請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83707完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊申語(Sen-Yeu Yang) | |
| dc.contributor.author | Yu-Yu Chang | en |
| dc.contributor.author | 張友漁 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:14:58Z | - |
| dc.date.copyright | 2022-08-15 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-11 | |
| dc.identifier.citation | [1] P. C. Lee, J. Wang, and C. B. Park, 'Extruded open-cell foams using two semicrystalline polymers with different crystallization temperatures,' Industrial and Engineering Chemistry Research, vol. 45, no. 1, pp. 175-181, 2006, doi: 10.1021/ie050498j. [2] 'Polymer Foam Market Size, Share & Trends Analysis Report By Type (Polystyrene, Polyurethane, Polyolefin, Melamine, Phenolic, PVC), By Application, By Region, And Segment Forecasts, 2022 - 2030,' 2019. [3] S. T. Lee and C. B. Park, Foam extrusion : principles and practice, Second edition. ed. (Polymeric foams). Boca Raton: Taylor & Francis, 2014, p. pages cm. [4] U. N. E. P. O. Secretariat, Handbook for the Montreal protocol on substances that deplete the ozone layer. UNEP/Earthprint, 2006. [5] A. Wong, H. Guo, V. Kumar, C. B. Park, and N. P. Suh, 'Microcellular plastics,' Encyclopedia of polymer science and technology, pp. 1-57, 2002. [6] M. F. Ashby and D. CEBON, 'Materials selection in mechanical design,' Le Journal de Physique IV, vol. 3, no. C7, pp. C7-1-C7-9, 1993. [7] C. Okolieocha, D. Raps, K. Subramaniam, and V. Altst?dt, 'Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review,' European Polymer Journal, vol. 73, pp. 500-519, 2015, doi: 10.1016/j.eurpolymj.2015.11.001. [8] K. M. a. C. Todtenhagen. 'Spray Foam: Open-Cell vs. Closed-Cell.' https://www.jm.com/en/blog/2020/june/spray-foam--open-cell-vs--closed-cell/ (accessed. [9] T. Standau, C. Zhao, S. Murillo Castell?n, C. Bonten, and V. Altst?dt, 'Chemical Modification and Foam Processing of Polylactide (PLA),' Polymers (Basel), vol. 11, no. 2, doi: 10.3390/polym11020306. [10] A. Wong, R. K. M. Chu, S. N. Leung, C. B. Park, and J. H. Zong, 'A batch foaming visualization system with extensional stress-inducing ability,' Chemical Engineering Science, vol. 66, no. 1, pp. 55-63, 2011, doi: 10.1016/j.ces.2010.09.038. [11] X. M. Han, K. W. Koelling, D. L. Tomasko, and L. J. Lee, 'Effect of die temperature on the morphology of microcellular foams,' Polymer Engineering and Science, vol. 43, no. 6, pp. 1206-1220, Jun 2003, doi: 10.1002/pen.10102. [12] J. W. S. Lee, J. Wang, J. D. Yoon, and C. B. Park, 'Strategies to achieve a uniform cell structure with a high void fraction in advanced structural foam molding,' Industrial and Engineering Chemistry Research, vol. 47, no. 23, pp. 9457-9464, 2008, doi: 10.1021/ie0707016. [13] V. Shaayegan, G. Wang, and C. B. Park, 'Study of the bubble nucleation and growth mechanisms in high-pressure foam injection molding through in-situ visualization,' European Polymer Journal, vol. 76, pp. 2-13, 2016. [14] V. Shaayegan, L. H. Mark, C. B. Park, and G. Wang, 'Identification of cell?nucleation mechanism in foam injection molding with