Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83753
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玉怜(Yuh-Lien Chen)
dc.contributor.authorSzu-Ju Fuen
dc.contributor.author傅斯?zh_TW
dc.date.accessioned2023-03-19T21:16:43Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-08-08
dc.identifier.citationAcu?a-Castroviejo, D., Mart?n, M., Mac?as, M., et al. (2001): Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res, 30, 65-74. Afshin, A., Forouzanfar, M.H., Reitsma, M.B., et al. (2017): Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med, 377, 13-27. Aguirre, J.D., Dunkerley, K.M., Mercier, P. and Shaw, G.S. (2017): Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc Natl Acad Sci U S A, 114, 298-303. Atkinson, R.W., Kang, S., Anderson, H.R., Mills, I.C. and Walton, H.A. (2014): Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax, 69, 660-665. Baehrecke, E.H. (2003): Autophagic programmed cell death in Drosophila. Cell Death Differ, 10, 940-945. Barth, S., Glick, D. and Macleod, K.F. (2010): Autophagy: assays and artifacts. J Pathol, 221, 117-124. Cen, M., Ouyang, W., Zhang, W., et al. (2021): MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol, 41, 101936. Chen, M., Qin, X., Qiu, L., et al. (2018): Concentrated Ambient PM(2.5)-Induced Inflammation and Endothelial Dysfunction in a Murine Model of Neural IKK2 Deficiency. Environ Health Perspect, 126, 027003. Chu, S.G., Villalba, J.A., Liang, X., et al. (2019): Palmitic Acid-Rich High-Fat Diet Exacerbates Experimental Pulmonary Fibrosis by Modulating Endoplasmic Reticulum Stress. Am J Respir Cell Mol Biol, 61, 737-746. Coll, T., Eyre, E., Rodr?guez-Calvo, R., et al. (2008): Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem, 283, 11107-11116. Cullen, S.P. and Martin, S.J. (2009): Caspase activation pathways: some recent progress. Cell Death & Differentiation, 16, 935-938. Dai, W., Wang, G., Chwa, J., et al. (2020): Mitochondrial division inhibitor (mdivi-1) decreases oxidative metabolism in cancer. Br J Cancer, 122, 1288-1297. Ding, M., Feng, N., Tang, D., et al. (2018): Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res, 65, e12491. Ding, S., Lin, N., Sheng, X., et al. (2019): Melatonin stabilizes rupture-prone vulnerable plaques via regulating macrophage polarization in a nuclear circadian receptor RORα-dependent manner. J Pineal Res, 67, e12581. Dr?ge, W. (2002): Free radicals in the physiological control of cell function. Physiol Rev, 82, 47-95. Drosatos, K. and Schulze, P.C. (2013): Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep, 10, 109-121. Elefantova, K., Lakatos, B., Kubickova, J., Sulova, Z. and Breier, A. (2018): Detection of the Mitochondrial Membrane Potential by the Cationic Dye JC-1 in L1210 Cells with Massive Overexpression of the Plasma Membrane ABCB1 Drug Transporter. Int J Mol Sci, 19. Elgass, K., Pakay, J., Ryan, M.T. and Palmer, C.S. (2013): Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta, 1833, 150-161. Farr?, J.C. and Subramani, S. (2016): Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol, 17, 537-552. Fink, B.D., Herlein, J.A., Yorek, M.A., Fenner, A.M., Kerns, R.J. and Sivitz, W.I. (2012): Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells. J Pharmacol Exp Ther, 342, 709-719. Gardner, B., Ling, F., Hopke, P.K., et al. (2014): Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study. Part Fibre Toxicol, 11, 1. Gopinath, P., Gogoi, S.K., Sanpui, P., Paul, A., Chattopadhyay, A. and Ghosh, S.S. (2010): Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B Biointerfaces, 77, 240-245. Hao, G., Han, Z., Meng, Z., et