Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83684Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 廖英志 | zh_TW |
| dc.contributor.advisor | Ying-Chih Liao | en |
| dc.contributor.author | 唐嘉陞 | zh_TW |
| dc.contributor.author | Jia-Sheng Tang | en |
| dc.date.accessioned | 2023-03-19T21:14:10Z | - |
| dc.date.available | 2023-12-27 | - |
| dc.date.copyright | 2022-08-26 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Geyer, R., J.R. Jambeck, and K.L. Law, Production, use, and fate of all plastics ever made. Science advances, 2017. 3(7): p. e1700782. 2. Yuhui, M., Problems and resolutions in dealing with waste disposable paper cups. Science progress, 2018. 101(1): p. 1-7. 3. Wellenreuther, C., A. Wolf, and N. Zander, Cost competitiveness of sustainable bioplastic feedstocks–A Monte Carlo analysis for polylactic acid. Cleaner Engineering and Technology, 2022. 6: p. 100411. 4. Kim, J.-H., et al., Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015. 2(2): p. 197-213. 5. Zhong, Y., et al., Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 2020. 3(1): p. 27-35. 6. Bhargava, N., et al., Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 2020. 105: p. 385-401. 7. Hubbe, M.A., et al., Nanocellulose in thin films, coatings, and plies for packaging applications: A review. BioResources, 2017. 12(1): p. 2143-2233. 8. Kaliappan, S.K., Characterization of physical properties of polymers using AFM force-distance curves. 2007. 9. Teixeira, C.N. and M.G.F. Sales, A cellulose-based colour test-strip for equipment-free drug detection on-site: application to sulfadiazine in aquatic environment. SN Applied Sciences, 2020. 2(3): p. 1-11. 10. Ridwan, R., et al., Tensile analysis and assessment of carbon and alloy steels using FE approach as an idealization of material fractures under collision and grounding. Curved and Layered Structures, 2020. 7(1): p. 188-198. 11. Shaikh, S., M. Yaqoob, and P. Aggarwal, An overview of biodegradable packaging in food industry. Current Research in Food Science, 2021. 4: p. 503-520. 12. Mondal, S., Preparation, properties and applications of nanocellulosic materials. Carbohydrate polymers, 2017. 163: p. 301-316. 13. Nechyporchuk, O., M.N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 2016. 93: p. 2-25. 14. Salas, C., et al., Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science, 2014. 19(5): p. 383-396. 15. Gopakumar, D., S. Thomas, and Y. Grohens, Nanocelluloses as innovative polymers for membrane applications, in Multifunctional polymeric nanocomposites based on cellulosic reinforcements. 2016, Elsevier. p. 253-275. 16. Madivoli, E.S., et al., Isolation of cellulose nanofibers from oryza sativa residues via TEMPO mediated oxidation. Journal of Natural Fibers, 2022. 19(4): p. 1310-1322. 17. Moon, R.J., et al., Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011. 40(7): p. 3941-3994. 18. Tsuneyasu, S., et al., Enhancement of luminance in powder electroluminescent devices by substrates of smooth and transparent cellulose nanofiber films. Nanomaterials, 2021. 11(3): p. 697. 19. Saha Dr, N.C., G. Madhu Dr, and D.B. Kadu Ms, Evaluation of biodegradability characteristics of cellulose-based film as per IS/ISO 14855-1. Journal of Applied Packaging Research, 2019. 