gas?counter pressure via mold visualization,' AIChE Journal, vol. 62, no. 11, pp. 4035-4046, 2016. [15] V. Shaayegan, C. Wang, F. Costa, S. Han, and C. B. Park, 'Effect of the melt compressibility and the pressure drop rate on the cell-nucleation behavior in foam injection molding with mold opening,' European Polymer Journal, vol. 92, pp. 314-325, 2017. [16] S. Li, G. Zhao, G. Wang, Y. Guan, and X. Wang, 'Influence of relative low gas counter pressure on melt foaming behavior and surface quality of molded parts in microcellular injection molding process,' Journal of Cellular plastics, vol. 50, no. 5, pp. 415-435, 2014. [17] 科盛科技股份有限公司, Moldex 3D模流分析技術與應用. 2007. [18] V. Shaayegan, L. Mark, A. Tabatabaei, and C. Park, 'A new insight into foaming mechanisms in injection molding via a novel visualization mold,' Express Polymer Letters, vol. 10, no. 6, 2016. [19] V. Shaayegan, A. Ameli, S. Wang, and C. B. Park, 'Experimental observation and modeling of fiber rotation and translation during foam injection molding of polymer composites,' Composites Part A: Applied Science and Manufacturing, vol. 88, pp. 67-74, 2016. [20] V. Shaayegan, G. Wang, and C. B. Park, 'Effect of foam processing parameters on bubble nucleation and growth dynamics in high-pressure foam injection molding,' Chemical Engineering Science, vol. 155, pp. 27-37, 2016. [21] H. J. Yoo and C. D. Han, 'Studies on structural foam processing. III. Bubble dynamics in foam extrusion through a converging die,' Polymer Engineering & Science, Article vol. 21, no. 2, pp. 69-75, 1981, doi: 10.1002/pen.760210203. [22] P. Payvar, 'Mass transfer-controlled bubble growth during rapid decompression of a liquid,' International journal of heat and mass transfer, vol. 30, no. 4, pp. 699-706, 1987. [23] M. A. Shafi, J. G. Lee, and R. W. Flumerfelt, 'Prediction of cellular structure in free expansion polymer foam processing,' Polymer Engineering & Science, vol. 36, no. 14, pp. 1950-1959, 1996. [24] J. W. Lee, J. Wang, J. D. Yoon, and C. B. Park, 'Strategies to achieve a uniform cell structure with a high void fraction in advanced structural foam molding,' Industrial & engineering chemistry research, vol. 47, no. 23, pp. 9457-9464, 2008. [25] T. H. Chong, Y. W. Ha, and D. J. Jeong, 'Effect of dissolved gas on the viscosity of HIPS in the manufacture of microcellular plastics,' Polymer Engineering & Science, vol. 43, no. 6, pp. 1337-1344, 2003. [26] R. D. Chien, S.-C. Chen, P.-H. Lee, and J.-S. Huang, 'Study on the molding characteristics and mechanical properties of injection-molded foaming polypropylene parts,' Journal of reinforced plastics and composites, vol. 23, no. 4, pp. 429-444, 2004. [27] A. Ameli, D. Jahani, M. Nofar, P. Jung, and C. Park, 'Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties,' Composites Science and Technology, vol. 90, pp. 88-95, 2014. [28] J. Zhao et al., 'Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers,' European Polymer Journal, vol. 98, pp. 1-10, 2018. [29] G. Wang, G. Zhao, G. Dong, L. Song, and C. B. Park, 'Lightweight, thermally insulating, and low dielectric microcellular high-impact