請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃耀輝(Yaw-Huei Huang) | |
| dc.contributor.author | Chen-Hsin Weng | en |
| dc.contributor.author | 翁晨芯 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:16:27Z | - |
| dc.date.copyright | 2022-10-20 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-28 | |
| dc.identifier.citation | AAli, I., Suhail, M., Alothman, Z.A.,Alwarthan, A. (2018). Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC Adv, 8(53), 30125-30147. https://doi.org/10.1039/c8ra06517a Ammendolia, M.G., Iosi, F., Maranghi, F., Tassinari, R., Cubadda, F., Aureli, F., Raggi, A., Superti, F., Mantovani, A.,De Berardis, B. (2017). Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells. Food Chem Toxicol, 102, 63-75. https://doi.org/10.1016/j.fct.2017.01.031 Baalousha, M., Wang, J., Nabi, M.M., Loosli, F., Valenca, R., Mohanty, S.K., Afrooz, N., Cantando, E.,Aich, N. (2020). Stormwater green infrastructures retain high concentrations of TiO2 engineered (nano)-particles. J Hazard Mater, 392, 122335. https://doi.org/10.1016/j.jhazmat.2020.122335 Badalova, K., Herbello-Hermelo, P., Bermejo-Barrera, P.,Moreda-Pineiro, A. (2019). Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. J Trace Elem Med Biol, 54, 55-61. https://doi.org/10.1016/j.jtemb.2019.04.003 Baranowska, W.E., Szwajgier, D., Oleszczuk, P.,Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health-a review. Biol Trace Elem Res, 193(1), 118-129. https://doi.org/10.1007/s12011-019-01706-6 Barksdale, J. (1950). Titanium, its occurrence, chemistry, and technology. Soil Science, 591. Brun, E., Barreau, F., Veronesi, G., Fayard, B., Sorieul, S., Chan?ac, C., Carapito, C., Rabilloud, T., Mabondzo, A., Herlin-Boime, N.,Carri?re, M. (2014). Titanium dioxide nanoparticle impact andtranslocation through ex vivo, in vivo and in vitrogut epithelia. Particle and Fibre Toxicology, 11(13). Chen, Z., Wang, Y., Zhuo, L., Chen, S., Zhao, L., Luan, X., Wang, H.,Jia, G. (2015). Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol Lett, 239(2), 123-130. https://doi.org/10.1016/j.toxlet.2015.09.013 Christian, P., Von der Kammer, F., Baalousha, M.,Hofmann, T. (2008). Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 17(5), 326-343. https://doi.org/10.1007/s10646-008-0213-1 Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. Nature biotechnology, 21, 1166-1170. Domingos, R.F., Peyrot, C.,Wilkinson, K.J. (2010). Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate. Environmental Chemistry, 7(1). https://doi.org/10.1071/en09110 Donovan, A.R., Adams, C.D., Ma, Y., Stephan, C., Eichholz, T.,Shi, H. (2016). Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere, 144, 148-153. https://doi.org/10.1016/j.chemosphere.2015.07.081 Federici, G., Shaw, B.J.,Handy, R.D. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol, 84(4), 415-430. https://doi.org/10.1016/j.aquatox.2007.07.009 French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L.,Baveye, P.C. (2009). Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles. Environmental Science & Technology, 43, 1354-1359. Gaspar, J.C.,Wyllie, P.J. (1983). Ilmenite (high Mg,Mn,Nb) in the carbonatites from the Jacupiranga Complex, Brazil. American Mineralogist, 68(9-10), 960-971. Gasparini, N.M. (2014). Earth science: A fresh look at river flow. Nature, 513(7519), 490-491. https://doi.org/10.1038/513490a Geraets, L., Oomen, A.G., Krystek, P., Jacobsen, N.R., Wallin, H., Laurentie, M., Verharen, H.W., Brandon, E.F.,Jong, W.H. (2014). Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicology, 11(30). Gondikas, A.P., von der Kammer, F., Reed, R.B., Wagner, S., Ranville, J.F.,Hofmann, T. (2014). Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environ Sci Technol, 48(10), 5415-5422. https://doi.org/10.1021/es405596y Gottschalk, F., Lassen, C., Kjoelholt, J., Christensen, F.,Nowack, B. (2015). Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Public Health, 12(5), 5581-5602. https://doi.org/10.3390/ijerph120505581 Gottschalk, F., Ort, C., Scholz, R.W.,Nowack, B. (2011). Engineered nanomaterials in rivers--exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut, 159(12), 3439-3445. https://doi.org/10.1016/j.envpol.2011.08.023 Gottschalk, F., Sonderer, T., Scholz, R.W.,Nowack, B. (2009a). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ. Sci. Technol. , 43, 9216-9222. Gottschalk, F., Sonderer, T., Scholz, R.W.,Nowack, B. (2009b). Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environmental Science & Technology. Gottschalk, F., Sun, T.,Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut, 181, 287-300. https://doi.org/10.1016/j.envpol.2013.06.003 Gui, S., Zhang, Z., Zheng, L., Cui, Y., Liu, X., Li, N., Sang, X., Sun, Q., Gao, G., Cheng, Z., Cheng, J., Wang, L., Tang, M.,Hong, F. (2011). Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. Journal of Hazardous Materials, 195, 365-370. https://doi.org/10.1016/j.jhazmat.2011.08.055 Hendriks, L., Gundlach-Graham, A., Hattendorf, B.,G?nther, D. (2017). Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions. Journal of Analytical Atomic Spectrometry, 32(3), 548-561. https://doi.org/10.1039/c6ja00400h Hong, F., Yu, X., Wu, N.,Zhang, Y.Q. (2017). Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res (Camb), 6(2), 115-133. https://doi.org/10.1039/c6tx00338a Hope, B.K. (2008). A dynamic model for the global cycling of anthropogenic vanadium. Global Biogeochemical Cycles, 22(4), n/a-n/a. https://doi.org/10.1029/2008gb003283 Hu, R., Zheng, L., Zhang, T., Gao, G., Cui, Y., Cheng, Z., Cheng, J., Hong, M., Tang, M.,Hong, F. (2011). Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater, 191(1-3), 32-40. https://doi.org/10.1016/j.jhazmat.2011.04.027 Hwang, Y.H., Chung, C.H., Chen, Y.T.,Chen, J.A. (2021). Characterization of Ti-containing nanoparticles in the aquatic environment of the Tamsuei River Basin in northern Taiwan. Sci Total Environ, 797, 149163. https://doi.org/10.1016/j.scitotenv.2021.149163 Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A.,Danquah, M.K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol, 9, 1050-1074. https://doi.org/10.3762/bjnano.9.98 Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M.,Boller, M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut, 156(2), 233-239. https://doi.org/10.1016/j.envpol.2008.08.004 Keller, A.A., McFerran, S., Lazareva, A.,Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6). https://doi.org/10.1007/s11051-013-1692-4 Kreyling, W.G., Holzwarth, U., Schleh, C., Kozempel, J., Wenk, A., Haberl, N., Hirn, S., Schaffler, M., Lipka, J., Semmler-Behnke, M.,Gibson, N. (2017). Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology, 11(4), 443-453. https://doi.org/10.1080/17435390.2017.1306893 Laborda, F., Bolea, E.,Jimenez-Lamana, J. (2014). Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem, 86(5), 2270-2278. https://doi.org/10.1021/ac402980q Lankveld, D.P., Oomen, A.G., Krystek, P., Neigh, A., Troost-de Jong, A., Noorlander, C.W., Van Eijkeren, J.C., Geertsma, R.E.,De Jong, W.H. (2010). The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials, 31(32), 8350-8361. https://doi.org/10.1016/j.biomaterials.2010.07.045 Lecoanet, H.F., Botterd, J.Y.,Wiesner, M.R. (2004). Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol, 38, 5164-5169. Lee, S., Bi, X., Reed, R.B., Ranville, J.F., Herckes, P.,Westerhoff, P. (2014). Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol, 48(17), 10291-10300. https://doi.org/10.1021/es502422v Lespes, G., Faucher, S.,Slaveykova, V.I. (2020). Natural nanoparticles, anthropogenic nanoparticles, where is the frontier? Frontiers in Environmental Science, 8(71). https://doi.org/10.3389/fenvs.2020.00071 Li, X., Yoneda, M., Shimada, Y.,Matsui, Y. (2017). Effect of surfactants on the aggregation and stability of TiO2 nanomaterial in environmental aqueous matrices. Sci Total Environ, 574, 176-182. https://doi.org/10.1016/j.scitotenv.2016.09.065 Lim, J.H., Sisco, P., Mudalige, T.K., Sanchez-Pomales, G., Howard, P.C.,Linder, S.W. (2015). Detection and characterization of SiO2 and TiO2 nanostructures in dietary supplements. J Agric Food Chem, 63(12), 3144-3152. https://doi.org/10.1021/acs.jafc.5b00392 Liu, Y., Liu, G., Wang, J.,Wu, L. (2017). Spatio-temporal variability and fractionation of vanadium (V) in sediments from coal concentrated area of Huai River Basin, China. Journal of Geochemical Exploration, 172, 203-210. https://doi.org/10.1016/j.gexplo.2016.11.008 Loosli, F., Wang, J., Rothenberg, S., Bizimis, M., Winkler, C., Borovinskaya, O., Flamigni, L.,Baalousha, M. (2019). Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. Environ Sci Nano, 6(3), 763-777. https://doi.org/10.1039/C8EN01376D Luo, Z., Wang, Z., Li, Q., Pan, Q., Yan, C.,Liu, F. (2011). Spatial distribution, electron microscopy analysis of titanium and its correlation to heavy metals: occurrence and sources of titanium nanomaterials in surface sediments from Xiamen Bay, China. J Environ Monit, 13(4), 1046-1052. https://doi.org/10.1039/c0em00199f Mahdi, K.N.M., Commelin, M., Peters, R.J.B., Baartman, J.E.M., Ritsema, C.,Geissen, V. (2017). Transport of silver nanoparticles by runoff and erosion - A flume experiment. Sci Total Environ, 601-602, 1418-1426. https://doi.org/10.1016/j.scitotenv.2017.06.020 Maiga, D.T., Mamba, B.B.,Msagati, T.A.M. (2020). Distribution profile of titanium dioxide nanoparticles in South African aquatic systems. Water Supply, 20(2), 516-528. https://doi.org/10.2166/ws.2019.185 Marquez-Ramirez, S.G., Delgado-Buenrostro, N.L., Chirino, Y.I., Iglesias, G.G.,Lopez-Marure, R. (2012). Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology, 302(2-3), 146-156. https://doi.org/10.1016/j.tox.2012.09.005 McClements, D.J., DeLoid, G., Pyrgiotakis, G., Shatkin, J.A., Xiao, H.,Demokritou, P. (2016). The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact, 3-4, 47-57. https://doi.org/10.1016/j.impact.2016.10.002 Mueller, N.C.,Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447–4453, 42, 4447-4453. Musee, N. (2011). Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol, 30(9), 1181-1195. https://doi.org/10.1177/0960327110391387 Nabi, M.M., Wang, J.,Baalousha, M. (2021). Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events. Chemosphere, 263, 128261. https://doi.org/10.1016/j.chemosphere.2020.128261 Nabi, M.M., Wang, J., Journey, C.A., Bradley, P.M.,Baalousha, M. (2022). Temporal variability in TiO2 engineered particle concentrations in rural Edisto River. Chemosphere, 297, 134091. https://doi.org/10.1016/j.chemosphere.2022.134091 Nakashima, K.,Imaoka, T. (1998). Niobian and zincian ilmenites in syenites from Cape Ashizuri, Southwest Japan. Mineralogy and Petrology, 63, 1-17. Nowack, B.,Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut, 150(1), 5-22. https://doi.org/10.1016/j.envpol.2007.06.006 Nthwane, Y.B., Tancu, Y., Maity, A.,Thwala, M. (2019). Characterisation of titanium oxide nanomaterials in sunscreens obtained by extraction and release exposure scenarios. SN Applied Sciences, 1(4). https://doi.org/10.1007/s42452-019-0329-3 Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W.,Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 16(6-7), 437-445. https://doi.org/10.1080/08958370490439597 Pandey, R.K.,Prajapati, V.K. (2018). Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol, 107(Pt A), 1278-1293. https://doi.org/10.1016/j.ijbiomac.2017.09.110 Part, F., Zecha, G., Causon, T., Sinner, E.K.,Huber-Humer, M. (2015). Current limitations and challenges in nanowaste detection, characterisation and monitoring. Waste Manag, 43, 407-420. https://doi.org/10.1016/j.wasman.2015.05.035 Peters, R.J.B., van Bemmel, G., Milani, N.B.L., den Hertog, G.C.T., Undas, A.K., van der Lee, M.,Bouwmeester, H. (2018). Detection of nanoparticles in Dutch surface waters. Sci Total Environ, 621, 210-218. https://doi.org/10.1016/j.scitotenv.2017.11.238 Phalyvong, K., Sivry, Y., Pauwels, H., G?labert, A., Tharaud, M., Wille, G., Bourrat, X.,Benedetti, M. (2020). Occurrence and origins of cerium dioxide and titanium dioxide nanoparticles in the Loire River (France) by Single Particle ICP-MS and FEG-SEM Imaging. Frontiers in Environmental Science, 8(141). https://doi.org/10.3389/fenvs.2020.00141 Phalyvong, K., Sivry, Y., Pauwels, H., G?labert, A., Tharaud, M., Wille, G., Bourrat, X., Ranville, J.F.,Benedetti, M.F. (2021). Assessing CeO2 and TiO2 nanoparticle concentrations in the Seine River and its tributaries near Paris. Frontiers in Environmental Science, 8(549896). https://doi.org/10.3389/fenvs.2020.549896 Piccinno, F., Gottschalk, F., Seeger, S.,Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9). https://doi.org/10.1007/s11051-012-1109-9 Rand, L.N., Bi, Y., Poustie, A., Bednar, A.J., Hanigan, D.J., Westerhoff, P.,Ranville, J.F. (2020). Quantifying temporal and geographic variation in sunscreen and mineralogic titanium-containing nanoparticles in three recreational rivers. Sci Total Environ, 743, 140845. https://doi.org/10.1016/j.scitotenv.2020.140845 Reed, R.B., Martin, D.P., Bednar, A.J., Monta?o, M.D., Westerhoff, P.,Ranville, J.F. (2017). Multi-day diurnal measurements of Ti-containing nanoparticle and organic sunscreen chemical release during recreational use of a natural surface water. Environmental Science: Nano, 4(1), 69-77. https://doi.org/10.1039/c6en00283h Sadauskas, E., Jacobsen, N.R., Danscher, G., Stoltenberg, M., Vogel, U., Larsen, A., Kreyling, W.,Wallin, H. (2009). Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chem Cent J, 3, 16. https://doi.org/10.1186/1752-153X-3-16 Sadeghi, R., Rodriguez, R.J., Yao, Y.,Kokini, J.L. (2017). Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annu Rev Food Sci Technol, 8, 467-492. https://doi.org/10.1146/annurev-food-041715-033338 Salou, S., Lariviere, D., Cirtiu, C.M.,Fleury, N. (2021). Quantification of titanium dioxide nanoparticles in human urine by single-particle ICP-MS. Anal Bioanal Chem, 413(1), 171-181. https://doi.org/10.1007/s00216-020-02989-8 Samat, M.H., Ali, A.M.M., Taib, M.F.M., Hassan, O.H.,Yahya, M.Z.A. (2016). Hubbard U calculations on optical properties of 3 d transition metal oxide TiO 2. Results in Physics, 6, 891-896. https://doi.org/10.1016/j.rinp.2016.11.006 Saravanakumar, M.P.,Ealias, A.M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Series: Materials Science and Engineering, 263. Sekhon, B.S. (2014). Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl, 7, 31-53. https://doi.org/10.2147/NSA.S39406 Silva, B.F., P?rez, S., Gardinalli, P., Singhal, R.K., Mozeto, A.A.,Barcel?, D. (2011). Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends in Analytical Chemistry, 30(3), 528-540. https://doi.org/10.1016/j.trac.2011.01.008 Singh, P.K., Jairath, G.,Ahlawat, S.S. (2016). Nanotechnology: a future tool to improve quality and safety in meat industry. J Food Sci Technol, 53(4), 1739-1749. https://doi.org/10.1007/s13197-015-2090-y Slomberg, D.L., Auffan, M., Gu?niche, N., Angeletti, B., Campos, A., Borschneck, D., Aguerre-Chariol, O.,Rose, J. (2020). Anthropogenic release and distribution of titanium dioxide particles in a river downstream of a nanomaterial manufacturer industrial site. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.00076 Sun, T.Y., Gottschalk, F., Hungerbuhler, K.,Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut, 185, 69-76. https://doi.org/10.1016/j.envpol.2013.10.004 Szakas, S.E., Lancaster, R., Kaegi, R.,Gundlach-Graham, A. (2022). Quantification and classification of engineered, incidental, and natural cerium-containing particles by spICP-TOFMS. Environmental Science: Nano, 9(5), 1627-1638. https://doi.org/10.1039/d1en01039e Tong, T., Hill, A.N., Alsina, M.A., Wu, J., Shang, K.Y., Kelly, J.J., Gray, K.A.,Gaillard, J.-F. (2014). Spectroscopic characterization of TiO2 polymorphs in wastewater treatment and sediment samples. Environmental Science & Technology Letters, 2(1), 12-18. https://doi.org/10.1021/ez5004023 Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P.,Schiestl, R.H. (2009). Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res, 69(22), 8784-8789. https://doi.org/10.1158/0008-5472.CAN-09-2496 Velzeboer, I., Quik, J.T., van de Meent, D.,Koelmans, A.A. (2014). Rapid settling of nanoparticles due to heteroaggregation with suspended sediment. Environ Toxicol Chem, 33(8), 1766-1773. https://doi.org/10.1002/etc.2611 Venkatesan, A.K., Reed, R.B., Lee, S., Bi, X., Hanigan, D., Yang, Y., Ranville, J.F., Herckes, P.,Westerhoff, P. (2018). Detection and sizing of Ti-containing particles in recreational waters using single particle ICP-MS. Bull Environ Contam Toxicol, 100(1), 120-126. https://doi.org/10.1007/s00128-017-2216-1 von der Kammer, F., Ferguson, P.L., Holden, P.A., Masion, A., Rogers, K.R., Klaine, S.J., Koelmans, A.A., Horne, N.,Unrine, J.M. (2012). Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem, 31(1), 32-49. https://doi.org/10.1002/etc.723 Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B., Zhao, Y., Chai, Z.,Chen, C. (2008). Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 254(1-2), 82-90. https://doi.org/10.1016/j.tox.2008.09.014 Wang, J., Nabi, M.M., Mohanty, S.K., Afrooz, A.N., Cantando, E., Aich, N.,Baalousha, M. (2020). Detection and quantification of engineered particles in urban runoff. Chemosphere, 248, 126070. https://doi.org/10.1016/j.chemosphere.2020.126070 Warheit, D.B.,Donner, E.M. (2015). Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Food Chem Toxicol, 85, 138-147. https://doi.org/10.1016/j.fct.2015.07.001 Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K.,von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol, 46(4), 2242-2250. https://doi.org/10.1021/es204168d Westerhoff, P., Song, G., Hristovski, K.,Kiser, M.A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit, 13(5), 1195-1203. https://doi.org/10.1039/c1em10017c Windler, L., Lorenz, C., von Goetz, N., Hungerbuhler, K., Amberg, M., Heuberger, M.,Nowack, B. (2012). Release of titanium dioxide from textiles during washing. Environ Sci Technol, 46(15), 8181-8188. https://doi.org/10.1021/es301633b Wojcieszek, J., Jim?nez-Lamana, J., Ruzik, L., Asztemborska, M., Jarosz, M.,Szpunar, J. (2020). Characterization of TiO2 NPs in Radish (Raphanus sativus L.) by Single-Particle ICP-QQQ-MS. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.00100 Yamanaka, M.,Wilbur, S. (2017). Accurate Determination of TiO2 Nanoparticles in Complex Matrices using the Agilent 8900 ICP-QQQ. Agilent Technologies. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.agilent.com/cs/library/applications/8900_ICP-MS_5991-8358_TiO2_nanoparticles.pdf Yang, Y.,Westerhoff, P. (2014). Presence in, and release of, nanomaterials from consumer products. Adv Exp Med Biol, 811, 1-17. https://doi.org/10.1007/978-94-017-8739-0_1 Zhang, L., Xie, X., Zhou, Y., Yu, D., Deng, Y., Ouyang, J., Yang, B., Luo, D., Zhang, D.,Kuang, H. (2018). Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. Int J Nanomedicine, 13, 777-789. https://doi.org/10.2147/IJN.S152400 Zhou, Y., Gao, L., Xu, D.,Gao, B. (2019). Geochemical baseline establishment, environmental impact and health risk assessment of vanadium in lake sediments, China. Sci Total Environ, 660, 1338-1345. https://doi.org/10.1016/j.scitotenv.2019.01.093 陳柔安. (2021). 大台北地區自來水系統清水及水源中含鈦奈米微粒調查 [碩士論文]國立台灣大學]. 臺北. 劉佳欣. (2021). 利用元素比區分新店溪和高屏溪流域中含鈦奈米微粒來源 [碩士論文]國立台灣大學]. 臺北. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83745 | - |
| dc.description.abstract | 近幾年,人為二氧化鈦奈米微粒在產品中的應用越來越廣泛,且可能會對環境與人體造成危害。然而人們除了可能透過飲用飲用水暴露於人為二氧化鈦奈米微粒之外,也可能藉由於休閒水域戲水而導致直接的暴露。因此,本研究針對東部三條休閒河川水域,包含南澳南溪、荖溪與利嘉溪的休閒水域及其下游的淨水場取水口中的含鈦奈米顆粒進行時間密集型採樣,並利用多元素單粒子感應耦合電漿質譜儀分析淡季與旺季採樣期間含鈦奈米顆粒的分布狀況,以及使用元素比方法推估人為二氧化鈦奈米微粒質量濃度的變化。 結果顯示在淡季採樣期間,含鈦顆粒質量濃度、數目濃度、最常見粒徑範圍以及人為二氧化鈦奈米微粒質量濃度分別為0.16 ng/mL至3.80 ng/mL, 14.52 × 103 part./mL至460.5 × 103 part./mL, 26 nm至60 nm以及ND至2.342 ng/mL。另外,在旺季採樣期間,含鈦顆粒質量濃度、數目濃度、最常見粒徑範圍以及人為二氧化鈦奈米微粒質量濃度分別為0.32 ng/mL至8.19 ng/mL, 16.53 × 103 part./mL至850.5 × 103 part./mL, 32 nm至58 nm以及ND至7.994 ng/mL。 與淡季採樣期間相比,可以發現在旺季採樣期間,當遊客人數增加時,含鈦奈米顆粒濃度以及推估的人為二氧化鈦奈米微粒質量濃度可能會增加,在南澳南溪有發現最高的人為奈米二氧化鈦質量濃度。且根據統計分析,雖然含鈦奈米顆粒的質量濃度和數量濃度與遊客數量之間的相關性不高,但大多數相關性呈現顯著(p < 0.05)。尤其是南澳南溪,發現其相關係數大於0.6,且呈顯著相關(p<0.05)。造成濃度增加的可能原因包含了遊客在休閒水域戲水時對沉積物的擾動導致含鈦奈米顆粒的再懸浮,或是透過遊客塗抹含人為二氧化鈦奈米微粒的防曬乳或是其穿著的防曬衣進入休閒水域,進而將人為二氧化鈦奈米微粒釋放至水中。 本研究提供了對含鈦奈米顆粒的質量濃度、數量濃度、最常見粒徑分佈以及人為二氧化鈦奈米微粒的潛在人為暴露進行了時間密集型調查。希望這些數據有助於未來了解人為奈米顆粒的暴露風險評估以及其在環境上的分佈。 | zh_TW |