11(3): p. 2. 20. Kumla, J., et al., Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules, 2020. 25(12): p. 2811. 21. Chen, W., et al., Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 2011. 83(4): p. 1804-1811. 22. Lee, D., et al., Rheological study of cellulose nanofiber disintegrated by a controlled high-intensity ultrasonication for a delicate nano-fibrillation. Cellulose, 2020. 27(16): p. 9257-9269. 23. Lade Milind, S., et al., Polymer based wafer technology: A Review. 2010. 24. Howard, G.T., Biodegradation of polyurethane: a review. International Biodeterioration & Biodegradation, 2002. 49(4): p. 245-252. 25. Madbouly, S.A., Waterborne polyurethane dispersions and thin films: Biodegradation and antimicrobial behaviors. Molecules, 2021. 26(4): p. 961. 26. Gui, T., et al., Investigation on Effects of Chain Extenders and Cross-linking Agents of Polyurethane Elastomers Using Independent Building Vibration Isolation Sensor. Sensors and Materials, 2019. 31(2019). 27. Chang, J., et al., Synthesis and characterization of environmentally-friendly self-matting waterborne polyurethane coatings. Coatings, 2020. 10(5): p. 494. 28. Liu, X., W. Hong, and X. Chen, Continuous production of water-borne polyurethanes: A review. Polymers, 2020. 12(12): p. 2875. 29. Santamaria-Echart, A., et al., Synthesis of waterborne polyurethane-urea dispersions with chain extension step in homogeneous and heterogeneous media. Journal of colloid and interface science, 2016. 476: p. 184-192. 30. Krasowska, K., A. Heimowska, and M. Rutkowska, Environmental degradability of polyurethanes. Thermoplast. Elastomers—Synthesis Appl. IntechOpen London, UK, 2015: p. 75-94. 31. Chiu, R.C., T. Garino, and M. Cima, Drying of granular ceramic films: I, effect of processing variables on cracking behavior. Journal of the American Ceramic Society, 1993. 76(9): p. 2257-2264. 32. Boulogne, F., L. Pauchard, and F. Giorgiutti-Dauphiné, Effect of a non-volatile cosolvent on crack patterns induced by desiccation of a colloidal gel. Soft Matter, 2012. 8(32): p. 8505-8510. 33. Zhang, Y., et al., Enhanced coffee-ring effect via substrate roughness in evaporation of colloidal droplets. Advances in Condensed Matter Physics, 2018. 2018. 34. Kajiya, T., et al., Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. The Journal of Physical Chemistry B, 2009. 113(47): p. 15460-15466. 35. Zhou, Z., et al., Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves. Colloids and Surfaces B: Biointerfaces, 2018. 167: p. 206-212. 36. Sinquefield, S., et al., Nanocellulose dewatering and drying: current state and future perspectives. ACS Sustainable Chemistry & Engineering, 2020. 8(26): p. 9601-9615. 37. Rossi, M. and A. Marin, Single-Camera 3D PTV Methods for Evaporation-Driven Liquid Flows in Sessile Droplets, in Droplet Interactions and Spray Processes. 2020, Springer. p. 225-236. 38. Quennouz, N., et al., Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter, 2016. 12(1): p. 157-164. 39. Saputra, A.H. Synthesis and swelling characterization of nata-de-coco-andwater-hyacinth-based hydrogel. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing. 40. Park, J.-S., Y.-M. Lim, and Y.-C. Nho, Preparation of high density polyethylene/waste polyurethane blends compatibilized with polyethylene-graft-maleic anhydride by radiation. Materials, 2015. 8(4): p. 1626-1635. 41. Kim, J.-K., B. Choi, and J. Jin, Transparent, water-stable, cellulose nanofiber-based packaging film with a low oxygen permeability. Carbohydrate Polymers, 2020. 249: p. 116823. 42. Niskanen, I., et al., Optical Properties of Cellulose Nanofibre Films at High Temperatures. Journal of Polymer Research, 2022. 29(5): p. 1-11. 43. Huang, P., et al., A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale, 2016. 8(6): p. 3753-3759. 44. Kavitha, N., et al., Effect of film thickness on the solar cell performance of CBD grown CdS/PbS heterostructure. Journal of Materials Science: Materials in Electronics, 2016. 27(3): p. 2574-2580. 45. Sadi, R.K., G.J. Fechine, and N.R. Demarquette, Photodegradation of poly (3-hydroxybutyrate). Polymer Degradation and Stability, 2010. 95(12): p. 2318-2327. 46. Bhatia, A., et al., Analysis of gas permeability characteristics of poly (lactic acid)/poly (butylene succinate) nanocomposites. Journal of Nanomaterials, 2012. 2012. 47. Zhao, L.-l., et al., Optimizing the balance between stiffness and flexibility by tuning the compatibility of a poly (lactic acid)/ethylene copolymer. RSC advances, 2017. 7(37): p. 23065-23072. 48. Messin, T., et al., Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances. Journal of Membrane Science, 2020. 598: p. 117777. 49. Rosa, D.d.S., et al., Influence of oxidized polyethylene wax (OPW) on the mechanical, thermal, morphological and biodegradation properties of PHB/LDPE blends. Journal of materials science, 2007. 42(19): p. 8093-8100. 50. Ivonkovic, A., et al., Biodegradable packaging in the food industry. J. Food Saf. Food Qual, 2017. 68: p. 26-38. 51. Saidi, M.A., et al., Mechanical and Thermal Properties of Polyethylene Terephthalate/Polybutylene Terephthalate Blends. 2018, IGCESH. 52. Brody, A.L., et al., Innovative food packaging solutions. Journal of food science, 2008. 73(8): p. 107-116. 53. Lim, K.Y., et al., Exploitation of Improved Long‐Term Stability and Enhanced Photoconversion Efficiency of Organic Photovoltaics Using Flexible Transparent Conducting Electrode with Dual Functions of Antireflection and Ultrahigh Moisture Barrier. Advanced Energy and Sustainability Research, 2021. 2(12): p. 2100112. 54. Righetti, M.C., et al., Temperature dependence of the rigid amorphous fraction of poly (butylene succinate). RSC advances, 2021. 11(41): p. 25731-25737. 55. Hu, X., et al., Difference in solid-state properties and enzymatic degradation of three kinds of poly (butylene succinate)/cellulose blends. RSC advances, 2017. 7(56): p. 35496-35503. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83684 | - |