polystyrene (HIPS) foams fabricated by high-pressure foam injection molding with mold opening,' Journal of Materials Chemistry C, vol. 6, no. 45, pp. 12294-12305, 2018. [30] S. N. Leung, A. Wong, Q. Guo, C. B. Park, and J. H. Zong, 'Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes,' Chemical Engineering Science, vol. 64, no. 23, pp. 4899-4907, 2009. [31] M. Blander and J. L. Katz, 'Bubble nucleation in liquids,' AIChE Journal, vol. 21, no. 5, pp. 833-848, 1975. [32] K. Taki, 'Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process,' Chemical Engineering Science, vol. 63, no. 14, pp. 3643-3653, 2008. [33] S. Leung, C. Park, and H. Li, 'Numerical simulation of polymeric foaming processes using modified nucleation theory,' Plastics, rubber and composites, vol. 35, no. 3, pp. 93-100, 2006. [34] S. N. Leung, A. Wong, C. B. Park, and J. H. Zong, 'Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes,' Journal of applied polymer science, vol. 108, no. 6, pp. 3997-4003, 2008. [35] J. S. Colton and N. P. Suh, 'Nucleation of microcellular foam: Theory and practice,' Polymer Engineering & Science, vol. 27, no. 7, pp. 500-503, 1987. [36] J. Colton and N. Suh, 'The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion,' Polymer Engineering & Science, vol. 27, no. 7, pp. 493-499, 1987. [37] 瀧健太郎 and 大槻安?, '(15) ????????系? CAE: ?泡成形?基礎??用,' 成形加工, vol. 18, no. 3, pp. 205-218, 2006. [38] S. N. Leung, H. Li, and C. B. Park, 'Impact of approximating the initial bubble pressure on cell nucleation in polymeric foaming processes,' Journal of applied polymer science, vol. 104, no. 2, pp. 902-908, 2007. [39] S. N. Leung, A. Wong, L. C. Wang, and C. B. Park, 'Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents,' The Journal of Supercritical Fluids, vol. 63, pp. 187-198, 2012. [40] A. Wong and C. Park, 'A visualization system for observing plastic foaming processes under shear stress,' Polymer Testing, vol. 31, no. 3, pp. 417-424, 2012. [41] A. Wong and C. B. Park, 'The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide,' Chemical Engineering Science, vol. 75, pp. 49-62, 2012. [42] Y. Kagan, 'The kinetics of boiling of a pure liquid,' Russ. J. Phys. Chem., vol. 34, pp. 42-46, 1960. [43] M. Blander, 'Bubble nucleation in liquids,' Adv. Colloid Interface Sci.;(Netherlands), vol. 10, 1979. [44] J. H. Han and C. Dae Han, 'Bubble nucleation in polymeric liquids. II. Theoretical considerations,' Journal of Polymer Science Part B: Polymer Physics, vol. 28, no. 5, pp. 743-761, 1990. [45] K. Y. Kim, S. L. Kang, and H. Y. Kwak, 'Bubble nucleation and growth in polymer solutions,' Polymer Engineering & Science, vol. 44, no. 10, pp. 1890-1899, 2004. [46] L. Rayleigh, 'On the pressure developed in a liquid during the collapse of a spherical cavity: Philosophical Magazine Series 6, 34, 94–98,' ed, 1917. [47] S.