al. (2015): Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis. Int J Clin Exp Pathol, 8, 10216-10227. Harper, J.W., Ordureau, A. and Heo, J.M. (2018): Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol, 19, 93-108. He, R., Cui, M., Lin, H., et al. (2018): Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells. Life Sci, 199, 122-130. Hemmingsen, J.G., M?ller, P., N?jgaard, J.K., Roursgaard, M. and Loft, S. (2011): Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends. Environ Sci Technol, 45, 8545-8551. Heo, J., Antkiewicz, D.S., Shafer, M.M., Perkins, D.A., Sioutas, C. and Schauer, J.J. (2015): Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts. Anal Bioanal Chem, 407, 5953-5963. Hinderer, S. and Schenke-Layland, K. (2019): Cardiac fibrosis - A short review of causes and therapeutic strategies. Adv Drug Deliv Rev, 146, 77-82. Hsu, H.C., Li, S.J., Chen, C.Y. and Chen, M.F. (2018): Eicosapentaenoic acid protects cardiomyoblasts from lipotoxicity in an autophagy-dependent manner. Cell Biol Toxicol, 34, 177-189. Hu, Q., Zhang, H., Guti?rrez Cort?s, N., et al. (2020): Increased Drp1 Acetylation by Lipid Overload Induces Cardiomyocyte Death and Heart Dysfunction. Circ Res, 126, 456-470. Hu, W.S., Ting, W.J., Tamilselvi, S., et al. (2019): Oral administration of alcalase potato protein hydrolysate-APPH attenuates high fat diet-induced cardiac complications via TGF-β/GSN axis in aging rats. Environ Toxicol, 34, 5-12. Jiang, J., Liang, S., Zhang, J., et al. (2021): Melatonin ameliorates PM(2.5) -induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. J Pineal Res, 70, e12686. Jin, R., Ren, H., Liao, M., et al. (2021): A dipeptidyl peptidase IV inhibitory peptide relieves palmitic acid-induced endoplasmic reticulum stress in HepG2 cells independent of inhibiting dipeptidyl peptidase IV activity. Food Funct, 12, 10773-10782. Kalkavan, H. and Green, D.R. (2018): MOMP, cell suicide as a BCL-2 family business. Cell Death Differ, 25, 46-55. Kawajiri, S., Saiki, S., Sato, S., et al. (2010): PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett, 584, 1073-1079. Kharbanda, S., Pandey, P., Schofield, L., et al. (1997): Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci U S A, 94, 6939-6942. Kim, S., Kim, C. and Park, S. (2017): Mdivi-1 Protects Adult Rat Hippocampal Neural Stem Cells against Palmitate-Induced Oxidative Stress and Apoptosis. Int J Mol Sci, 18. Ku, C.W., Ho, T.J., Huang, C.Y., Chu, P.M., Ou, H.C. and Hsieh, P.L. (2021): Cordycepin Attenuates Palmitic Acid-Induced Inflammation and Apoptosis of Vascular Endothelial Cells through Mediating PI3K/Akt/eNOS Signaling Pathway. Am J Chin Med, 49, 1703-1722. Kuehn, B.M. (2014): WHO: More Than 7 Million Air Pollution Deaths Each Year. JAMA, 311, 1486-1486. Kyrylkova, K., Kyryachenko, S., Leid, M. and Kioussi, C. (2012): Detection of apoptosis by TUNEL assay. Methods Mol Biol, 887, 41-47. Lee, F.Y., Lee, M.S., Wallace, C.G., et al. (2019): Short-interval exposure to ambient fine particulate matter (PM2.5) exacerbates the susceptibility of pulmonary damage in setting of lung ischemia-reperfusion injury in rodent: Pharmacomodulation of melatonin. Biomed Pharmacother, 113, 108737. Lee, J.H., Amarsanaa, K., Wu, J., et al. (2018): Nobiletin attenuates neurotoxic mitochondrial calcium overload through K(+) influx and ΔΨ(m) across mitochondrial inner membrane. Korean J Physiol Pharmacol, 22, 311-319. Lee, T.L., Lai, T.C., Lin, S.R., et al. (2021): Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway. Theranostics, 11, 3131-3149. Li, J., Zhang, D., Wiersma, M. and