| dc.description.abstract | 隨著人類文明的發展,聚丙烯(Polypropylene, PP)、聚乙烯(Polyethylene, PE)以及 聚氯乙烯(Polyvinyl Chloride, PVC)一類常見石化塑膠廢棄物日益堆積,這類高分子不具備可降解之特性,長此以往將對於生態環境造成持續且不可逆的負面影響,為此,生物可降解塑膠成為了近代廣受關注的新興材料。有別於傳統塑膠,生物可降解塑膠即使不回收,仍可在特定的自然條件下自行降解為二氧化碳、水以及小分子,此可有效降低環境負擔,故將日常及工業中常見之塑膠轉換為可降解高分子將對永續經營起到相當大作用。而在諸多塑膠類別中,以包裝膜作為應用目的者佔據了相當大的比例,若是可將生物可降解塑膠取代現今生活常見之不可降解塑膠袋、塑膠蓋等等,將大幅減少永久廢棄物之堆積。然而,要替代如今已存在完整產業鏈之石化塑膠包裝,仍存在許多問題需要克服,主要可分為製程以及應用性方面,欲汰換現今之石化塑膠包裝,首先必須在製程方面滿足市場的需求供給,這意味著可降解塑膠需要能開發出一套具備大規模生產之生產方式,除此之外,包裝薄膜本身諸如阻隔性、穩定性等方面若要滿足市場期望,也需要達到與目前石化塑膠接近的性能表現才有被大量採用的機會。 在本文中,我們首先將TEMPO氧化纖維素奈米纖維(TEMPO-oxidized cellulose nanofiber, TOTOCNF)進行超音波震盪以提升其分散性與填補性以便進行刮刀塗佈製程,而後添加同樣具備懸浮性之水性聚氨酯(Waterborne polyurethane, WPU)以增強塗佈成膜之延展性,而後為了提升兩者之混合性,TOTOCNF/WPU混合液隨後添加非離子型界面活性劑曲拉通X-100(TritonX-100)以提升水性聚氨酯於混合液中之分散性,添加後之混合溶液不但可有效增加成膜之透明度,且TritonX-100的添加也同時對乾燥速率以及咖啡還效應抑制方面都有明顯增益效果,此改善使該混合液在大規模刮刀塗佈下之薄膜製程更加穩定且快速。除此之外,完成乾燥後之薄膜可以透過二次酯化反應達到親水性官能基的大量去除,此可有效克服TEMPO氧化纖維素奈米纖維薄膜低阻水性之問題,最終可製程一適用於大規模連續塗佈製程之高透明(T: 89.4%, Haze: 97.8%)、高熱穩定(-50~278oC)、高阻隔性之生質包裝薄膜,其可廣泛應用於食品包裝中,本研究以香蕉之包裝作為實驗成果之展示。 | zh_TW |
| dc.description.abstract | With the development of human civilization, common petrochemical plastic wastes such as polypropylene (PP), polyethylene (PE) and polyvinyl chloride (PVC) accumulate over time. These polymers are non-degradable, which will cause continuous and irreversible negative impacts on the ecological environment in the long run. Therefore, biodegradable plastics have become an emerging material that has attracted wide attention in recent studies. Unlike traditional plastics, biodegradable plastics can be decomposed into carbon dioxide, water and small molecules by themselves under specific natural conditions without recycling, which can effectively reduce the burden on the environment, so the conversion of common plastics in daily and industry into degradable polymers will be a significant step in sustainable development. In plastic industries, packaging films account for a considerable proportion of the application purpose. If biodegradable plastics can be used to replace non-degradable plastic bags, plastic covers, etc., which are common in today's life, it will greatly reduce the amount of permanent waste accumulation. However, in order to be the alternative for petrochemical plastic packaging that has a well-developed industrial chain, there are still many problems that remain. The main problems are manufacturing and application. To replace today's petrochemical plastic packaging, it is necessary to meet the market demand and supply in terms of process, which means that degradable plastic needs to develop a production method with mass production. In addition, for the purpose of meeting market expectations in terms of package barrier properties and package stabilities, etc., it is also necessary to achieve performance close if not better to the current petrochemical plastics to have the opportunity to be widely applied. In this paper, we first improve the dispersibility and film-filling ability of TEMPO-oxidized cellulose nanofiber (TOTOCNF) for the blade coating process by ultrasonication. The solution is then added with waterborne polyurethane (WPU) which also suspense in water to enhance the ductility of the dried film. To improve mixing, the TOTOCNF/WPU mixture was then added with a non-ionic surfactant TritonX-100 for dispersibility increase of WPU. After the addition, the mixture not only shows an effective increase in transparency of the casted film, but