揮失量的現象,並能減緩氨揮失發生速率。本研究結果顯示10倍田間推薦用量二,四-地會對整體土壤尿素水解?活性造成影響,並進一步使氨揮失量下降。田間應用方面,若能先施用二,四-地進行雜草管理,再施用尿素追肥,可減緩尿素水解速率,降低氨揮失情形發生,提升氮肥利用率。 | zh_TW |
dc.description.abstract | Herbicides have been widely applied for weed management that may affect biochemical reactions of soil microorganisms, resulting in an imbalance of soil nitrogen cycle. Therefore, the purpose of this experiment is to evaluate the effect of herbicides on soil nitrogen cycle by using soil ammonification, soil nitrification and soil urease activity as observation indicators. Herbicides, Glyphosate, 2,4-D, Pendimethalin and Diuron, are applied at officially ten times recommended levels, to soil samples from tea garden in Pinglin District, New Taipei City (Pinglin), National Taiwan University’s agricultural experimental fields (NTU), orchard of Yuanlin City, Changhua County (Yuanlin) and vineyard of Dacun Township, Changhua County (Dacun). Then, herbicide-treated soil samples are sampled to evaluate the effects on soil ammonification, soil nitrification and soil urease activity in the soil nitrogen cycle. Results showed that Glyphosate, 2,4-D, Pendimethalin and Diuron did not have significant effects on soil ammonification and soil nitrification. As for soil urease activity, Pendimethalin and Diuron show significant inhibitory effects in sample Pinglin and Dacun while 2,4-D show significant inhibitory effects in sample Pinglin, NTU and Dacun. Therefore, the phenomenon of inhibition of soil urease by 2,4-D was investigated in more deep detail in subsequent experiments. The effects of 2,4-D on urease-producing bacteria and different types of urease experiments are conducted. Results showed that the 50% effective concentration (EC50) of 2,4-D on Sporosarcina pasteurii BCRC11596 and Bacillus megaterium BCRC10608 were 152.4 mg L-1 and > 200 mg L-1, respectively. And 50% inhibitory concentration (IC50) of 2,4-D for bacteria-source and plant-source urease are >200 mg L-1 at pH 4.0 - 8.0. Lastly, in the experiment of soil ammonia volatilization, the amount and rate reduce in ammonia volatilization after applying ten times recommended levels of 2,4-D in all four soil samples. In summary, the results of this study demonstrate that ten times recommended levels of 2,4-D will affect the soil urease activity and reduce ammonia volatilization. For field application, if we accomplish weed management with 2,4-D first, and then apply urea as top dressing, it can slow down the rate of urea hydrolysis, reduce the occurrence of ammonia volatilization, also improve the efficiency of nitrogen fertilizer. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:17:00Z (GMT). No. of bitstreams: 1 U0001-3007202214151100.pdf: 4668616 bytes, checksum: 9a24811e7129c207067c4e04a52ea906 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 壹、 前言 1 一、 農藥於環境之流佈 1 二、 土壤氮循環 3 (一) 氮的礦化 (Mineralization) 5 (二) 硝化作用 (Nitrification) 7 (三) 脫氮作用 9 (四) 土壤尿素水解? 9 (五) 氮肥與作物 12 (六) 硝化抑制劑 14 (七) 尿素水解?抑制劑 15 三、 除草劑與土壤氮循環 16 四、 本研究用藥簡介 20 (一) 嘉磷塞 (Glyphoate) 20 (二) 施得圃 (Pendimethalin) 23 (三) 二,四-地 (2,4-D) 25 (四) 達有龍 (Diuron) 29 貳、 研究目的 35 參、 試驗架構 36 肆、 材料與方法 37 一、 藥品與設備 37 (一) 藥品 37 (二) 設備 39 二、 試驗土壤與基本性質分析 40 (一) 供試土壤樣品 40 (二) 土壤基本性質分析 40 三、 土壤銨化作用試驗 44 (一) 土壤孵育試驗 44 (二) 靛酚藍法 (Indophenol blue method) 44 四、 土壤硝化作用試驗 47 五、 土壤尿素水解?活性試驗 49 六、 除草劑對產尿素水解?細菌影響之試驗 50 七、 除草劑對不同種類尿素水解?影響之試驗 51 (一) 胞內酵素萃取 51 (二) 尿素水解?抑制試驗 52 八、 土壤氨揮失試驗 53 九、 統計分析 56 伍、 結果與討論 57 一、 試驗土壤基本性質 57 二、 除草劑對土壤銨化作用之影響 59 三、 除草劑對土壤硝化作用之影響 65 四、 除草劑對土壤尿素水解?活性之影響 69 五、 二,四-地和NBPT對產尿素水解?細菌之影響 75 六、 二,四-地和NBPT對不同種類尿素水解?之影響 83 七、 二,四-地對土壤氨揮失之影響 88 陸、 結論 102 柒、 參考文獻 103 | |
dc.language.iso | zh-TW | |
dc.title | 四種除草劑對土壤氮循環影響之研究 | zh_TW |
dc.title | Effects of four herbicides on the nitrogen cycle in soils | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳玟瑾(Wen-Ching Chen),林乃君(Nai-Chun Lin),徐慈鴻(Tsyr-Horng Shyu),何素鵬(Shu-Peng Ho) | |
dc.subject.keyword | 二,四-地,土壤尿素水解?,施得圃,硝化作用,達有龍,銨化作用,嘉磷塞, | zh_TW |
dc.subject.keyword | Ammonification,Diuron,Glyphosate,Nitrification,Pendimethalin,Soil urease,2,4-D, | en |
dc.relation.page | 113 | |
dc.identifier.doi | 10.6342/NTU202201897 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-08-08 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3007202214151100.pdf 目前未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。