Brundel, B. (2018): Role of Autophagy in Proteostasis: Friend and Foe in Cardiac Diseases. Cells, 7. Li, N., Sioutas, C., Cho, A., et al. (2003): Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect, 111, 455-460. Li, X., Geng, J., Chen, Y., et al. (2017): Exposure to particulate matter induces cardiomyocytes apoptosis after myocardial infarction through NFκB activation. Biochem Biophys Res Commun, 488, 224-231. Liu, D., Ma, Z., Di, S., et al. (2018a): AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med, 129, 59-72. Liu, M., L?pez de Juan Abad, B. and Cheng, K. (2021): Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev, 173, 504-519. Liu, Y., Li, L.-N., Guo, S., et al. (2018b): Melatonin improves cardiac function in a mouse model of heart failure with preserved ejection fraction. Redox Biology, 18, 211-221. Mauvezin, C. and Neufeld, T.P. (2015): Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 11, 1437-1438. Mehta, S., Shin, H., Burnett, R., North, T. and Cohen, A.J. (2013): Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Qual Atmos Health, 6, 69-83. Miao, X., Li, W., Niu, B., et al. (2019): Mitochondrial dysfunction in endothelial cells induced by airborne fine particulate matter (<2.5 μm). J Appl Toxicol, 39, 1424-1432. Miller, M.R. and Newby, D.E. (2019): Air pollution and cardiovascular disease: car sick. Cardiovascular Research, 116, 279-294. Ning, R., Li, Y., Du, Z., et al. (2021): The mitochondria-targeted antioxidant MitoQ attenuated PM2.5-induced vascular fibrosis via regulating mitophagy. Redox Biology, 46, 102113. Nolfi-Donegan, D., Braganza, A. and Shiva, S. (2020): Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol, 37, 101674. Novak, I., Kirkin, V., McEwan, D.G., et al. (2010): Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11, 45-51. Ohsumi, Y. (2001): Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol, 2, 211-216. Opie, L.H. and Lecour, S. (2016): Melatonin has multiorgan effects. Eur Heart J Cardiovasc Pharmacother, 2, 258-265. Palikaras, K., Lionaki, E. and Tavernarakis, N. (2018): Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol, 20, 1013-1022. Pitocco, D., Tesauro, M., Alessandro, R., Ghirlanda, G. and Cardillo, C. (2013): Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci, 14, 21525-21550. Protasoni, M. and Zeviani, M. (2021): Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci, 22. Qin, G., Xia, J., Zhang, Y., Guo, L., Chen, R. and Sang, N. (2018a): Ambient fine particulate matter exposure induces reversible cardiac dysfunction and fibrosis in juvenile and older female mice. Part Fibre Toxicol, 15, 27. Qin, J., Wang, L.L., Liu, Z.Y., Zou, Y.L., Fei, Y.J. and Liu, Z.X. (2018b): Ezetimibe Protects Endothelial Cells against Oxidative Stress through Akt/GSK-3β Pathway. Curr Med Sci, 38, 398-404. Quinsay, M.N., Thomas, R.L., Lee, Y. and Gustafsson, A.B. (2010): Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy, 6, 855-862. Rabinovich-Nikitin, I., Dhingra, R. and Kirshenbaum, L.A. (2019): Activation of Mitophagy in High-Fat Diet-Induced Diabetic Cardiomyopathy. Circ Res, 124, 1288-1290. Radogna, F., Paternoster, L., Albertini, M.C., et al. (2007): Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cells. J Pineal Res, 43, 154-162. Rajagopalan, S., Al-Kindi, S.G. and Brook, R.D. (2018): Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol, 72, 2054-2070. Rao, V.K., Carlson, E.A. and Yan, S.S. (2014): Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta, 1842, 1267-1272. Reaven, G.M., Lithell, H. and Landsberg, L. (1996): Hypertension and associated metabolic