-T. Lee and C. B. Park, Foam extrusion: principles and practice. CRC press, 2014. [48] C. D. Han and C. Villamizar, 'Studies on structural foam processing I. The rheology of foam extrusion,' Polymer Engineering & Science, vol. 18, no. 9, pp. 687-698, 1978. [49] C. D. Han and H. J. Yoo, 'Studies on structural foam processing. IV. Bubble growth during mold filling,' Polymer Engineering & Science, Article vol. 21, no. 9, pp. 518-533, 1981, doi: 10.1002/pen.760210903. [50] H. J. Yoo and C. D. Han, 'Oscillatory behavior of a gas bubble growing (or collapsing) in viscoelastic liquids,' Aiche Journal, vol. 28, no. 6, pp. 1002-1009, 1982. [51] M. Shafi and R. Flumerfelt, 'Initial bubble growth in polymer foam processes,' Chemical Engineering Science, vol. 52, no. 4, pp. 627-633, 1997. [52] M. Shafi, K. Joshi, and R. Flumerfelt, 'Bubble size distributions in freely expanded polymer foams,' Chemical Engineering Science, vol. 52, no. 4, pp. 635-644, 1997. [53] M. Amon and C. D. Denson, 'A study of the dynamics of foam growth: analysis of the growth of closely spaced spherical bubbles,' Polymer Engineering & Science, vol. 24, no. 13, pp. 1026-1034, 1984. [54] M. Amon and C. D. Denson, 'A study of the dynamics of foam growth: simplified analysis and experimental results for bulk density in structural foam molding,' Polymer Engineering & Science, vol. 26, no. 3, pp. 255-267, 1986. [55] A. Arefmanesh, S. G. Advani, and E. E. Michaelides, 'A numerical study of bubble growth during low pressure structural foam molding process,' Polymer Engineering & Science, vol. 30, no. 20, pp. 1330-1337, 1990. [56] A. Arefmanesh and S. Advani, 'Diffusion-induced growth of a gas bubble in a viscoelastic fluid,' Rheologica Acta, vol. 30, no. 3, pp. 274-283, 1991. [57] A. Arefmanesh, S. G. Advani, and E. E. Michaelides, 'An accurate numerical solution for mass diffusion-induced bubble growth in viscous liquids containing limited dissolved gas,' International Journal of Heat and Mass Transfer, vol. 35, no. 7, pp. 1711-1722, 1992. [58] K. Taki, K. Tabata, S. i. Kihara, and M. Ohshima, 'Bubble coalescence in foaming process of polymers,' Polymer Engineering & Science, vol. 46, no. 5, pp. 680-690, 2006. [59] D. Tammaro et al., 'Validated modeling of bubble growth, impingement and retraction to predict cell-opening in thermoplastic foaming,' Chemical Engineering Journal, vol. 287, pp. 492-502, 2016. [60] C. D. Han and C. A. Villamizar, 'Studies on structural foam processing I. The rheology of foam extrusion,' Polymer Engineering & Science, Article vol. 18, no. 9, pp. 687-698, 1978, doi: 10.1002/pen.760180904. [61] C. A. Villamizar and C. D. Han, 'Studies on structural foam processing II. Bubble dynamics in foam injection molding,' Polymer Engineering & Science, Article vol. 18, no. 9, pp. 699-710, 1978, doi: 10.1002/pen.760180905. [62] M. Mahmoodi, A. H. Behravesh, S. A. M. Rezavand, and M. Golzar, 'Theoretical and visual study of bubble dynamics in foam injection molding,' Polymer Engineering & Science, vol. 50, no. 3, pp. 561-569, 2010/03/01 2010, doi: 10.1002/pen.21565. [63] M. Mahmoodi, A. H. Behravesh, S. A. M. Rezavand, and A. Pashaei, 'Visualization of bubble dynamics in foam injection molding,' Journal of Applied Polymer Science, vol. 116, no. 6, pp. 3346-3355, 2010/06/15 2010, doi: 10.1002/app.31839. [64] T. Ishikawa and