請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83683
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭如忠 | zh_TW |
dc.contributor.advisor | Ru-Jong Jeng | en |
dc.contributor.author | 陳俐帆 | zh_TW |
dc.contributor.author | Li-Fan Chen | en |
dc.date.accessioned | 2023-03-19T21:14:08Z | - |
dc.date.available | 2023-12-27 | - |
dc.date.copyright | 2022-08-26 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | (1) Agenda, I. The New Plastics Economy Rethinking the future of plastics. In The World Economic Forum: Geneva, Switzerland, 2016; p 36. (2) Hansen, W.; Christopher, M.; Verbuecheln, M. EU waste policy and challenges for regional and local authorities. Ecological Institute for International and European Environmental Policy: Berlin, Germany 2002. (3) Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences 2009, 364 (1526), 2115-2126. (4) Lord, R. Plastics and sustainability: a valuation of environmental benefits, costs and opportunities for continuous Improvement. Trucost is an affiliate of S&P Global Market Intelligence (2020 S&P Trucost Limited, an affiliate of S&P Global Market Intelligence) 2016. (5) Chidepatil, A.; Bindra, P.; Kulkarni, D.; Qazi, M.; Kshirsagar, M.; Sankaran, K. From Trash to Cash: How Blockchain and Multi-Sensor-Driven Artificial Intelligence Can Transform Circular Economy of Plastic Waste? Administrative Sciences 2020, 10 (2), 23. (6) Siskova, A. O.; Peer, P.; Andicsova, A. E.; Jordanov, I.; Rychter, P. Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications. Materials (Basel) 2021, 14 (16). DOI: 10.3390/ma14164694 From NLM PubMed-not-MEDLINE. (7) Geyer, R. A Brief History of Plastics. In Mare Plasticum - The Plastic Sea: Combatting Plastic Pollution Through Science and Art, Streit-Bianchi, M., Cimadevila, M., Trettnak, W. Eds.; Springer International Publishing, 2020; pp 31-47. (8) Lange, J.-P. Managing Plastic Waste─Sorting, Recycling, Disposal, and Product Redesign. ACS Sustainable Chemistry & Engineering 2021, 9 (47), 15722-15738. DOI: 10.1021/acssuschemeng.1c05013. (9) Šišková, A. O.; Peer, P.; Andicsová, A. E.; Jordanov, I.; Rychter, P. Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications. Materials 2021, 14 (16), 4694. (10) ASTM, D. 6400-99 (1976) Standard specification for compostable plastics, annual book of standards. ASTM, Philadelphia. (11) Singh, N.; Hui, D.; Singh, R.; Ahuja, I.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering 2017, 115, 409-422. (12) Vollmer, I.; Jenks, M. J.; Roelands, M. C.; White, R. J.; van Harmelen, T.; de Wild, P.; van Der Laan, G. P.; Meirer, F.; Keurentjes, J. T.; Weckhuysen, B. M. Beyond mechanical recycling: Giving new life to plastic waste. Angewandte Chemie International Edition 2020, 59 (36), 15402-15423. (13) Coates, G. W.; Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials 2020, 5 (7), 501-516. DOI: 10.1038/s41578-020-0190-4. (14) Okan, M.; Aydin, H. M.; Barsbay, M. Current approaches to waste polymer utilization and minimization: a review. Journal of Chemical Technology & Biotechnology 2019, 94 (1), 8-21. DOI: 10.1002/jctb.5778. (15) Anastas, P. T.; Warner, J. C. Principles of green chemistry. Green chemistry: Theory and practice 1998, 29. (16) Tang, S. L. Y.; Smith, R. L.; Poliakoff, M. Principles of green chemistry: PRODUCTIVELY. Green Chemistry 2005, 7 (11), 761-762, 10.1039/B513020B. DOI: 10.1039/B513020B. (17) Delpech, M. C.; Coutinho, F. M.; Habibe, M. E. S. Bisphenol A-based polycarbonates: characterization of commercial samples. Polymer testing 2002, 21 (2), 155-161. (18) Artham, T.; Doble, M. Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 2008, 8 (1), 14-24. DOI: 10.1002/mabi.200700106 From NLM Medline. (19) Wehrmann, R. Polycarbonate. In Encyclopedia of Materials: Science and Technology, Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., Veyssière, P. Eds.; Elsevier, 2001; pp 7149-7151. Fox, D. W. Aromatic carbonate resins and preparation thereof. Google Patents: 1964. (20) Krimm, H.; Schnell, H.; Bottenbruch, L. Thermoplastic aromatic polycarbonates and their manufacture. Bayer Ag, assignee. Patent US 1962, 3028365. (21) Antonakou, E. V.; Achilias, D. S. Recent Advances in Polycarbonate Recycling: A Review of Degradation Methods and Their Mechanisms. Waste and Biomass Valorization 2012, 4 (1), 9-21. DOI: 10.1007/s12649-012-9159-x. (22) Kuczynski, J.; Snyder, R. W.; Podolak, P. P. Physical property retention of PC/ABS blends. Polymer Degradation and Stability 1994, 43 (2), 285-291. (23) Chiu, S.