abnormalities--the role of insulin resistance and the sympathoadrenal system. N Engl J Med, 334, 374-381. Reiter, R.J., Tan, D.X., Manchester, L.C., Paredes, S.D., Mayo, J.C. and Sainz, R.M. (2009): Melatonin and reproduction revisited. Biol Reprod, 81, 445-456. Sachdeva, K., Do, D.C., Zhang, Y., Hu, X., Chen, J. and Gao, P. (2019): Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence. Front Immunol, 10, 2787. Sacks, F.M., Lichtenstein, A.H., Wu, J.H.Y., et al. (2017): Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation, 136, e1-e23. Sahni, S., Gillson, J., Park, K.C., et al. (2020): NDRG1 suppresses basal and hypoxia-induced autophagy at both the initiation and degradation stages and sensitizes pancreatic cancer cells to lysosomal membrane permeabilization. Biochim Biophys Acta Gen Subj, 1864, 129625. Sandoval, H., Thiagarajan, P., Dasgupta, S.K., et al. (2008): Essential role for Nix in autophagic maturation of erythroid cells. Nature, 454, 232-235. Sato, M. and Sato, K. (2011): Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science, 334, 1141-1144. Sawada, O., Perusek, L., Kohno, H., et al. (2014): All-trans-retinal induces Bax activation via DNA damage to mediate retinal cell apoptosis. Exp Eye Res, 123, 27-36. Schantz, M.M., Cleveland, D., Heckert, N.A., et al. (2016): Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents. Anal Bioanal Chem, 408, 4257-4266. Scott, I. and Youle, R.J. (2010): Mitochondrial fission and fusion. Essays Biochem, 47, 85-98. Shafer, M.M., Perkins, D.A., Antkiewicz, D.S., Stone, E.A., Quraishi, T.A. and Schauer, J.J. (2010): Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: an important role for transition metals. J Environ Monit, 12, 704-715. Shao, D., Kolwicz, S.C., Jr., Wang, P., et al. (2020): Increasing Fatty Acid Oxidation Prevents High-Fat Diet-Induced Cardiomyopathy Through Regulating Parkin-Mediated Mitophagy. Circulation, 142, 983-997. Singh, G.M., Danaei, G., Farzadfar, F., et al. (2013): The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One, 8, e65174. Sinha-Hikim, I., Friedman, T.C., Falz, M., et al. (2017): Nicotine plus a high-fat diet triggers cardiomyocyte apoptosis. Cell Tissue Res, 368, 159-170. S?nchez, G., Araneda, F., Pe?a, J.P., et al. (2018): High-Fat-Diet-Induced Obesity Produces Spontaneous Ventricular Arrhythmias and Increases the Activity of Ryanodine Receptors in Mice. Int J Mol Sci, 19. Stein, S., Weber, J., Nusser-Stein, S., et al. (2020): Deletion of fibroblast activation protein provides atheroprotection. Cardiovascular Research, 117, 1060-1069. Tanwar, V., Gorr, M.W., Velten, M., et al. (2017): In Utero Particulate Matter Exposure Produces Heart Failure, Electrical Remodeling, and Epigenetic Changes at Adulthood. J Am Heart Assoc, 6. Thannickal, V.J. and Fanburg, B.L. (2000): Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol, 279, L1005-1028. Tong, M., Saito, T., Zhai, P., et al. (2019): Mitophagy Is Essential for Maintaining Cardiac Function During High Fat Diet-Induced Diabetic Cardiomyopathy. Circ Res, 124, 1360-1371. Tordjman, S., Chokron, S., Delorme, R., et al. (2017): Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol, 15, 434-443. Travers, J.G., Kamal, F.A., Robbins, J., Yutzey, K.E. and Blaxall, B.C. (2016): Cardiac Fibrosis: The Fibroblast Awakens. Circ Res, 118, 1021-1040. Tsch?pe, C. and Lam, C.S. (2012): Diastolic heart failure: What we still don't know. Looking for new concepts, diagnostic approaches, and the role of comorbidities. Herz, 37, 875-879. Tsujimoto, Y. (1998): Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells, 