also the addition of TritonX-100 shows significant enhancement in drying rate and the inhibition of coffee ring effect. The improvement makes the film process of the mixed solution more stable and fast under large-scale doctor blade coating. Moreover, the film after drying can achieve a large number of hydrophilic functional group removal through the two-time esterification reactions, which can effectively overcome the problem of low water resistance of the nanocellulose film. The final Biomass packaging film with high transparency (T: 89.4%, Haze: 97.8%), high thermal stability (-50~278oC), and high barrier properties that can be applied to large-scale coating is fabricated. The film can be widely used in the food packaging industry. In this study, the packaging of the banana is demonstrated as the application of the product. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:14:10Z (GMT). No. of bitstreams: 1 U0001-1208202210404100.pdf: 4350285 bytes, checksum: d4e79be26508259a4a1d1ac0dd8532ba (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 口試委員審定書 i 致謝 ii 摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xiv 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 2 1.4 文獻回顧 3 1.4.1 可降解聚合物 3 1.4.2 可降解性包裝 4 1.4.3 TEMPO氧化纖維素奈米纖維 10 1.4.4 高分子薄膜大規模製程 15 1.4.5 水性聚胺酯 (WPU) 16 1.4.6 濕膜乾燥所引發之裂縫 21 1.4.7 介面活性劑於濕膜乾燥之影響 22 1.4.8 酯化交聯反應(cross linking) 24 第2章 實驗系統程序 26 2.1 實驗藥品與儀器介紹 26 2.1.1 實驗藥品與材料 26 2.1.2 實驗儀器 27 2.2 實驗流程 28 2.2.1 透明包裝薄膜溶液之配置 28 2.2.2 刮刀塗佈機製備透明包裝薄膜 29 2.2.3 包裝薄膜之交聯 29 第3章 TOCNF/WPU複合薄膜改質 31 3.1 超音波震盪對TOCNF溶液之影響 31 3.1.1 流變性 31 3.1.2 溶液填補性 33 3.1.3 表面結構 34 3.2 水性聚氨酯的添加對於薄膜外貌與拉伸性之影響 35 3.3 u-TOCNF/WPU混合液添加TritonX-100之影響 37 3.3.1 TritonX-100添加對於複合薄膜外貌與拉伸性之影響 37 3.3.2 混合液乾燥速率分析 40 3.3.3 乾燥薄膜之形貌分析 42 3.4 u-TOCNF/WPU TritonX-100薄膜之二次酯化反應 43 第4章 u-TOCNF/WPUt-c包裝性能分析與應用 46 4.1 u-TOCNF/WPUt-c包裝阻隔性質分析 47 4.1.1 氧穿透率(OTR)與水蒸氣穿透率(WVTR)分析 47 4.1.2 阻水性以及阻油性分析 48 4.2 u-TOCNF/WPUt-c包裝拉伸性質分析 50 4.3 u-TOCNF/WPUt-c包裝穩定性質分析 51 4.3.1 放置穩定性 51 4.3.2 熱穩定性分析 52 4.4 u-TOCNF/WPUt-c包裝綜合性質比較及應用 53 第5章 結論與未來展望 56 參考資料 57 圖目錄 圖 1 1 可降解高分子分類 [5] 4 圖 1 2 可降解生物高分子循環 [5] 4 圖 1 3 可降解性食品包裝薄膜示意圖 [6] 5 圖 1 4 四類常見包裝阻隔性質分析[7] 6 圖 1 5 熱塑性高分子體積-溫度曲線圖 [8] 7 圖 1 6 纖維素紙之氧化黃化現象 [9] 7 圖 1 7 高分子薄膜拉伸性值分析示意圖[10] 8 圖 1 8 CNF轉化為TOCNF原理與目的 11 圖 1 9 纖維素奈米纖維生產樹枝狀示意圖[13] 11 圖 1 10 TEMPO氧化纖維素單體間連接鏈 [16] 12 圖 1 11纖維素奈米纖維晶向排列示意圖 [17] 12 圖 1 12 TEMPO氧化纖維素奈米纖維與一般紙張的比較 [18] 13 圖 1 13 纖維素之水解酵素示意圖 [20] 13 圖 1 14 TOCNF超音波震盪示意圖 [22] 14 圖 1 15 TEMPO纖維素奈米纖維高強度超音波震盪 (a) 120秒 (b) 180秒 (c) 360秒 (b) 600秒 TEM圖 [22] 15 圖 1 16 高分子薄膜連續成膜工程 (上)Solvent-casting (下)Hot melt extrusion [23] 16 圖 1 17 常見聚氨酯合成用之二異氰酸酯 [25] 18 圖 1 18 常見聚氨酯合成用之二醇類 [25] 18 圖 1 19 常見之鏈延伸劑與中和劑 [26] 19 圖 1 20 水性聚氨酯分散液之合成示意圖 [27] 19 圖 1 21 水性聚氨酯於溶液中之排列示意圖 [29] 20 圖 1 22 聚氨酯生物降解實驗結果 [30] 21 圖 1 23 液滴乾燥引發之徑向裂紋[33] 22 圖 1 24 咖啡環效應示意圖 [37] 23 圖 1 25 液滴乾燥之流平效應 [34] 23 圖 1 26 0.6wt%纖維素奈米纖維水溶液添加不同界面活性劑8wt%後之結果 24 圖 1 27 纖維素與檸檬酸之交聯反應示意圖 [39] 25 圖 2 1 透明包裝薄膜溶液配置示意圖 28 圖 2 2 透明包裝薄膜刮刀塗佈流程 29 圖 2 3 TOCNF/WPU透明薄膜表面加工示意圖 30 圖 3 1 1.1wt% TEMPO氧化纖維素奈米纖維溶液於不同功率下震盪15分鐘後之流變性值分析 32 圖 3 2 (a)未經超音波震盪之TOCNF1.1wt%水溶液於培養皿中之外觀與其濃縮後之溶液流動性變化圖,右下為其成膜後產生之收困氣泡 (b)經160W超音波震盪之TOCNF1.1wt%水溶液於培養皿中之外觀與其濃縮後之溶液流動性變化圖 32 圖 3 3 經不同功率震盪15分鐘之TOCNF 1.1wt%溶液乾燥而成之薄膜密度比較圖 33 圖 3 4未經超音波震盪之TOCNF薄膜經AFM所得出之3D表面圖以及粗糙度分析 34 圖 3 5 經超音波160W震盪15分鐘之TOCNF薄膜經AFM所得出之3D表面圖以及粗糙度分析 35 圖 3 6 厚度為30μm 之薄膜 (a) u-TOCNF/WPU質量比9:1之乾燥薄膜離圖案5cm之圖形 (b) u-TOCNF/WPU質量比1:1之乾燥薄膜離圖案5cm之圖形 (c) u-TOCNF/WPU複合薄膜於不同質量比之穿透度比較。 