-J.; Chen, S.-H.; Tsai, C.-T. Effect of metal chlorides on thermal degradation of (waste) polycarbonate. Waste Management 2006, 26 (3), 252-259. DOI: https://doi.org/10.1016/j.wasman.2005.03.003. (24) Fukuoka, S. Non-Phosgene Polycarbonate from CO2-Industrialization of Green Chemical Process; Nova Science Publishers, Incorporated, 2012. (25) Fukuoka, S.; Tojo, M.; Hachiya, H.; Aminaka, M.; Hasegawa, K. Green and sustainable chemistry in practice: development and industrialization of a novel process for polycarbonate production from CO2 without using phosgene. Polymer journal 2007, 39 (2), 91-114. (26) Fukuoka, S.; Watanabe, T.; Dozono, T. Process for preparing crystallized aromatic polycarbonate and crystallized aromatic polycarbonate obtained by the process. Patent NumberEP 0338085 1989. Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO 2 as starting material. Green Chemistry 2003, 5 (5), 497-507. (27) Fukuoka, S.; Fukawa, I.; Adachi, T.; Fujita, H.; Sugiyama, N.; Sawa, T. Industrialization and Expansion of Green Sustainable Chemical Process: A Review of Non-phosgene Polycarbonate from CO2. Organic Process Research & Development 2019, 23 (2), 145-169. DOI: 10.1021/acs.oprd.8b00391. (28) Westhues, S.; Idel, J.; Klankermayer, J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Science Advances 4 (8), eaat9669. DOI: 10.1126/sciadv.aat9669 (acccessed 2022/07/20). Do, T.; Baral, E. R.; Kim, J. G. Chemical recycling of poly(bisphenol A carbonate): 1,5,7-Triazabicyclo[4.4.0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. Polymer 2018, 143, 106-114. DOI: https://doi.org/10.1016/j.polymer.2018.04.015. Lin, C.-H.; Lin, H.-Y.; Liao, W.-Z.; Dai, S. A. Novel chemical recycling of polycarbonate (PC) waste into bis-hydroxyalkyl ethers of bisphenol A for use as PU raw materials. Green Chemistry 2007, 9 (1), 38-43, 10.1039/B609638G. DOI: 10.1039/B609638G. Artham, T.; Doble, M. Biodegradation of Aliphatic and Aromatic Polycarbonates. Macromolecular Bioscience 2008, 8 (1), 14-24. DOI: https://doi.org/10.1002/mabi.200700106. (29) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci Adv 2017, 3 (7), e1700782. DOI: 10.1126/sciadv.1700782 (acccessed 2022/07/20). From NLM PubMed-not-MEDLINE. (30) Kim, J. G. Chemical recycling of poly(bisphenol A carbonate). Polymer Chemistry 2020, 11 (30), 4830-4849, 10.1039/C9PY01927H. DOI: 10.1039/C9PY01927H. (31) Eguiazabal, J.; Nazabal, J. Reprocessing polycarbonate/acrylonitrile‐butadiene‐styrene blends: Influence on physical properties. Polymer Engineering & Science 1990, 30 (9), 527-531. (32) Sanchez, P.; Remiro, P.; Nazabal, J. Influence of reprocessing on the mechanical properties of a commercial polysulfone/polycarbonate blend. Polymer Engineering & Science 1992, 32 (13), 861-867. (33) Day, M.; Cooney, J. D.; Touchette-Barrette, C.; Sheehan, S. E. Pyrolysis of mixed plastics used in the electronics industry. Journal of Analytical and Applied Pyrolysis 1999, 52 (2), 199-224. DOI: https://doi.org/10.1016/S0165-2370(99)00045-5. Siddiqui, M. N.; Redhwi, H. H.; Antonakou, E. V.; Achilias, D. S. Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment. Journal of Analytical and Applied Pyrolysis 2018, 132, 123-133. DOI: https://doi.org/10.1016/j.jaap.2018.03.008. (34) Davis, A.; Golden, J. H. Thermal rearrangement of diphenyl carbonate. Journal of the Chemical Society B: Physical Organic 1968, (0), 40-45, 10.1039/J29680000040. DOI: 10.1039/J29680000040. (35) Cooper, G. D.; Williams, B. Hydrolysis of Simple Aromatic Esters and Carbonates. The Journal of Organic Chemistry 1962, 27 (10), 3717-3720. DOI: 10.1021/jo01057a529. (36) Tagaya, H.; Katoh, K.; Kadokawa, J.