3, 697-707. Venegas, C., Garc?a, J.A., Escames, G., et al. (2012): Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res, 52, 217-227. Ventura-Clapier, R., Garnier, A. and Veksler, V. (2004): Energy metabolism in heart failure. J Physiol, 555, 1-13. Wang, D., Green, M.F., McDonnell, E. and Hirschey, M.D. (2013): Oxygen flux analysis to understand the biological function of sirtuins. Methods Mol Biol, 1077, 241-258. Wang, Q., Gan, X., Li, F., et al. (2019): PM<sub>2.5</sub> Exposure Induces More Serious Apoptosis of Cardiomyocytes Mediated by Caspase3 through JNK/ P53 Pathway in Hyperlipidemic Rats. International Journal of Biological Sciences, 15, 24-33. Wang, S.-H., Zhu, X.-L., Wang, F., et al. (2021): LncRNA H19 governs mitophagy and restores mitochondrial respiration in the heart through Pink1/Parkin signaling during obesity. Cell Death & Disease, 12, 557. Wang, X., Ding, X., Fu, X., et al. (2012): Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site in the central Pearl River Delta, south China. J Environ Sci (China), 24, 72-77. Wang, Y., Lu, M., Xiong, L., et al. (2020): Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis. Cell Death Dis, 11, 29. Wende, A.R. and Abel, E.D. (2010): Lipotoxicity in the heart. Biochim Biophys Acta, 1801, 311-319. Wold, L.E., Ying, Z., Hutchinson, K.R., et al. (2012): Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ Heart Fail, 5, 452-461. Wormser, D., Kaptoge, S., Di Angelantonio, E., et al. (2011): Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. In: Lancet), pp. 1085-1095. Wu, K.-M., Hsu, Y.-M., Ying, M.-C., et al. (2019): High-density lipoprotein ameliorates palmitic acid-induced lipotoxicity and oxidative dysfunction in H9c2 cardiomyoblast cells via ROS suppression. Nutrition & Metabolism, 16, 36. Xie, Z., Lau, K., Eby, B., et al. (2011): Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes, 60, 1770-1778. Xu, X., Qimuge, A., Wang, H., et al. (2017): IRE1α/XBP1s branch of UPR links HIF1α activation to mediate ANGII-dependent endothelial dysfunction under particulate matter (PM) 2.5 exposure. Sci Rep, 7, 13507. Yako, T., Nakamura, M., Nakamura, S., Hara, H. and Shimazawa, M. (2021): Pharmacological inhibition of mitochondrial fission attenuates oxidative stress-induced damage of retinal pigmented epithelial cells. Journal of Pharmacological Sciences, 146, 149-159. Yang, J., Liu, X., Bhalla, K., et al. (1997): Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275, 1129-1132. Yang, W.-Y., Zhang, Z.-Y., Thijs, L., et al. (2020a): Left ventricular function in relation to chronic residential air pollution in a general population. European Journal of Preventive Cardiology, 24, 1416-1428. Yang, X., Feng, L., Zhang, Y., et al. (2018): Cytotoxicity induced by fine particulate matter (PM(2.5)) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicol Environ Saf, 161, 198-207. Yang, X., Zhao, T., Feng, L., et al. (2019): PM2.5-induced ADRB2 hypermethylation contributed to cardiac dysfunction through cardiomyocytes apoptosis via PI3K/Akt pathway. Environment International, 127, 601-614. Yang, Z., Wu, Y., Wang, L., Qiu, P., Zha, W. and Yu, W. (2020b): Prokineticin 2 (PK2) Rescues Cardiomyocytes from High Glucose/High Palmitic Acid-Induced Damage by Regulating the AKT/GSK3β Pathway In Vitro. Oxid Med Cell Longev, 2020, 3163629. Yin, J., Li, Y., Han, H., et al. (2018): Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J Pineal Res, 65, e12524. Youle, R.J. and van der Bliek, A.M. (2012): Mitochondrial fission, fusion, and stress. Science, 337, 1062-1065. Yu, T., Jhun, B.S. and