36 圖 3 7 純u-TOCNF與質量比9:1之u-TOCNF/WPU薄膜拉伸性分析 37 圖 3 8 厚度30μm不同質量比之u-TOCNF/WPU溶液在添加與不添加TritonX-100後之乾燥薄膜穿透度 38 圖 3 9 厚度30μm不同質量比之u-TOCNF/WPU溶液在添加與不添加TritonX-100後之乾燥薄膜霧度 39 圖 3 10 u-TOCNF/WPU質量比9:1之混合(a)未添加TritonX-100 (b)添加0.1wt% TritonX-100 之乾燥薄膜離圖案5cm之圖形 (c)添加對於水性聚氨酯於混合液中之影響示意圖 39 圖 3 11 純u-TOCNF;質量比9:1之u-TOCNF/WPU;質量比9:1之u-TOCNF/WPU添加0.1wt%TritonX-100乾燥薄膜拉伸性分析 40 圖 3 12 u-TOCNF/WPU 質量比9:1之混合液添加0.1%TritonX-100前後於相同邊界滴入30μL溶液隨時間之質量變化圖 41 圖 3 13 不同之量比之u-TOCNF/WPU混合液相同體積相同面積下之乾燥速率;右上圖為該邊界固定乾燥實驗示意圖。 42 圖 3 14 (左) 純u-TOCNF溶液乾燥薄膜 (中) u-TOCNF/WPU質量比9:1溶液乾燥薄膜 (右) u-TOCNF/WPU 質量比9:1添加0.1wt%之TritonX-100之溶液乾燥薄膜 43 圖 3 15 TOCNF於檸檬酸水溶液中之酯化交聯反應 44 圖 3 16 檸檬酸化TOCNF於乙醇中之再酯化反應 45 圖 3 17 TOCNF二次酯化反應示意圖 45 圖 3 18 u-TOCNF/WPUt 溶液塗佈於玻片之上後 (左)靜置 (中)浸泡於檸檬酸水溶液後以去離子水潤洗烘乾 (右) 浸泡於檸檬酸水溶液後以去離子水潤洗後再浸泡於乙醇中後烘乾 45 圖 3 19 u-TOCNF/WPU薄膜一次酯化(E1)與二次酯化(E2)反應之FTIR分析圖 46 圖 4 1 Pure u-TOCNF薄膜乾燥後之表面裂紋現象 48 圖 4 2 包裝薄膜阻水性實驗 49 圖 4 3 包裝薄膜阻油性實驗 49 圖 4 4 純u-TOCNF;質量比9:1之u-TOCNF/WPU;質量比9:1之u-TOCNF/WPU添加0.1wt%TritonX-100;u-TOCNF/WPUt-c乾燥薄膜拉伸性分析 50 圖 4 5 包裝薄膜放置穩定性實驗 51 圖 4 6 u-TOCNF/WPUt-c包裝膜靜置一週後前後照各項性值比較 52 圖 4 7 u-TOCNF/WPUt-c 與純水性聚氨酯薄膜之DSC分析圖 53 圖 4 8 (左)以刮刀塗佈法製程之A4 u-TOCNF/WPUt-c薄膜 (右) u-TOCNF/WPUt-c 薄膜之折紙容器填裝水與油 54 圖 4 9 包裝薄膜應用於香蕉包裝 55 表目錄 表 1 1 可生物降解高分子之特性與包裝上之應用[11] 9 表 1 2 聚氨酯降解實驗原料 [30] 21 表 2 1 實驗藥品與材料 26 表 2 2 實驗儀器 27 表 2 3 TOCNF/WPU溶液配置表 28 表 4 1 包裝薄膜OTR,WVTR數值表 47 表 4 2 可降解食品包裝薄膜之性質比較表 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 酯化反應 | zh_TW |
| dc.subject | 大規模刮刀塗佈製程 | zh_TW |
| dc.subject | 生物可降解塑膠 | zh_TW |
| dc.subject | 大規模刮刀塗佈製程 | zh_TW |
| dc.subject | 阻隔膜 | zh_TW |
| dc.subject | 酯化反應 | zh_TW |
| dc.subject | 阻隔膜 | zh_TW |
| dc.subject | 生物可降解塑膠 | zh_TW |
| dc.subject | 食品包裝 | zh_TW |
| dc.subject | 食品包裝 | zh_TW |
| dc.subject | Biodegradable plastics | en |
| dc.subject | Large-scale blade coating process | en |
| dc.subject | Esterification | en |
| dc.subject | Barrier film | en |
| dc.subject | Food Packaging | en |
| dc.subject | Food Packaging | en |
| dc.subject | Barrier film | en |
| dc.subject | Esterification | en |
| dc.subject | Large-scale blade coating process | en |
| dc.subject | Biodegradable plastics | en |
| dc.title | TEMPO氧化纖維素奈米纖維/水性聚氨酯複合透明包裝薄膜之製程及應用 | zh_TW |
| dc.title | Fabrication and Application of TEMPO-oxidized Cellulose Nanofiber/Waterborne Polyurethane Composite Packaging Film | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張豐丞;童世煌;闕居振 | zh_TW |
| dc.contributor.oralexamcommittee | Feng-Cheng Chang;Shih-Huang Tung;Chu-Chen Chueh | en |
| dc.subject.keyword | 生物可降解塑膠,大規模刮刀塗佈製程,酯化反應,阻隔膜,食品包裝, | zh_TW |
| dc.subject.keyword | Biodegradable plastics,Large-scale blade coating process,Esterification,Barrier film,Food Packaging, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202202329 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-08-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-110-2.pdf Restricted Access | 4.25 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