-i.; Chiba, K. Decomposition of polycarbonate in subcritical and supercritical water. Polymer Degradation and Stability 1999, 64 (2), 289-292. DOI: https://doi.org/10.1016/S0141-3910(98)00204-3. (37) Hong, M.; Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry 2017, 19 (16), 3692-3706, 10.1039/C7GC01496A. DOI: 10.1039/C7GC01496A. (38) Hu, L.-C.; Oku, A.; Yamada, E. Alkali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate. Polymer 1998, 39 (16), 3841-3845. DOI: https://doi.org/10.1016/S0032-3861(97)10298-1. (39) Oku, A.; Tanaka, S.; Hata, S. Chemical conversion of poly(carbonate) to bis(hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers. Polymer 2000, 41 (18), 6749-6753. DOI: https://doi.org/10.1016/S0032-3861(00)00014-8. (40) Hata, S.; Goto, H.; Yamada, E.; Oku, A. Chemical conversion of poly(carbonate) to 1,3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer 2002, 43 (7), 2109-2116. DOI: https://doi.org/10.1016/S0032-3861(01)00800-X. (41) Wu, C.-H.; Chen, L.-Y.; Jeng, R.-J.; Dai, S. A. 100% Atom-Economy Efficiency of Recycling Polycarbonate into Versatile Intermediates. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8964-8975. DOI: 10.1021/acssuschemeng.8b01326. (42) Huang, Y.-C.; Huang, Y.-H.; Chen, L.-Y.; Dai, C.-A.; Dai, S. A.; Chen, Y.-H.; Wu, C.-H.; Jeng, R.-J. Robust thermoplastic polyurethane elastomers prepared from recycling polycarbonate. Polymer 2021, 212. DOI: 10.1016/j.polymer.2020.123296. (43) Musioł, M.; Rydz, J.; Sikorska, W.; Rychter, P.; Kowalczuk, M. A preliminary study of the degradation of selected commercial packaging materials in compost and aqueous environments. Polish Journal of Chemical Technology 2011, 13 (1), 55-57. DOI: doi:10.2478/v10026-011-0011-z. Sikorska, W.; Dacko, P.; Sobota, M.; Rydz, J.; Musioł, M.; Kowalczuk, M. Degradation Study of Polymers from Renewable Resources and their Compositions in Industrial Composting Pile. Macromolecular Symposia 2008, 272 (1), 132-135. DOI: https://doi.org/10.1002/masy.200851219. (44) van der Zee, M. Structure-biodegradability relationships of polymeric materials. 1997. (45) Seal, K. Chemistry and technology of biodegradable polymers. Blackie, Glasgow 1994, 116-134. (46) Jothimani, B.; Venkatachalapathy, B.; Karthikeyan, N. S.; Ravichandran, C. A Review on Versatile Applications of Degradable Polymers. In Green Biopolymers and their Nanocomposites, Gnanasekaran, D. Ed.; Springer Singapore, 2019; pp 403-422. (47) Gross, R. A.; Kalra, B. Biodegradable Polymers for the Environment. Science 2002, 297 (5582), 803-807. DOI: 10.1126/science.297.5582.803 (acccessed 2022/07/20). (48) Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research 2020, 3 (1), 27-35. DOI: 10.1016/j.aiepr.2019.11.002. (49) Luckachan, G. E.; Pillai, C. K. S. Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment 2011, 19 (3), 637-676. DOI: 10.1007/s10924-011-0317-1. (50) Plota, A.; Masek, A. Lifetime Prediction Methods for Degradable Polymeric Materials—A Short Review. Materials 2020, 13 (20), 4507. (51) Ramesh, M.; Muthukrishnan, M. 25 - Biodegradable polymer blends and composites for food-packaging applications. In Biodegradable Polymers, Blends and Composites, Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S., Ramesh, M. Eds.; Woodhead Publishing, 2022; pp 693-716. (52) Yin, G.-Z.; Yang, X.-M. Biodegradable polymers: a cure for the planet, but a long way to go. Journal of Polymer Research 2020, 27 (2). DOI: 10.1007/s10965-020-2004-1. (53) Satti, S. M.; Shah, A. A. Polyester-based biodegradable plastics: an approach towards sustainable development. Lett Appl Microbiol 2020, 70 (6), 413-430. DOI: 10.1111/lam.13287 From NLM Medline. (54) Yin, G.-Z.; Yang, X.-M. Biodegradable polymers: a cure for the planet, but a long way to go. Journal of Polymer Research 2020, 27 (2), 38. DOI: 10.1007/s10965-020-2004-1. (55) Satti, S. M.; Shah, A. A. Polyester-based biodegradable plastics: an approach towards sustainable development. Letters in Applied Microbiology 2020, 70 (6), 413-430. DOI: https://doi.org/10.1111/lam.13287. (56) Natta, F. J. v.; Hill, J. W.; Carothers, W. H. Studies of polymerization and ring formation. XXIII. 