| dc.description.abstract | Release of TiO2 engineered nanoparticles (ENPs) in the environment is getting attention in recent years due to the increasing incorporation of ENPs in the daily products, which in turn may threaten human health and can possibly impact natural systems. In addition to being exposed through drinking water, people may also be directly exposed to TiO2-ENPs by visiting in recreational waters. Therefore, this study was conducted through time-intensive sampling for three recreational water rivers in the eastern Taiwan, including the South Nan-Ao Creek, the Lao Creek, and the Li-Jia Creek. Multi-element single-particle inductively coupled plasma mass spectrometry was applied to investigate the distribution of titanium-containing NPs (Ti-containing NPs) and the estimated mass concentration of TiO2-ENPs with elemental ratio method. The results showed that, during the off season sampling period, the mass concentration, the number concentration, the most frequent size ranges of Ti-containing NPs and the estimated mass concentration of TiO2-ENPs were from 0.16 ng/mL to 3.80 ng/mL, from 14.52 × 103 part./mL to 460.5 × 103 part./mL, from 26 nm to 60 nm and from ND to 2.342 ng/mL, respectively. On the other hand, during the peak season sampling period, these corresponding parameters were from 0.32 ng/mL to 8.19 ng/mL, from 16.53 × 103 part./mL to 850.5 × 103 part./mL, from 32 nm to 58 nm and from ND to 7.994 ng/mL, respectively. Compared with the off season sampling period, the peak season sampling period could be found that, as the number of visitors at recreational waters increased, the concentrations of Ti-containing NPs and estimated TiO2-ENPs might increase as well. The highest mass concentration of TiO2-ENPs was found in the South Nan-Ao Creek. Although the correlation coefficients between both the mass and number concentrations of Ti-containing NPs and the number of visitors were moderate, most of these correlations were statistically significant, with the highest correlation coefficients greater than 0.6 found in the South Nan-Ao Creek. The possible explanations for the increased concentrations include the re-suspension of Ti-containing NPs caused by the disturbance of sediments resulting from visitors’ playing in recreational waters, and the release of TiO2-ENPs into the recreational waters from the TiO2-ENPs containing sunscreen or clothing used by the on-site visitors at the recreational waters. This study provided a temporal information on the mass concentration, number concentration, and particle size distribution of Ti-containing NPs and the potential anthropogenic exposure to TiO2-ENPs in recreational waters. It is helpful in characterizing the environmental distribution of TiO2-ENPs and the future risk assessment for the potential exposure to TiO2-ENPs. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:16:27Z (GMT). No. of bitstreams: 1 U0001-2709202212144300.pdf: 4010986 bytes, checksum: 99b194637e63e568a22fbcc58fa95362 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Contents v List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Study aims 2 Chapter 2 Literature Review 3 2.1 Definition and classification of NPs 3 2.2 Pathways for ENPs entering the environment 4 2.3 Toxicity of TiO2 NPs 5 2.4 The concentration of TiO2 NPs in waters 7 2.4.1 Surface water 7 2.4.2 Recreational water 8 2.5 The origin of Ti-containing NPs 9 Chapter 3 Materials and Methods 14 3.1 Water sample collection 14 3.1.1 Sampling sites 14 3.1.2 Materials and Methods 21 3.1.3 Sampling procedure 22 3.2 Ti-containing NPs analysis 26 3.2.1 Standards, chemicals, and materials 26 3.2.2 Sample pretreatment 26 3.2.3 Preparation of calibration curves 27 3.2.4 Instrumental analysis 28 3.2.5Detection limits 29 3.2.6 QA/QC 30 3.2.7 Elemental ratio method 30 3.3 Statistical analysis 31 Chapter 4 Results 32 4.1. Water chemistry along the rivers 32 4.2. South Nan-Ao Creek 53 4.2.1 Mass concentration of total Ti 53 4.2.2 Mass concentration of Ti-containing NPs 53 4.2.3 Number concentration of Ti-containing NPs 54 4.2.4 Most frequent size 55 4.2.5 Mass concentration of TiO2-ENPs 55 4.3. Lao Creek 74 4.3.1 Mass concentration of total Ti 74 4.3.2 Mass concentration of Ti-containing NPs 74 4.3.3 Number concentration of Ti-containing NPs 75 4.3.4 Most frequent size 76 4.3.5 Mass concentration of TiO2-ENPs 76 4.4. Li-Jia creek 96 4.4.1 Mass concentration of total Ti 96 4.4.2 Mass concentration of Ti-containing NPs 96 4.4.3 Number concentration of Ti-containing NPs 97 4.4.4 Most frequent size 98 4.4.5 Mass concentration of TiO2-ENPs 98 Chapter 5 Discussion 117 5.1 Detection of Ti-containing NPs in the study rivers 117 5.1.1 Mass concentration and number concentration of Ti-containing NPs 118 5.1.2 Estimated TiO2-ENPs by elemental ratios 130 5.1.3 Particle size 138 5.2. Comparison with previous studies in number concentration, particle size and mass concentration of TiO2-ENPs 141 5.3 Limitations and future work 145 Chapter 6 Conclusions 148 References 150 | |
| dc.language.iso | en | |
| dc.subject | 時間密集型採樣 | zh_TW |
| dc.subject | 多元素單粒子感應耦合電漿質譜儀 | zh_TW |
| dc.subject | 休憩水域 | zh_TW |
| dc.subject | 人為奈米顆粒 | zh_TW |
| dc.subject | 元素比 | zh_TW |
| dc.subject | 二氧化鈦奈米微粒 | zh_TW |
| dc.subject | multi element sp-ICPMS | en |
| dc.subject | titanium dioxide nanoparticle | en |
| dc.subject | engineered nanoparticle | en |
| dc.subject | elemental ratio | en |
| dc.subject | recreational water | en |
| dc.subject | time-intensive sampling | en |
| dc.title | 臺灣東部三處休憩水域含鈦奈米微粒之時空分布探討 | zh_TW |
| dc.title | Temporal and Spatial Distributions of Ti-containing Nanoparticles in Three Recreational Waters in Eastern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳玟伶(Wen-Ling Chen),林俊德(Chun-Te Lin) | |
| dc.subject.keyword | 二氧化鈦奈米微粒,人為奈米顆粒,元素比,休憩水域,時間密集型採樣,多元素單粒子感應耦合電漿質譜儀, | zh_TW |
| dc.subject.keyword | titanium dioxide nanoparticle,engineered nanoparticle,elemental ratio,recreational water,time-intensive sampling,multi element sp-ICPMS, | en |
| dc.relation.page | 158 | |
| dc.identifier.doi | 10.6342/NTU202204151 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-28 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2709202212144300.pdf 未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