Yoon, Y. (2011): High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal, 14, 425-437. Yuan, N., Song, L., Zhang, S., et al. (2015): Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica, 100, 345-356. Yue, W., Chen, X., He, S., Li, N., Zhang, L. and Chen, J. (2021): Exposure interval to ambient fine particulate matter (PM2.5) collected in Southwest China induced pulmonary damage through the Janus tyrosine protein kinase-2/signal transducer and activator of transcription-3 signaling pathway both in vivo and in vitro. J Appl Toxicol. Yue, W., Tong, L., Liu, X., et al. (2019): Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biol, 22, 101161. Yusuf, S., Hawken, S., Ounpuu, S., et al. (2004): Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 364, 937-952. Zhang, L., Keung, W., Samokhvalov, V., Wang, W. and Lopaschuk, G.D. (2010): Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim Biophys Acta, 1801, 1-22. Zhang, Y., Liu, X., Bai, X., et al. (2018): Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res, 64. Zheng, Z., Zhang, X., Wang, J., et al. (2015): Exposure to fine airborne particulate matters induces hepatic fibrosis in murine models. J Hepatol, 63, 1397-1404. Zhou, H., Li, D., Zhu, P., et al. (2017): Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. J Pineal Res, 63. Zhou, J., Wang, H., Shen, R., et al. (2018): Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am J Transl Res, 10, 1887-1899. Zhou, T., Hu, Y., Wang, Y., et al. (2019): Fine particulate matter (PM2.5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro. Environmental Pollution, 248, 1-9. Zou, T., Zhu, M., Ma, Y.-C., et al. (2018): MicroRNA-410-5p exacerbates high-fat diet-induced cardiac remodeling in mice in an endocrine fashion. Scientific Reports, 8, 8780.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83753-
dc.description.abstract高脂飲食是誘發心血管疾病的風險因子之一。根據過去的研究指出,空氣中的細懸浮微粒 (particulate matter,PM) 進入呼吸道後,與肺泡接觸進入血液循環,進而導致心血管疾病的產生。目前對於PM在高脂飲食下對心臟功能及粒線體受損所造成的影響仍不清楚。本研究動物模式利用高脂飲食 (high-fat diet,HFD) 餵食小鼠,並利用氣管內注射PM 10 mg/kg模擬暴露空氣污染之環境。結果發現小鼠在共同處理HFD和PM後,在心臟收縮及舒張功能皆有受損的情形。細胞凋亡相關因子PUMA (p53 upregulated modulator of apoptosis) 及纖維化相關蛋白Fibronectin 表現量皆會因HFD或PM單獨處理而上升;而共同處理HFD及PM時,PUMA及Fibronectin表現量則更顯著增加。此外,我們利用大鼠心肌母細胞 (H9c2) 作為體外細胞模式,並以50 μM 棕梠酸 (palmitic acid,PA) 與10 μg/mL PM模擬高脂飲食與空氣汙染之環境。經由TUNEL及Annexin V/PI方法,發現心肌細胞處理PA及PM會加劇細胞凋亡。根據西方墨點法結果,發現細胞在PA+PM共同處理下,PUMA、CASPASE3顯著上升而BCL2 (B-cell lymphoma 2) 顯著下降。接著,透過MitoSOX Red染色,發現PA及PM處理後會顯著增加粒線體活性氧化物 (mitochondrial reactive oxygen species) 產生。此外,相較於個別處理組別,PA+PM處理後,觀察JC-1染色發現粒線體膜電位下降,且ATP產量減少。同時,在Mitotracker染色發現粒線體在經由PA+PM處理後粒線體長度明顯變短,表示分裂增加。經西方墨點法的實驗結果顯示,粒線體分裂相關蛋白:p-DRP1 (phospho-dynamin-related protein 1) 和FIS1 (mitochondrial fission 1 protein) 的表現與個別處理PA和PM組別相比,顯著上升。而粒線體自噬相關蛋白:p62、LC3B (microtubuleassociated protein 1 light chain 3 Beta)、BNIP3 (BCL2 interacting protein 3) 在PA+PM共同處理下則有表現量顯著增加。在纖維化相關蛋白Fibronectin 和ETS-1 (ETS proto-oncogene 1) 表現量均顯著增加。根據結果得知,高脂與PM的環境下會導致粒線體受損加重,進而使心肌產生凋亡及纖維化。此外,利用粒線體分裂抑制劑Mdivi-1及粒線體氧化壓力抑制劑MitoQ處理,結果發現可顯著減少PA+PM共同處理下導致的細胞凋亡、纖維化。進一步使用氧化壓力抑制劑褪黑激素 (melatonin) 進行處理,發現其可有效地改善PA+PM所造成的粒線體受損,氧化壓力下降和粒線體膜電位增加,而粒線體分裂和自噬相關蛋白p-DRP1、p62、LC3B及BNIP3表現量均會減少,凋亡因子PUMA及纖維化相關蛋白Fibronectin 和ETS-1表現也會下降。由上述結果可以證明,在共同處理高脂及細懸浮微粒下,細胞的氧化壓力、細線體分裂增加並使粒線體功能下降,並且加劇細胞凋亡因子和纖維化蛋白的表現,而褪黑激素則可顯著降低PA+PM所誘發的細胞凋亡及纖維化。未來仍需要更深入探討褪黑激素在心血管疾病中提供保護效用之機制,希望其可成為以後治療高脂及空氣汙染引起心血管疾病用藥的選擇。zh_TW