1 ε-Caprolactone and its polymers. Journal of the American Chemical Society 1934, 56 (2), 455-457. (57) Nair, L. S.; Laurencin, C. T. Biodegradable polymers as biomaterials. Progress in Polymer Science 2007, 32 (8), 762-798. DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017. (58) Sardon, H.; Mecerreyes, D.; Basterretxea, A.; Avérous, L.; Jehanno, C. From Lab to Market: Current Strategies for the Production of Biobased Polyols. ACS Sustainable Chemistry & Engineering 2021, 9 (32), 10664-10677. DOI: 10.1021/acssuschemeng.1c02361. (59) Labet, M.; Thielemans, W. Synthesis of polycaprolactone: a review. Chemical Society Reviews 2009, 38 (12), 3484-3504, 10.1039/B820162P. DOI: 10.1039/B820162P. (60) Braud, C.; Devarieux, R.; Atlan, A.; Ducos, C.; Michel, V. Capillary zone electrophoresis in normal or reverse polarity separation modes for the analysis of hydroxy acid oligomers in neutral phosphate buffer. Journal of Chromatography B: Biomedical Sciences and Applications 1998, 706 (1), 73-82. DOI: https://doi.org/10.1016/S0378-4347(97)00468-4. (61) Stridsberg, K. M.; Ryner, M.; Albertsson, A.-C. Controlled Ring-Opening Polymerization: Polymers with designed Macromolecular Architecture. In Degradable Aliphatic Polyesters, Springer Berlin Heidelberg, 2002; pp 41-65. (62) Khanna, A.; Sudha, Y. S.; Pillai, S.; Rath, S. S. Molecular modeling studies of poly lactic acid initiation mechanisms. Journal of Molecular Modeling 2008, 14 (5), 367-374. DOI: 10.1007/s00894-008-0278-z. (63) Dubois, P.; Coulembier, O.; Raquez, J.-M. Handbook of ring-opening polymerization; John Wiley & Sons, 2009. (64) Labet, M.; Thielemans, W. Synthesis of polycaprolactone: a review. Chem Soc Rev 2009, 38 (12), 3484-3504. DOI: 10.1039/b820162p From NLM Medline. (65) Cama, G.; Mogosanu, D. E.; Houben, A.; Dubruel, P. Synthetic biodegradable medical polyesters. In Science and Principles of Biodegradable and Bioresorbable Medical Polymers, 2017; pp 79-105. (66) Woodward, S. C.; Brewer, P. S.; Moatamed, F.; Schindler, A.; Pitt, C. G. The intracellular degradation of poly(ε-caprolactone). Journal of Biomedical Materials Research 1985, 19 (4), 437-444. DOI: https://doi.org/10.1002/jbm.820190408. (67) Hayashi, T. Biodegradable polymers for biomedical uses. Progress in Polymer Science 1994, 19 (4), 663-702. DOI: https://doi.org/10.1016/0079-6700(94)90030-2. (68) Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science 2010, 35 (10), 1217-1256. DOI: 10.1016/j.progpolymsci.2010.04.002. (69) Woodward, S. C.; Brewer, P.; Moatamed, F.; Schindler, A.; Pitt, C. The intracellular degradation of poly (ε‐caprolactone). Journal of biomedical materials research 1985, 19 (4), 437-444. (70) Menei, P.; Croue, A.; Daniel, V.; Pouplard‐Barthelaix, A.; Benoit, J. Fate and biocompatibility of three types of microspheres implanted into the brain. Journal of biomedical materials research 1994, 28 (9), 1079-1085. (71) Lam, C. X.; Hutmacher, D. W.; Schantz, J. T.; Woodruff, M. A.; Teoh, S. H. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2009, 90 (3), 906-919. (72) Lam, C. X.; Teoh, S. H.; Hutmacher, D. W. Comparison of the degradation of polycaprolactone and polycaprolactone–(β‐tricalcium phosphate) scaffolds in alkaline medium. Polymer international 2007, 56 (6), 718-728. (73) Sinha, V. R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics 2004, 278 (1), 1-23. DOI: https://doi.org/10.1016/j.ijpharm.2004.01.044. (74) Frazza, E.; Schmitt, E. A new absorbable suture. Journal of biomedical materials research 1971, 5 (2), 43-58. (75) Middleton, J. C.; Tipton, A. J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21 (23), 2335-2346. (76) Cha, Y.; Pitt, C. G. A one-week subdermal delivery system for l-methadone based on biodegradable microcapsules. Journal of Controlled Release 1988, 7 (1), 69-78. DOI: https://doi.org/10.1016/0168-3659(88)90082-X. (77) Ng, K. W.; Achuth, H. N.; Moochhala, S.; Lim, T. C.; Hutmacher, D. W. In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J Biomater Sci Polym Ed 2007, 18 (7), 925-938. DOI: 10.1163/156856207781367693 From NLM Medline. (78) Jones, D. S.; Djokic, J.; McCoy, C. P.; Gorman, S. P. Poly(ε-caprolactone) and poly(ε-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro. Biomaterials 2002, 23 (23), 4449-4458. DOI: https://doi.org/10.1016/S0142-9612(02)00158-8. (79) Dasaratha