M. Ohshima, 'Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core-back injection molding process,' Polymer Engineering & Science, vol. 51, no. 8, pp. 1617-1625, 2011, doi: 10.1002/pen.21945. [65] T. Ishikawa, K. Taki, and M. Ohshima, 'Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-back foam injection molding,' Polymer Engineering & Science, vol. 52, no. 4, pp. 875-883, 2012, doi: 10.1002/pen.22154. [66] S. C. Chen, Y. C. Chen, and H. S. Peng, 'Simulation of injection–compression?molding process. II. Influence of process characteristics on part shrinkage,' Journal of Applied Polymer Science, vol. 75, no. 13, pp. 1640-1654, 2000. [67] 科盛科技股份有限公司. '網格品質定義.' http://support.moldex3d.com/r17/zh-TW/4-6-5_meshqualitydefinition.html (accessed. [68] 鄭廷裕, '微射出壓縮成型微透鏡陣列於基盤之製程開發 , Fabrication of microlens array on disk usingmicro-injection compression molding process ' 碩士論文--國立臺灣大學機械工程學研究所, 2017. [69] T. Shiu, Y.-J. Chang, C.-T. Huang, D. Hsu, and R.-Y. Chang, 'Dynamic behavior and experimental validation of cell nucleation and growing mechanism in microcellular injection molding process,' Proceedings of the ANTEC, Orlando, FL, USA, pp. 2-4, 2012. [70] J. Lee, L.-S. Turng, E. Dougherty, and P. Gorton, 'A novel method for improving the surface quality of microcellular injection molded parts,' Polymer, vol. 52, no. 6, pp. 1436-1446, 2011. [71] H. K. Kim, J. S. Sohn, Y. Ryu, S. W. Kim, and S. W. Cha, 'Warpage reduction of glass fiber reinforced plastic using microcellular foaming process applied injection molding,' Polymers (Basel), vol. 11, no. 2, p. 360, 2019. [72] V. Kumar and N. P. Suh, 'A process for making microcellular thermoplastic parts,' Polymer Engineering and Science, vol. 30, no. 20, pp. 1323-1329, Oct 1990, doi: 10.1002/pen.760302010. [73] R. y. Chang and W. h. Yang, 'Numerical simulation of mold filling in injection molding using a three?dimensional finite volume approach,' International Journal for Numerical Methods in Fluids, vol. 37, no. 2, pp. 125-148, 2001. [74] S. Areerat, E. Funami, Y. Hayata, D. Nakagawa, and M. Ohshima, 'Measurement and prediction of diffusion coefficients of supercritical CO2 in molten polymers,' Polymer Engineering & Science, vol. 44, no. 10, pp. 1915-1924, 2004. [75] Y. Sato, T. Takikawa, S. Takishima, and H. Masuoka, 'Solubilities and diffusion coefficients of carbon dioxide in poly (vinyl acetate) and polystyrene,' The journal of Supercritical fluids, vol. 19, no. 2, pp. 187-198, 2001. [76] H. Li, L. J. Lee, and D. L. Tomasko, 'Effect of carbon dioxide on the interfacial tension of polymer melts,' Industrial & engineering chemistry research, vol. 43, no. 2, pp. 509-514, 2004. [77] H. Park, C. Park, C. Tzoganakis, K. Tan, and P. Chen, 'Surface tension measurement of polystyrene melts in supercritical carbon dioxide,' Industrial & engineering chemistry research, vol. 45, no. 5, pp. 1650-1658, 2006. [78] 林宏修, '高壓發泡射出成型結合抽芯製程對聚苯乙烯發泡材料結構影響,' 碩士, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/6h5tx2 [79] T. Ishikawa and M. Ohshima, 'Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core?back injection molding process,' Polymer Engineering & Science, vol. 51, no. 8, pp. 1617-1625, 2011. [80] R. Miyamoto, S. Yasuhara, H. Shikuma, and M. Ohshima, 'Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents,' Polymer Engineering & Science, vol. 54, no. 9, pp. 2075-2085, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83707 | - |