dc.description.abstractHigh-fat diet (HFD) is a risk factor for cardiovascular disease. According to previous studies, particulate matter (PM) in the air enters the respiratory tract, contacts with the alveoli and enters the blood circulation, leading to the onset of cardiovascular disease. Currently, the affect of PM on cardiac function and mitochondrial damage under a high-fat diet is still unclear. In this study, the experimental animal model was established in mice fed with high-fat chow diet and intratracheal injection of PM 10 mg/kg to simulate the environment exposed to HFD and air pollution. These results showed that both HFD and PM deteriorated the systolic and diastolic cardiac function in mice. Apoptosis-related factor PUMA (p53 upregulated modulator of apoptosis) and fibrosis-related protein Fibronectin were both increased in mice treated either with HFD or PM alone, while in mice co-treated with HFD and PM, the expression of PUMA and Fibronectin were significantly increased. In addition, we used rat cardiomyocytes (H9c2) as an in vitro cell model, using 50 μM palmitic acid (PA) and 10 μg/ml PM to simulate the environment of high-fat diet and air pollution. Apoptosis aggravated in cardiomyocytes treated with PA and PM using TUNEL and Annexin V/PI assays. Western blot results showed that PUMA and CASPASE3 were significantly increased and BCL2 (B-cell lympha 2) was significantly decreased under the combined treatment of PA+PM. Combined exposure to PA and PM increased the production of mitochondrial reactive oxygen species (ROS) by MitoSOX Red staining. Moreover, PA+PM decreased the mitochondrial membrane potential by JC-1 staining and significantly diminished the ATP production compared with the singal treatment group. In addition, PA+PM treatment significantly shortened the mitochondrial length using Mitotracker staining, indicating the mitochondrial fission. The expression of mitochondrial fission-related proteins, p-DRP1 (phospho-dynamin-related protein 1) and FIS1 (mitochondrial fission 1 protein) were significantly increased compared with the PA or PM treated groups alone. Moreover, mitophagy-related proteins, p62, LC3B (microtubule-associated protein 1 light chain 3 beta) and BNIP3 (BCL2 interacting protein 3) were significantly increased under PA+PM co-treatment. Also, the expression of fibrosis-related proteins fibronectin and ETS-1 (ETS proto oncogene 1) were significantly increased in H9c2 cells treated with PA and PM. According to these results, combined exposure to PA and PM deteriorated mitochondrial function and led to cardiac apoptosis and fibrosis. In addition, mitochondrial division inhibitor (Mdivi-1) and mitochondrial ROS inhibitor (MitoQ) significantly reduced PA+PM-induced apoptosis and fibrosis. Finally, melatonin, a ROS scavenger was used in this study. Melatonin effectively improved the mitochondrial dysfunction induced by PA+PM, decreased the mitochondrial ROS and alleviated the collapse of mitochondrial membrane potential. In addition, melatonin decreased the PA+PM-induced upregulation of mitochondrial fission and mitophagy-related proteins p-DRP1, p62, LC3B and BNIP3, and apoptosis-related factors PUMA, CASPASE3 and fibrosis-related proteins Fibronectin and ETS-1. In summary, co-exposure to HFD (PA) and PM increased oxidative stress, mitochondrial fission and mitophagy, decreased mitochondrial function, and further aggravated cardiac apoptosis and fibrosis. Melatonin significantly reduced the cardiac apoptosis and fibrosis induced by HFD+PM or PA+PM. In the future, the mechanism of melatonin underlying the protective effects against HFD and PM-induced cardiovascular diseases warrants further investigation, and melatonin may become a therapeutic intervention against high-fat and air pollution-induced cardiovascular diseases.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:16:43Z (GMT). No. of bitstreams: 1