Dhanaraju, M.; Gopinath, D.; Rafiuddin Ahmed, M.; Jayakumar, R.; Vamsadhara, C. Characterization of polymeric poly (ϵ‐caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2006, 76 (1), 63-72. (80) Sun, H.; Mei, L.; Song, C.; Cui, X.; Wang, P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006, 27 (9), 1735-1740. (81) Ma, G.; Song, C.; Sun, H.; Yang, J.; Leng, X. A biodegradable levonorgestrel-releasing implant made of PCL/F68 compound as tested in rats and dogs. Contraception 2006, 74 (2), 141-147. DOI: 10.1016/j.contraception.2006.02.013 From NLM Medline. (82) Kulkarni, R.; Pani, K.; Neuman, C.; Leonard, F. Polylactic acid for surgical implants. Archives of surgery 1966, 93 (5), 839-843. (83) Miner, M. R.; Berzins, D. W.; Bahcall, J. K. A comparison of thermal properties between gutta-percha and a synthetic polymer based root canal filling material (Resilon). Journal of Endodontics 2006, 32 (7), 683-686. (84) Alani, A.; Knowles, J. C.; Chrzanowski, W.; Ng, Y.-L.; Gulabivala, K. Ion release characteristics, precipitate formation and sealing ability of a phosphate glass–polycaprolactone-based composite for use as a root canal obturation material. Dental Materials 2009, 25 (3), 400-410. DOI: https://doi.org/10.1016/j.dental.2008.10.010. (85) Thomas, V.; Jose, M. V.; Chowdhury, S.; Sullivan, J. F.; Dean, D. R.; Vohra, Y. K. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Sci Polym Ed 2006, 17 (9), 969-984. DOI: 10.1163/156856206778366022 From NLM Medline. (86) Li, W. J.; Chiang, H.; Kuo, T. F.; Lee, H. S.; Jiang, C. C.; Tuan, R. S. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 2009, 3 (1), 1-10. DOI: 10.1002/term.127 From NLM Medline. (87) Kazimoğlu, C.; Bölükbaşi, S.; Kanatli, U.; Senköylü, A.; Altun, N. S.; Babaç, C.; Yavuz, H.; Pişkin, E. A novel biodegradable PCL film for tendon reconstruction: Achilles tendon defect model in rats. Int J Artif Organs 2003, 26 (9), 804-812. PubMed. (88) van Lieshout, M. I.; Vaz, C. M.; Rutten, M. C.; Peters, G. W.; Baaijens, F. P. Electrospinning versus knitting: two scaffolds for tissue engineering of the aortic valve. J Biomater Sci Polym Ed 2006, 17 (1-2), 77-89. DOI: 10.1163/156856206774879153 From NLM Medline. (89) Dai, N. T.; Yeh, M. K.; Chiang, C. H.; Chen, K. C.; Liu, T. H.; Feng, A. C.; Chao, L. L.; Shih, C. M.; Sytwu, H. K.; Chen, S. L.; et al. Human single-donor composite skin substitutes based on collagen and polycaprolactone copolymer. Biochem Biophys Res Commun 2009, 386 (1), 21-25. DOI: 10.1016/j.bbrc.2009.05.123 From NLM Medline. (90) Chen, S.-W.; Yang, J.-H.; Huang, Y.-C.; Chiu, F.-C.; Wu, C.-H.; Jeng, R.-J. A facile strategy to achieve polyurethane vitrimers from chemical recycling of poly(carbonate). Chemical Engineering Journal Advances 2022, 11. DOI: 10.1016/j.ceja.2022.100316. (91) Seoane Rivero, R.; Bilbao Solaguren, P.; Gondra Zubieta, K.; Gonzalez-Jimenez, A.; Valentin, J. L.; Marcos-Fernandez, A. Synthesis and characterization of a photo-crosslinkable polyurethane based on a coumarin-containing polycaprolactone diol. European Polymer Journal 2016, 76, 245-255. DOI: https://doi.org/10.1016/j.eurpolymj.2016.01.047. (92) Storey, R. F.; Sherman, J. W. Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone. Macromolecules 2002, 35 (5), 1504-1512. (93) Zhang, L.; Zhou, F.; Li, Z.; Liu, B.; Yan, R.; Li, J.; Hu, Y.; Zhang, C.; Luo, Z.; Guo, K. Tunable hydantoin and base binary organocatalysts in ring-opening polymerizations. Polymer Chemistry 2020, 11 (35), 5669-5680, 10.1039/D0PY00812E. DOI: 10.1039/D0PY00812E. (94) Massoumi, B.; Ramezani, M.; Jaymand, M.; Ahmadinejad, M. Multi-walled carbon nanotubes-g-[poly(ethylene glycol)-b-poly(ε-caprolactone)]: synthesis, characterization, and properties. Journal of Polymer Research 2015, 22. DOI: 10.1007/s10965-015-0863-7. (95) Chen, C.; Liu, F.; Zhang, X.; Zhao, Z.; Liu, S. Fabrication, characterization and adsorption properties of cucurbit[7]uril-functionalized polycaprolactone electrospun nanofibrous membranes. Beilstein Journal of Organic Chemistry 2019, 15, 992-999. DOI: 10.3762/bjoc.15.97. (96) Larson, R. G. Combinatorial Rheology of Branched Polymer Melts. Macromolecules 2001, 34 (13), 4556-4571. DOI: 10.1021/ma000700o. (97) Wagner, M. H. The Rheology of Linear and Long-chain Branched Polymer Melts. Macromolecular Symposia 2006, 236 (1), 219-227, https://doi.org/10.1002/masy.200690058. DOI: https://doi.org/10.1002/masy.200690058 (acccessed 2022/07/19). (98) Snijkers, F.; Pasquino, R.; Olmsted, P. D.; Vlassopoulos, D. Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers. Journal of Physics: Condensed Matter 2015, 27 (47), 473002. DOI: 10.1088/0953-8984/27/47/473002. Simon, P. F. W.; Müller, A. H. E.; Pakula, T. Characterization of Highly Branched Poly(methyl methacrylate) by Solution Viscosity and Viscoelastic Spectroscopy. Macromolecules 2001, 34 (6), 1677-1684. DOI: 10.1021/ma0014766. (99) Skarja, G. A.; Woodhouse, K. A. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. Journal of Applied Polymer Science 2000, 75 (12), 1522-1534. DOI: https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1522::AID-APP11>3.0.CO;2-A. (100) Carrillo-Castillo, T. D.; Luna-Velasco, A.; Zaragoza-Contreras, E. A.; Castro-Carmona, J. S. Thermosensitive hydrogel for in situ-controlled methotrexate delivery. e-Polymers 2021, 21 (1), 910-920. DOI: doi:10.1515/epoly-2021-0085. (101) Kim, H. J.; Reddi, Y.; Cramer, C. J.; Hillmyer, M. A.; Ellison, C. J. Readily Degradable Aromatic Polyesters from Salicylic Acid. ACS Macro Lett 2020, 9 (1), 96-102. DOI: 10.1021/acsmacrolett.9b00890 From NLM PubMed-not-MEDLINE. (102) Erdal, N. B.; Lando, G. A.; Yadav, A.; Srivastava, R. K.; Hakkarainen, M. Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating. Polymers 2020, 12 (8), 1849. (103) Majidnia, E.; Ahmadian, M.; Salehi, H.; Amirpour, N. Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Scientific Reports 2022, 12 (1), 6469. DOI: 10.1038/s41598-022-09957-5. (104) Juan, P.-K.; Fan, F.-Y.; Lin, W.-C.; Liao, P.-B.; Huang, C.-F.; Shen, Y.-K.; Ruslin, M.; Lee, C.-H. Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds. Polymers 2021, 13 (16), 2718. (105) Abrisham, M.; Noroozi, M.; Panahi-Sarmad, M.; Arjmand, M.; Goodarzi, V.; Shakeri, Y.; Golbaten-Mofrad, H.; Dehghan, P.; Seyfi Sahzabi, A.; Sadri, M.; et al. The role of polycaprolactone-triol (PCL-T) in biomedical applications: A state-of-the-art review. European Polymer Journal 2020, 131, 109701. DOI: https://doi.org/10.1016/j.eurpolymj.2020.109701. (106) Hernández, A. R.; Contreras, O.; Acevedo, J. C.; Guadalupe, L.; Moreno, N. Poly(ε-caprolactone) Degradation Under Acidic and Alkaline Conditions. 2013. (107) Huang, M.-H.; Coudane, J.; Li, S.; Vert, M. Methylated and pegylated PLA–PCL–PLA block copolymers via the chemical modification of di-hydroxy PCL combined with the ring opening polymerization of lactide. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (18), 4196-4205. DOI: https://doi.org/10.1002/pola.20870. (108) Ponjavic, M.; Nikolic, M. S.; Nikodinovic-Runic, J.; Jeremic, S.; Stevanovic, S.; Djonlagic, J. Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. Polymer Testing 2017, 57, 67-77. DOI: https://doi.org/10.1016/j.polymertesting.2016.11.018. (109) Ladelta, V.; Zapsas, G.; Gnanou, Y.; Hadjichristidis, N. A new tricrystalline triblock terpolymer by combining polyhomologation and ring-opening polymerization. synthesis and thermal properties. Journal of Polymer Science Part A: Polymer Chemistry 2019, 57 (24), 2450-2456. DOI: https://doi.org/10.1002/pola.29492. (110) Liu, J.; Liu, L. Ring-Opening Polymerization of ε-Caprolactone Initiated by Natural Amino Acids. Macromolecules 2004, 37 (8), 2674-2676. DOI: 10.1021/ma0348066. (111) Sanal, T.; Koçak, İ.; Hazer, B. Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polymer Bulletin 2017, 74. DOI: 10.1007/s00289-016-1757-5. (112) Ladelta, V.; Zapsas, G.; Gnanou, Y.; Nikos, H. A new tricrystalline triblock terpolymer by combining polyhomologation and ring‐opening polymerization. synthesis and thermal properties. Journal of Polymer Science Part A: Polymer Chemistry 2019, 57. DOI: 10.1002/pola.29492. (113) Limwanich, W.; Meepowpan, P.; Punyodom, W. Eco-friendly synthesis of biodegradable poly(ε-caprolactone) using L-lactic and glycolic acids as organic initiator. Polymer Bulletin 2021. DOI: 10.1007/s00289-020-03401-2. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83683 | - |
dc.description.abstract | 現今社會對於高分子的需求日漸增長,高分子對於現代社會經濟的發展帶來不可否認的好處,同樣的這些固體廢棄物也為環境帶來極大的影響,高分子在垃圾掩埋場和工業廢物中所佔的比例不斷增加。作為經濟持續增長和發展的產物,研究出如何將高分子材料有效再利用、回收的技術已是一項全球共同的挑戰。此外,由於近年來各國相關組織積極推動循環經濟,且基於綠色化學原則之理念,研究具有環境相容性的生物可降解高分子也被視為循環議題有利之解決方案。因此,本研究將同為廢棄物議題關注對象之聚碳酸酯材料,利用先前實驗室發表之胺解法將聚碳酸酯回收轉換之反應中間體,並透過開環聚合反應將生物可降解之聚己內酯軟段引入反應中間體,提高了高附加價值反應中間體之熱穩定性、再加工性等。生物降解高分子對於可持續性及環境友善的材料發展過程發揮了極為重要的作用,為傳統不可被生物降解的高分子提供了替代品。除此之外,為了符合綠色化學原則,本研究除了使用一鍋法以簡單方便的方式進行,更替換高效但對環境有害之金屬催化劑,建立一符合綠色化學原則之有機催化系統,此開環反應轉化率可達到97 %。最後也經由實驗證實,於反應中間體引入之聚己內酯軟鏈段與市售材料相比易於被脂肪酶降解,且降解前後之聚碳酸酯回收轉化聚酯多元醇皆符合國際標準規範ISO 10993對材料所制定之生物毒性標準。 | zh_TW |
dc.description.abstract | Nowadays, the demand for polymers is increasing day by day, and the benefit to socioeconomic is undeniable. However, these resultant solid wastes also have a great impact on the environment. Most of the polymers end up in landfills. The traditional linear economic system has a great negative impact on the environment. As polymer recycling involves many complex issues, research on how to recycle polymer waste has become a very important topic. It is a global challenge to research how to reuse and recycle polymer materials. The problem of everlasting solid waste is also one of the main driving forces for the development of biodegradable polymers. Biodegradable polymers play an extremely important role in the development of sustainable and environmentally friendly materials, providing alternatives to traditional non-biodegradable polymers. Research on biodegradable polymers with degradability and environmental compatibility can provide a solution to the current environmental issues. Among them, aliphatic polyesters are considered as biodegradable materials with great potential. In this study, the polycarbonate, which is also the focus of the waste issue, was recovered and converted into versatile intermediates with high added value by the aminolysis method. Subsequently, the biodegradable polycaprolactone soft segment was introduced into the polymer intermediates through the ring-opening polymerization reaction, which improved the thermal stability and reprocessability of the polymer intermediates. In order to comply with the principles of green chemistry, often used high-efficiency but environmentally harmful metal catalysts were replaced by a newly developed benign organic catalytic system, in addition to using the one-pot method in a facile manner. This robust environmentally friendly catalytic system revealed that the conversion rate of the ring-opening reaction could be as high as 97%. It is important to note that the introduced polyester soft segment could be degraded by lipase. Moreover, the degraded small molecules were capable of meeting the biotoxicity standards established by international standard ISO 10993 for materials. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:14:08Z (GMT). No. of bitstreams: 1 U0001-1208202203482900.pdf: 7452179 bytes, checksum: 653f071f6540a6ac1385bdf61ee4487e (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝-I 摘要-II Abstract-III 目錄-IV 圖目錄-VII 表目錄-X 壹、 緒論-1 貳、 文獻回顧-2 2.1 高分子與環境議題-2 2.2 綠色化學原則-6 2.3 聚碳酸酯-8 2.3.1 聚碳酸酯之簡介-8 2.3.2 聚碳酸酯回收方法-12 2.3.2.1 機械回收-12 2.3.2.2 熱分解回收方法-13 2.3.2.3 化學回收方法-13 2.4 生物可降解材料-17 2.4.1 生物降解的定義-17 2.4.2 生物可降解材料的種類-19 2.5 聚己內酯-22 2.5.1 聚酯多元醇之簡介-22 2.5.2 聚己內酯之簡介-22 2.5.3 聚己內酯之生物相容性-24 2.5.4 聚己內酯於生醫材料之研究-26 2.5.4.1 藥物輸送系統-26 2.5.4.2 醫療器材-26 2.5.4.3 組織工程-27 2.6 研究動機-28 參、 實驗-30 3.1 藥品與溶劑-30 3.2 實驗儀器-36 3.3 實驗流程圖-38 3.4 合成步驟-39 3.4.1 以己二胺消化聚碳酸酯-39 3.4.2 以雙酚A為起始劑研究開環聚合反應-39 3.4.3 以聚碳酸酯消化產物為起始劑進行開環聚合反應-40 3.4.4 小分子模型反應機制研究-41 3.4.4.1 合成己胺基甲酸苯酯 (Phenyl Hexylcarbamate, PHC)-41 3.4.4.2 以己胺基甲酸苯酯為起始劑研究開環聚合反應-42 3.5 生物降解實驗-43 3.6 細胞相容性測試-43 3.6.1 解凍細胞-43 3.6.2 細胞繼代培養-44 3.6.3 細胞計數-44 3.6.4 材料樣本與萃取液配置-45 3.6.5 細胞毒性測試-46 肆、 結果與討論-48 4.1 以己二胺消化聚碳酸酯之結構鑑定與探討-48 4.1.1 消化聚碳酸酯產物之結構鑑定-48 4.2 以雙酚A為起始劑研究開環聚合反應之結構鑑定與探討-51 4.2.1 催化劑及反應條件之選擇-51 4.3 以己內酯開環反應改質聚碳酸酯回收中間體之結構鑑定-55 4.3.1 聚碳酸酯回收轉化聚酯多元醇之FTIR光譜鑑定-56 4.3.2 聚碳酸酯回收轉化聚酯多元醇之核磁共振光譜鑑定-57 4.4 以小分子模型進行反應機制研究探討-59 4.4.1 合成氨基甲酸酯之結構鑑定與分析-59 4.4.2 以氨基甲酸酯進行模型反應之結構鑑定與分析-61 4.5 聚碳酸酯回收轉化聚酯多元醇之性質鑑定與探討-63 4.5.1 聚碳酸酯回收轉化聚酯多元醇之分子量分布及性質分析-63 4.5.2 聚碳酸酯回收轉化聚酯多元醇之黏度測試分析-65 4.5.3 聚酯多元醇之接觸角及吸水性測試分析-66 4.5.4 聚酯多元醇之溶解度測試分析-69 4.6 聚酯多元醇之熱性質鑑定與探討-70 4.6.1 TGA熱重分析-70 4.6.2 DSC微差掃描熱分析-71 4.7 聚碳酸酯回收轉化聚酯多元醇之生物降解性測試-75 4.8 聚碳酸酯回收轉化聚酯多元醇之生物相容性測試-79 4.8.1 催化系統之細胞毒性測試-80 4.8.2 降解小分子之細胞毒性測試-81 伍、 結論與未來展望-83 陸、 參考文獻-84 附錄-97 圖目錄 圖 2.1.1 1950-2014年全球塑膠產量-2 圖 2.1.2 2018年歐洲對於合成高分子廢棄物之處置方法佔比-3 圖 2.1.3 2015 年全球於各類合成高分子之生產百分比-3 圖 2.1.4 循環經濟的理想模型-4 圖 2.1.5 塑膠廢棄物的回收方式-5 圖 2.2.1 綠色化學12項原則(圖片來源:行政院環境保護所毒物及化學物質局)-7 圖 2.3.1 不同類型聚碳酸酯之性質與應用-8 圖 2.3.2 重要的脂肪族與芳香族聚碳酸酯結構-9 圖 2.3.3 聚碳酸酯的應用領域(圖片來源:三菱化學)-9 圖 2.3.4 2011年至2021年全球聚碳酸酯需求統計(圖片來源:Statista, Inc.)-10 圖 2.3.5 2016年全球聚碳酸酯產能(按生產商分列) (圖片來源:Statista, Inc.)-10 圖 2.3.6 光氣法製備PC之反應流程-11 圖 2.3.7 非光氣法製備PC之反應流程-11 圖 2.3.8 機械回收與化學回收之比較圖-12 圖 2.3.9 聚碳酸酯之熱分解反應-13 圖 2.3.10 聚碳酸酯之水解反應機制-14 圖 2.3.11 Oku等人研究之聚碳酸酯醇解反應機制圖-15 圖 2.3.12 Oku等人研究之聚碳酸酯胺解反應機制圖-15 圖 2.3.13 Wu等人經由回收PC反應中間體製備PU之流程圖-16 圖 2.3.14 Huang等人經由回收PC反應中間體製備PU之流程圖-16 圖 2.4.1 生物降解流程圖-18 圖 2.4.2 生物降解之圖解-19 圖 2.4.3 生物降解材料的分類-20 圖 2.4.4 生物降解材料的應用領域-20 圖 2.4.5 生物可降解材料與不可降解材料之示意圖-21 圖 2.5.1 不同種類的多元醇及其對應的可再生資源-22 圖 2.5.2 (a)陽離子開環聚合引發機制, (b)陰離子開環聚合引發機制, (c)配位開環聚合引發機制, (d)活性氫單體開環聚合引發機制-23 圖 2.5.3 聚己內酯開環聚合催化系統-23 圖 2.5.4 1990至2010年,聚己內酯在生醫材料或組織工程領域的發表量-24 圖 2.5.5 大鼠與兔子的聚己內酯支架長期相容性研究示意圖-25 圖 2.5.6 大鼠臨床前實驗-27 圖 2.5.7 根管治療實驗示意圖-27 圖 2.6.1 以一鍋法利用聚碳酸酯回收產物製備可降解之聚酯多元醇示意圖-29 圖 3.3.1 實驗流程圖-38 圖 3.4.1 以己二胺消化聚碳酸酯之反應圖-39 圖 3.4.2 以雙酚A為起始劑與不同催化劑反應之示意圖-40 圖 3.4.3 以聚碳酸酯消化產物為起始劑進行開環聚合之反應圖-41 圖 3.4.4 以己胺基甲酸苯酯為起始劑研究開環聚合反應之示意圖-42 圖 3.6.1 細胞代謝反應圖-46 圖 4.1.1 聚碳酸酯胺解機制圖-48 圖 4.1.2 以己二胺進行聚碳酸酯胺解之FTIR光譜圖-49 圖 4.1.3 以己二胺進行聚碳酸酯胺解之FTIR光譜圖(Zoom in 1000~2000)-49 圖 4.1.4 以己二胺進行聚碳酸酯胺解所得產物之1H-NMR光譜圖-50 圖 4.2.1 以雙酚A進行開環聚合之反應流程圖-51 圖 4.2.2 含氮雜環催化劑於DMSO中之PKa值-52 圖 4.2.3 以雙酚A為起始劑進行開環聚合之1H-NMR光譜圖-53 圖 4.2.4 以雙酚A為起始劑進行開環聚合之1H-NMR光譜圖-54 圖 4.2.5 以雙酚A為起始劑進行開環聚合之1H-NMR光譜圖-55 圖 4.3.1 以己內酯開環反應改質聚碳酸酯回收中間體-55 圖 4.3.2 聚碳酸酯回收轉化聚酯多元醇之FTIR光譜圖-56 圖 4.3.3 聚碳酸酯回收轉化聚酯多元醇與市售聚酯多元醇之FTIR光譜圖-57 圖 4.3.4 聚碳酸酯回收轉化聚酯多元醇之預期化學結構-57 圖 4.3.5 聚碳酸酯回收轉化聚酯多元醇(rD-16CL)之1H-NMR光譜圖-58 圖 4.3.6 聚碳酸酯回收轉化聚酯多元醇之化學鑑定結構-58 圖 4.4.1 以自主合成之小分子進行開環反應機制探討之示意圖-59 圖 4.4.2 小分子模型化合物己胺基甲酸苯酯(PHC)之合成反應式-59 圖 4.4.3 己胺基甲酸苯酯(PHC)之FTIR圖譜-60 圖 4.4.4己胺基甲酸苯酯(PHC)之1H-NMR圖譜-61 圖 4.4.5 以己胺基甲酸苯酯(PHC)作為起始劑進行開環反應之反應式-62 圖 4.4.6 以己胺基甲酸苯酯(PHC)作為起始劑進行開環反應之1H-NMR圖-62 圖 4.5.1市售聚己內酯樣品之THF-GPC分子量校正曲線-64 圖 4.5.2 聚酯多元醇之水接觸角圖 (a)空白玻璃基板,(b) DP-Carbamate,(c) rD-8CL,(d) rD-16CL,(e) rD-24CL,(f) rD-32CL,(g) rD-40CL-67 圖 4.6.1 聚酯多元醇材料之TGA圖-71 圖 4.6.2 聚酯多元醇材料之DSC圖(第一次升溫過程)-73 圖 4.6.3 聚酯多元醇材料之DSC圖(第一次降溫過程)-73 圖 4.6.4 聚酯多元醇材料之DSC圖(第二次升溫過程)-74 圖 4.6.5 聚酯多元醇材料之DSC圖(第二次升溫過程) (Zoom in -40~10 oC)-74 圖 4.7.1 Kim等人所發表之芳香族聚酯多元醇在酸性條件下的詳細降解機制-77 圖 4.7.2 聚碳酸酯回收轉化聚酯多元醇產物於去離子水中降解之重量損失變化曲線-78 圖 4.7.3 聚碳酸酯回收轉化聚酯多元醇產物於不含胰脂肪酶之磷酸鹽緩衝溶液中降解之重量損失變化曲線-78 圖 4.7.4 聚碳酸酯回收轉化聚酯多元醇產物於含胰脂肪酶之磷酸鹽緩衝溶液中降解之重量損失變化曲線-79 圖 4.8.1 rD-16CL樣品於不同催化系統下之細胞存活率比較圖-80 圖 4.8.2 rD-16CL樣品萃取液之細胞存活率圖-82 表目錄 表 3.4.1 雙酚A與環狀單體之開環反應配方表-40 表 3.4.2 聚酯多元醇合成配方表-41 表 3.6.1 ISO 10993-5規範之萃取時間及溫度條件-45 表 3.6.2 ISO 10993-12規範之材料萃取比例條件-45 表 4.2.1 雙酚A與環狀單體於不同催化劑下之反應結果-52 表 4.2.2 雙酚A與己內酯於不同含量DBU催化下之反應結果-54 表 4.5.1 THF-GPC量測市售聚己內酯分子量-64 表 4.5.2 聚碳酸酯回收轉化聚酯多元醇之分子量分布及性質表-65 表 4.5.3 聚碳酸酯回收轉化聚酯多元醇黏度量測結果-65 表 4.5.4 聚酯多元醇水接觸角量測結果-68 表 4.5.5 聚酯多元醇溶解度分析量測結果-70 表 4.6.1聚碳酸酯回收轉化聚酯多元醇之熱性質數據統整表-75 表 4.7.1聚碳酸酯回收轉化聚酯多元醇材料經降解後之殘餘重量-77 表 4.8.1 rD-16CL樣品於DBU有機催化系統下之細胞存活率-81 表 4.8.2 rD-16CL樣品於Sn(Oct)2金屬催化系統下之細胞存活率-81 表 4.8.3 rD-16CL樣品萃取液之細胞存活率-82 | - |
dc.language.iso | zh_TW | - |
dc.title | 回收聚碳酸酯製備可降解聚酯多元醇之研究與應用 | zh_TW |
dc.title | Degradable Polyester Polyols Based on a Versatile Macro-initiator via Recycling Polycarbonate | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡協致;賴森茂;吳建欣;黃英治 | zh_TW |
dc.contributor.oralexamcommittee | Hsieh-Chih Tsai;Sun-Mou Lai;Chien-Hsin Wu;Ying-Chi Huang | en |
dc.subject.keyword | 聚碳酸酯,聚己內酯,循環經濟,開環聚合反應,生物可降解材料,生物相容性, | zh_TW |
dc.subject.keyword | Polycarbonate,Polycaprolactone,Circular economy,Ring opening polymerization,Biodegradable materials,Biocompatibility, | en |
dc.relation.page | 103 | - |
dc.identifier.doi | 10.6342/NTU202202325 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2022-08-16 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 目前未授權公開取用 | 7.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。