| dc.description.abstract | 近年來世界朝向減塑的方向邁進,而發泡製品為減少塑料使用的極佳方案,其優異的機械性質,以及具有絕緣、絕熱、減震、隔音等特性,可廣泛應用於工業界中;以汽車產業為例,汽車保險桿與車門飾板皆是由微細發泡射出成型加工而成且可有效減低重量與塑料使用,然而發泡製品通常為大型部件,為防範氣泡數量及尺寸不均導致其機械性能下降等成型缺陷,需有良好的數值模型與CAE模流分析軟體於成型前推估泡體結構,事先了解其製品可能存在的缺陷。 發泡行為動態且複雜,過往學者皆是以視覺化設備觀察氣泡的細微變化,以及微細發泡射出成型參數對於泡體結構的影響,本研究擬將過往學者視覺化研究成果比對現今模流分析軟體分析結果,針對高壓射出發泡成型與抽芯技術中,成型參數對於泡體結構之影響,比較模擬分析結果中氣泡成長動態行為是否與視覺化實驗結果相符。發現高壓射出發泡成型模擬分析結果與過往視覺化實驗結果相符,成型過程中,氣泡動態行為也與視覺化實驗觀察結果相近;在抽芯技術中,儘管模擬分析模內壓力與視覺化實驗結果相近,但模擬仍無法反應壓力梯度對於氣泡數量密度的影響,與視覺化實驗結果不符。 後續實際成型驗證實驗主要透過田口實驗搭配L9直交表同時進行模擬分析與實際成型實驗,比對模擬分析與實際成型驗證結果,評估模擬軟體是否能有效判別於高壓射出發泡成型以及抽芯技術中,重要之成型參數以及每一成型參數的貢獻度,是否模擬能助於開發者找到最佳化成型參數。結果顯示在高壓射出發泡成型中,模擬可有效預估成型參數對氣泡數量密度的影響,但未能預估對氣泡尺寸的影響,實際成型驗證,試片氣泡尺寸不均,而模擬則假設氣泡以球對稱的方式於模穴內均勻成長,與實際成型狀況不符;在抽芯技術實驗結果則與視覺化比對結果一致,模擬分析仍無法分析抽芯技術,本研究認為抽芯時模內已有膚層產生,因此導致模內壓力梯度變化與熱傳效應對於氣泡結構的影響更加難以預估。 | zh_TW |
| dc.description.abstract | In recent years, the world is demanding the manufacturer to reduce plastics. As one of the best solution, foamed products reduce use of plastics, while exhibiting excellent mechanical properties, electrical insulation, heat insulation, shock absorption and sound insulation. However, all of the properties mentioned above were related to the structure of bubbles, which requires comprehensive numerical models to estimate the bubble structure and the product characteristic before forming. This study is devoted to the validation of the numerical CAE software of Moldex3D that is mainly divided into two sections : the comparison of the simulation results with the visualization in literature, and with the actual forming experiments. The former study was conducted to investigate the effect of molding parameters on the cell structure in high-pressure injection molding and core-back technology. In the high-pressure injection molding, the simulation results were consistent with the visualization results, and the bubble dynamic behaviors were also in agreement with the visualization results.Moldex3D can effectively identify the influence of molding parameters on the structure of the bubble. But in the core-back injection molding, the CAE software obviously can’t determine the final structure of the bubbles. The reason is that the pressure gradient is non-isotropic and the heat transfer effect in the mold is more complicated because of the single-mold directional movement of the core-back technique and the skin layer generated during the core-back. The latter section was the experimental validation of simulation using Moldex3D. The comparison is evaluated whether the simulation software can effectively identify key molding parameters and the contributions of these parameters in high pressure injection molding and core-back by Taguchi's method with L9 table. In the high pressure injection molding, the simulation can effectively evaluate every molding parameter’s influence to the cell density, but is unable to determine its diameter. The cell size is not uniform in actual injection molding, while the CAE software assumes the bubbles to grow in a spherically symmetric manner. In the core-back experimental validation, the CAE software can’t evaluate the foaming behavior in core-back. The reason is that the heat transfer effect in the mold is more complicated because of the single-mold directional movement of the core-back technique and the skin layer generated during the core-back. It caused numerical model unable to evaluate the foaming behavior in core-back. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:14:58Z (GMT). No. of bitstreams: 1 U0001-0808202215544400.pdf: 8063895 bytes, checksum: 46f8507340b6898467b266caac2f78ab (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 II Abstract III 第一章 導論 1 1.1 前言 1 1.2 高分子發泡材料 1 1.2.1 發泡劑 1 1.2.2 發泡機制 3 1.2.3 發泡材料分類 4 1.3 發泡成型技術 6 1.3.1 批次發泡成型技術 6 1.3.2 押出發泡成型技術 7 1.3.3 射出發泡成型技術 8 1.4 CAE模流軟體分析 15 1.5 研究動機與目標 17 1.6 論文架構 18 第二章 文獻回顧 19 2.1 發泡材料性質研究 19 2.2 發泡機制研究 20 2.2.1 氣泡成核研究與模型 20 2.2.2 氣泡成長研究與模型 28 2.2.3 聚併現象研究 32 2.3 發泡成型視覺化觀察研究 33 2.4 射出成型CAE軟體分析文獻 37 2.5 文獻整體回顧 41 第三章 模擬條件與實驗方法 42 3.1 成品與模具設計 42 3.1.1 視覺化模擬分析之成品設計 42 3.1.2 實際成型驗證之成品設計 43 3.2 實驗設備與材料 44 3.2.1 視覺化模擬驗證實驗材料與設備 44 3.2.2 實際成型驗證實驗材料與設備 47 3.3 量測設備與方法 51 3.3.1 量測設備 51 3.3.2 量測方法 52 3.4 實驗方法 55 3.4.1 田口方法 55 3.4.2 變??分析 57 3.5 實驗流程 58 第四章 模擬分析結果與視覺化成型比對 60 4.1 視覺化成型實驗模擬模型架設 60 4.1.1 網格架設 60 4.1.2 實驗模型建立 62 4.1.3 數值邊界條件與假設 64 4.2 模型選用與網格測試 69 4.2.1 氣泡成長模型選用 69 4.2.2 網格收斂性分析 70 4.3 高壓射出發泡成型分析結果比對 71 4.3.1 保壓壓力對於泡體結構之影響 71 4.3.2 保壓時間對於泡體結構之影響 73 4.3.3 澆口流動阻力對於泡體結構之影響 76 4.3.4 射出速度對於泡體結構之影響 78 4.3.5 氣體劑量對於泡體結構之影響 82 4.3.6 材料黏度對於泡體結構之影響 85 4.4 模內抽芯技術分析結果比對 87 4.4.1 保壓壓力對於抽芯技術之影響 87 4.4.2 壓力梯度對於抽芯技術之影響 88 4.5 泡體結構模擬分析結果與討論 90 第五章 實際成型驗證與量測結果 91 5.1 實際成型驗證模擬模型架設 91 5.1.1 網格架設 91 5.1.2 實驗模型建立 93 5.2 高壓射出發泡成型驗證結果 94 5.2.1 氣泡數量密度 95 5.2.2 氣泡尺寸 101 5.3 抽芯技術成型驗證結果 107 5.3.1 氣泡數量密度 108 5.3.2 氣泡尺寸 115 5.4 實際成型驗證結果與討論 121 第六章 結論與未來展望 122 6.1 研究成果總結 122 6.1.1 視覺化模擬分析結果總結 122 6.1.2 實際成型驗證結果總結 123 6.2 未來展望 124 參考文獻 125 附錄-A 132 附錄-B 133 附錄-C 139 附錄-D 140 附錄-E 141 附錄-F 142 附錄-G 143 附錄-H 145 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抽芯技術 | zh_TW |
| dc.subject | 數值分析與實際驗證 | zh_TW |
| dc.subject | 高壓射出發泡成型 | zh_TW |
| dc.subject | core-back | en |
| dc.subject | Numerical simulation and experimental validation | en |
| dc.subject | high-pressure foam injection molding | en |
| dc.title | 微細發泡射出成型發泡行為探討及模流分析與實際成型驗證 | zh_TW |
| dc.title | Numerical simulation and experimental validation of dynamic foaming behavior in microcellular injection molding | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉樹開(Shu-Kai Yeh),許華倚(Hua-Yi Hsu) | |
| dc.subject.keyword | 數值分析與實際驗證,高壓射出發泡成型,抽芯技術, | zh_TW |
| dc.subject.keyword | Numerical simulation and experimental validation,high-pressure foam injection molding,core-back, | en |
| dc.relation.page | 146 | |
| dc.identifier.doi | 10.6342/NTU202202151 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202215544400.pdf 未授權公開取用 | 7.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