U0001-0808202209412800.pdf: 7428814 bytes, checksum: ace6cb150f747fc177aefbb79b2d9762 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口委審定書 II 致謝 III 摘要 IV Abstract VI 目錄 VIII 壹、緒論 1 心臟的構造和功能 1 心血管疾病 1 I懸浮微粒與心血管疾病的相關性 1 II高脂飲食與心血管疾病的相關性 2 懸浮微粒和高脂飲食與活性氧化物相關性 3 粒線體 4 I粒線體動態平衡(Mitochondrial dynamics) 4 II細胞自噬作用 6 III粒線體自噬作用 8 處理高脂或PM對心肌凋亡的影響 10 處理高脂或PM對心肌纖維化反應的影響 11 褪黑激素的治療成效 12 研究動機 13 貳、實驗材料 14 一、儀器 14 二、材料與試劑 15 三、溶液配方 18 參、實驗方法 20 製備PM2.5 20 動物模式 (Animal model) 21 組織石蠟包埋 (Paraffin embedding) 22 蘇木精-伊紅染色 (hematoxylin-eosin staining) 22 天狼星紅染色 (Sirius Red Staining) 22 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay 23 免疫組織化學染色 (Immunohistochemistry) 24 組織冷凍包埋 25 使用Dihydroethidium staining (DHE) 和MitoSOX Red偵測活性氧 25 心臟功能分析 25 製備Palmitic acid (PA) 26 細胞培養及處理 (Cell culture and treatment) 26 細胞活性分析法 (Cell viability assay) 28 細胞凋亡偵測技術 (Annexin V/PI) 28 細胞免疫螢光染色 (Immunofluorescence staining) 29 西方墨點法 (Western blot) 29 粒線體活性氧化物測定 (Mitochondrial ROS level assay) 32 粒線體膜電位測定 (Measurement of mitochondrial membrane potential ΔΨm) 33 粒線體即時影像分析 (time-lapse imaging) 33 細胞ATP測定 (ATP assay) 34 ?啶橙螢光染色 (Acridine orange staining,AO staining) 34 數據統計分析 (Statistical analysis) 34 肆、結果 35 小鼠在共同處理HFD+PM加重心臟功能的失常 35 小鼠在共同處理HFD+PM加劇心臟凋亡反應 35 小鼠在共同處理HFD+PM後加劇心肌纖維化反應 35 小鼠在共同處理HFD+PM使ROS大量產生並加劇粒線體分裂和自噬 36 褪黑激素可增進小鼠心臟功能 36 褪黑激素可減輕小鼠心臟凋亡和纖維化反應 37 褪黑激素可以減少粒線體分裂和粒線體自噬反應 38 共同處理PA和PM可加重心肌細胞的凋亡和纖維化反應 38 心肌細胞經褪黑激素治療可減輕凋亡和纖維化反應 39 共同處理PA和PM會使ROS大量產生,褪黑激素治療可降低ROS 40 粒線體氧化壓力抑制劑減輕共同處理PA和PM產生的凋亡和纖維化反應 41 共同處理PA和PM顯著降低粒線體膜電位(Δψm),並加劇粒線體分裂 42 粒線體氧化壓力抑制劑可回復粒線體膜電位(Δψm),並減少粒線體分裂 43 粒線體分裂抑制劑可回復粒線體膜電位(Δψm),並減少粒線體分裂 43 粒線體分裂抑制劑減輕共通處理PA和PM產生的凋亡和纖維化反應 44 經褪黑激素治療可回復粒線體膜電位(Δψm),並減少粒線體分裂 45 共同處理PA和PM會大量產生粒線體自噬反應 45 細胞自噬抑制劑減緩細胞凋亡和纖維化反應 46 褪黑激素和粒線體分裂抑制劑減輕粒線體自噬反應 47 伍、討論與結論 48 陸、參考文獻 54 柒、圖 64 圖一、共同處理HFD+PM加重心臟功能的失常 65 圖二、共同處理HFD+PM加劇心臟凋亡反應 67 圖三、共同處理HFD+PM加劇心臟纖維化反應 69 圖四、共同處理HFD+PM使ROS大量產生並加劇粒線體分裂和自噬 71 圖五、褪黑激素可增進小鼠心臟功能 73 圖六、褪黑激素可減輕小鼠心臟凋亡和纖維化反應 75 圖七、褪黑激素可以減少粒線體分裂和粒線體自噬反應 77 圖八、共同處理PA和PM可加重心肌細胞的凋亡和纖維化反應 80 圖九、心肌細胞經褪黑激素治療可減輕凋亡和纖維化反應 83 圖十、共同處理PA和PM會使ROS大量產生,經褪黑激素治療可降低ROS 85 圖十一、粒線體氧化壓力抑制劑減輕共同處理PA和PM產生的凋亡和纖維化反應 88 圖十二、共同處理PA和PM顯著降低粒線體膜電位(Δψm),並加劇粒線體分裂 91 圖十三、粒線體氧化壓力抑制劑可回復粒線體膜電位(Δψm),並減少粒線體分裂 93 圖十四、粒線體分裂抑制劑可回復粒線體膜電位(Δψm),並減少粒線體分裂 95 圖十五、粒線體分裂抑制劑減輕共通處理PA和PM產生的凋亡和纖維化反應 98 圖十六、經褪黑激素治療可回復粒線體膜電位(Δψm),並減少粒線體分裂 100 圖十七、共同處理PA和PM會大量產生粒線體自噬反應 103 圖十八、細胞自噬抑制劑減緩細胞凋亡和纖維化反應 106 圖十九、共同處理PA和PM會大量產生粒線體自噬反應 109
dc.language.isozh-TW
dc.subject褪黑激素zh_TW
dc.subject粒線體氧化壓力zh_TW
dc.subject粒線體分裂zh_TW
dc.subject粒線體自噬zh_TW
dc.subject棕梠酸zh_TW
dc.subject懸浮微粒zh_TW
dc.subject細胞凋亡zh_TW
dc.subject纖維化zh_TW
dc.subjectmelatoninen
dc.subjectfibrosisen
dc.subjectapoptosisen
dc.subjectPMen
dc.subjectPAen
dc.subjectmitochondrial fissionen
dc.subjectmitophagyen
dc.subjectmitochondrial ROSen
dc.title探討共同處理懸浮微粒和高脂飲食所誘發之心肌受損及其相關機轉zh_TW
dc.titleTo study the effects of combined exposure to particulate matter 2.5 and high fat diet-induced cardiac damage and the related mechanismsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莫凡毅(Fan-E Mo),吳佳慶(Chia-Ching Wu),江美治(Meei-Jyh Jiang),王懷詩(Hwai-Shi Wang)
dc.subject.keyword棕梠酸,懸浮微粒,細胞凋亡,纖維化,粒線體氧化壓力,粒線體分裂,粒線體自噬,褪黑激素,zh_TW
dc.subject.keywordPA,PM,apoptosis,fibrosis,mitochondrial ROS,mitochondrial fission,mitophagy,melatonin,en
dc.relation.page109
dc.identifier.doi10.6342/NTU202202132
dc.rights.note未授權
dc.date.accepted2022-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
U0001-0808202209412800.pdf
  未授權公開取用
7.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved