Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83669
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民(Yih-Min Wu)
dc.contributor.authorPo-Yuan Chenen
dc.contributor.author陳伯源zh_TW
dc.date.accessioned2023-03-19T21:13:38Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-16
dc.identifier.citation1. Aki, K. (1965). Maximum likelihood estimate of b in the formula logN=a-bM and its confidence limits. Bull. Earthq. Res. Inst., Tokyo Univ., 43, 237-239. 2. Amitrano, D. (2003). Brittle?ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research: Solid Earth, 108(B1). 3. Amorese, D. (2007). Applying a change-point detection method on frequency-magnitude distributions. Bulletin of the Seismological Society of America, 97(5), 1742-1749. 4. Angelier, J., Lee, J.-C., Chu, H.-T., Hu, J.-C., Lu, C.-Y., Chan, Y.-C., et al. (2001). Le s?isme de Chichi (1999) et sa place dans l'orog?ne de Taiwan. Comptes Rendus de l'Acad?mie des Sciences-Series IIA-Earth and Planetary Science, 333(1), 5-21. 5. Artemieva, I. M., Thybo, H., & Shulgin, A. (2016). Geophysical constraints on geodynamic processes at convergent margins: A global perspective. Gondwana Research, 33, 4-23. 6. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). 7. Cao, A., & Gao, S. S. (2002). Temporal variation of seismic b?values beneath northeastern Japan island arc. Geophysical Research Letters, 29(9), 48-41-48-43. 8. Chan, C.-H., Wu, Y.-M., Tseng, T.-L., Lin, T.-L., & Chen, C.-C. (2012). Spatial and temporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics, 532-535, 215-222. 9. Chang, C.-H., Wu, Y.-M., Zhao, L., & Wu, F. T. (2007). Aftershocks of the 1999 Chi-Chi, Taiwan, earthquake: The first hour. Bulletin of the Seismological Society of America, 97(4), 1245-1258. 10. Chen, J., & Zhu, S. (2020). Spatial and temporal b-value precursors preceding the 2008 Wenchuan, China, earthquake (Mw=7.9): Implications for earthquake prediction. Geomatics, Natural Hazards and Risk, 11(1), 1196-1211. 11. Chen, K.-C., Wang, J.-H., & Yeh, Y.-L. (1990). Premonitory phenomena of a moderate Taiwan earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 1(1), 1-21. 12. Chen, S. K., Wu, Y.-M., Hsu, Y.-J., & Chan, Y.-C. (2017). Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion. Geophysical Journal International, 210(1), 228-239. 13. Cheng, S.-N., & Yeh, Y.-T. (1989). Catalog of the Earthquakes in Taiwan from 1604 to 1988 (in Chinese). Taipei: Institute of Earth Sciences, Academia Sinica. 14. DeSalvio, N. D., & Rudolph, M. L. (2021). A retrospective analysis of b-value changes preceding strong earthquakes. Seismological Research Letters, 93(1), 364-375. 15. Garc?a-Hern?ndez, R., D’Auria, L., Barrancos, J., Padilla, G. D., & P?rez, N. M. (2021). Multiscale temporal and spatial estimation of the b-value. Seismological Research Letters, 92(6), 3712-3724. 16. Garc?a?Hern?ndez, R., D'Auria, L., Barrancos, J., & Padilla, G. D. (2019). On the functional expression of frequency–magnitude distributions: A comprehensive statistical examination. Bulletin of the Seismological Society of America, 109(1), 482-486. 17. Goebel, T. H. W., Schorlemmer, D., Becker, T. W., Dresen, G., & Sammis, C. G. (2013). Acoustic emissions document stress changes over many seismic cycles in stick?slip experiments. Geophysical Research Letters, 40(10), 2049-2054. 18. Gulia, L., Rinaldi, A. P., Tormann, T., Vannucci, G., Enescu, B., & Wiemer, S. (2018). The effect of a mainshock on the size distribution of the aftershocks. Geophysical Research Letters, 45(24). 19. Gulia, L., & Wiemer, S. (2010). The influence of tectonic regimes on the earthquake size distribution: A case study for Italy. Geophysical Research Letters, 37(10). 20. Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193-199. 21. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185-188. 22. Han, Q., Wang, L., Xu, J., Carpinteri, A., & Lacidogna, G. (2015). A robust method to estimate the b-value of the magnitude–frequency distribution of earthquakes. Chaos, Solitons and Fractals, 81, 103-110. 23. Hashimoto, C., Noda, A., Sagiya, T., & Matsu’ura, M. (2009). Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion. Nature Geoscience, 2(2), 141-144. 24. Ho, C.-S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16. 25. Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., & Chen, H.-Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18. 26. Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. 27. Hutton, K., Woessner, J., & Hauksson, E. (2010). Earthquake monitoring in southern California for seventy-seven years (1932–2008). Bulletin of the Seismological Society of America, 100(2), 423-446. 28. Ide, S. (2013). The proportionality between relative plate velocity and seismicity in subduction zones. Nature Geoscience, 6(9), 780-784. 29. Johnson, K. M., & Segall, P. (2004). Imaging the ramp–d?collement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake. Tectonophysics, 378(1-2), 123-139. 30. Kim, K.-H., Chang, C.-H., Ma, K.-F., Chiu, J.-M., & Chen, K.-C. (2005). Modern seismic observations in the Tatun volcano region of northern Taiwan: Seismic/volcanic hazard adjacent to the Taipei metropolitan area. Terrestrial, Atmospheric and Oceanic Sciences, 16(3), 579. 31. Kossobokov, V. G., Keilis-Borok, V. I., Turcotte, D. L., & Malamud, B. D. (2000). Implications of a statistical physics approach for earthquake hazard assessment and forecasting. Pure and Applied Geophysics, 157(11), 2323-2349. 32. Kuo?Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three?dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6). 33. Lee, S.-J., Lin, T.-C., Liu, T.-Y., & Wong, T.-P. (2018). Fault?to?fault jumping rupture of the 2018 Mw 6.4 Hualien earthquake in eastern Taiwan. Seismological Research Letters, 90(1), 30-39. 34. Lee, Y.-T., Turcotte, D. L., Rundle, J. B., & Chen, C.-C. (2013). Aftershock statistics of the 1999 Chi–Chi, Taiwan earthquake and the concept of Omori times. Pure and Applied Geophysics, 170(1), 221-228. 35. Lei, X. (2003). How do asperities fracture? An experimental study of unbroken asperities. Earth and Planetary Science Letters, 213(3-4), 347-359. 36. Lin, C.-H. (2004). Repeated foreshock sequences in the thrust faulting environment of eastern Taiwan. Geophysical Research Letters, 31(13). 37. Marzocchi, W., & Sandri, L. (2003). A review and new insights on the estimation of the b-value and its uncertainty. Annals of geophysics. 38. Marzocchi, W., Spassiani, I., Stallone, A., & Taroni, M. (2020). How to be fooled searching for significant variations of the b-value. Geophysical Journal International, 220(3), 1845-1856. 39. Mignan, A., Werner, M. J., Wiemer, S., Chen, C.-C., & Wu, Y.-M. (2011). Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs. Bulletin of the Seismological Society of America, 101(3), 1371-1385. 40. Mignan, A., & Woessner, J. (2012). Estimating the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis, 1-45. 41. Mori, J., & Abercrombie, R. E. (1997). Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation. Journal of Geophysical Research: Solid Earth, 102(B7), 15081-15090. 42. Nanjo, K. Z. (2020). Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes? Nature communications, 11(1), 3082. 43. Nanjo, K. Z., Hirata, N., Obara, K., & Kasahara, K. (2012). Decade?scale decrease in b value prior to the M9?class 2011 Tohoku and 2004 Sumatra quakes. Geophysical Research Letters, 39(20). 44. Nanjo, K. Z., Ishibe, T., Tsuruoka, H., Schorlemmer, D., Ishigaki, Y., & Hirata, N. (2010). Analysis of the completeness magnitude and seismic network coverage of Japan. Bulletin of the Seismological Society of America, 100(6), 3261-3268. 45. Nanjo, K. Z., Izutsu, J., Orihara, Y., & Kamogawa, M. (2022). Changes in seismicity pattern due to the 2016 Kumamoto earthquake sequence and implications for improving the foreshock traffic-light system. Tectonophysics, 822. 46. Nanjo, K. Z., & Yoshida, A. (2018). A b map implying the first eastern rupture of the Nankai Trough earthquakes. Nature communications, 9(1), 1-7. 47. Nishikawa, T., & Ide, S. (2014). Earthquake size distribution in subduction zones linked to slab buoyancy. Nature Geoscience, 7(12), 904-908. 48. Petruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A. P., Wiemer, S., Gasperini, P., & Vannucci, G. (2019). The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 527. 49. Rydelek, P. A., & Sacks, I. S. (1989). Testing the completeness of earthquake catalogues and the hypothesis of self-similarity. Nature, 337(6204), 251-253. 50. Sandri, L., & Marzocchi, W. (2007). A technical note on the bias in the estimation of the b-value and its uncertainty through the least squares technique. Annals of geophysics. 51. Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1), 399-415. 52. Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399-1402. 53. Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539-542. 54. Schorlemmer, D., & Woessner, J. (2008). Probability of detecting an earthquake. Bulletin of the Seismological Society of America, 98(5), 2103-2117. 55. Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72(5), 1677-1687. 56. Shin, T.-C., & Chang, J.-S. (2005). Earthquake monitoring systems in Taiwan (in Chinese). In The 921 Chi-Chi Great Earthquake (in Chinese) (pp. 43-59). 57. Spada, M., Tormann, T., Wiemer, S., & Enescu, B. (2013). Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 40(4), 709-714. 58. Tormann, T., Enescu, B., Woessner, J., & Wiemer, S. (2015). Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8(2), 152-158. 59. Tormann, T., Wiemer, S., Metzger, S., Michael, A., & Hardebeck, J. L. (2013). Size distribution of Parkfield's microearthquakes reflects changes in surface creep rate. Geophysical Journal International, 193(3), 1474-1478. 60. Tormann, T., Wiemer, S., & Mignan, A. (2014). Systematic survey of high?resolution b value imaging along Californian faults: Inference on asperities. Journal of Geophysical Research: Solid Earth, 119(3), 2029-2054. 61. Utsu, T. (1966). A statistical significance test of the difference in b-value between two earthquake groups. Journal of Physics of the Earth, 14(2), 37-40. 62. van der Elst, N. J. (2021). B?Positive: A robust estimator of aftershock magnitude distribution in transiently incomplete catalogs. Journal of Geophysical Research: Solid Earth, 126(2). 63. Wang, H.-L., Zhu, L., & Chen, H.-W. (2010). Moho depth variation in Taiwan from teleseismic receiver functions. Journal of Asian Earth Sciences, 37(3), 286-291. 64. Wang, J.-H. (1988). b values of shallow earthquakes in Taiwan. Bulletin of the Seismological Society of America, 78(3), 1243-1254. 65. Wang, J.-H. (1998). Studies of earthquake seismology in Taiwan during the 1897-1996 period. J. Geol. Soc. China, 41, 291-336. 66. Wang, J.-H., Chen, K.-C., Leu, P.-L., & Chang, J.-H. (2015). b-values observations in Taiwan: A review. Terrestrial, Atmospheric and Oceanic Sciences, 26(5). 67. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002. 68. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859-869. 69. Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684-698. 70. Wu, W.-N., Zhao, L., & Wu, Y.-M. (2013). Empirical relationships between aftershock zone dimensions and moment magnitudes for plate boundary earthquakes in Taiwan. Bulletin of the Seismological Society of America, 103(1), 424-436. 71. Wu, Y.-H., Chen, C.-C., Turcotte, D. L., & Rundle, J. B. (2013). Quantifying the seismicity on Taiwan. Geophysical Journal International, 194(1), 465-469. 72. Wu, Y.-M., Chang, C.-H., Kuo-Chen, H., Huang, H.-H., & Wang, C.-Y. (2013). On the use of explosion records for examining earthquake location uncertainty in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 24(4-2). 73. Wu, Y.-M., Chang, C.-H., Zhao, L., Shyu, J. B. H., Chen, Y.-G., Sieh, K., & Avouac, J.-P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth, 112(B8). 74. Wu, Y.-M., Chang, C.-H., Zhao, L., Teng, T.-L., & Nakamura, M. (2008b). A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471-1481. 75. Wu, Y.-M., & Chen, C.-C. (2007). Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, Mw 7.6 earthquake. Tectonophysics, 429(1-2), 125-132. 76. Wu, Y.-M., Chen, C.-C., Zhao, L., & Chang, C.-H. (2008a). Seismicity characteristics before the 2003 Chengkung, Taiwan, earthquake. Tectonophysics, 457(3-4), 177-182. 77. Wu, Y.-M., Chen, S. K., Huang, T.-C., Huang, H.-H., Chao, W.-A., & Koulakov, I. (2018). Relationship between earthquake b?values and crustal stresses in a young orogenic belt. Geophysical Research Letters, 45(4), 1832-1837. 78. Wu, Y.-M., & Chiao, L.-Y. (2006). Seismic quiescence before the 1999 Chi-Chi, Taiwan, Mw 7.6 earthquake. Bulletin of the Seismological Society of America, 96(1), 321-327. 79. Wu, Y.-M., Shyu, J. B. H., Chang, C.-H., Zhao, L., Nakamura, M., & Hsu, S.-K. (2009). Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International, 178(2), 1042-1054. 80. Wyss, M., & Stefansson, R. (2006). Nucleation points of recent mainshocks in southern Iceland, mapped by b-values. Bulletin of the Seismological Society of America, 96(2), 599-608. 81. Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83669-
dc.description.abstract地震規模頻率分布 (b值) 被視為是大地震前兆現象研究之一,台灣是年輕島弧造山帶,板塊碰撞活躍,已有不少規模大於6.0地震發生。中央氣象局地震觀測網 (CWBSN) 的地震偵測能力自2012年起大幅提升,台灣島內區域的最小完整規模 (MC) 下降至1.5,有益於初探台灣地區時間域b值在大地震發生時間點前後的連續變化。近年來全世界已有幾個大地震案例觀察到震前b值下降,本研究欲瞭解台灣地區大地震發生之前是否可觀察到類似現象,同時著重前人研究並未探討的台灣地區震後b值變化。由於b值計算結果高度取決於空間上地震分布特性,本研究採用CWBSN 2012年起重定位地震資料庫,以最大曲率法和最大似然法計算深度? 40公里地震的MC和b值特性,再以相同搜尋半徑和移動時間窗法針對大地震震央區分別計算時間域b值變化。移動時間窗法以每時間單位時間窗內固定地震事件數量方式,求取時間域b值穩定解並分析不同移動時間窗的重疊程度對b值解之影響。本研究結果顯示CWBSN地震偵測能力提升後,台灣島內區域b值主要介於0.7至1.1之間,與前人研究觀察相似,而ML ? 6.0地震幾乎位於b值低於0.9的區域。移動時間窗法結果顯示以震央取半徑20公里適合做為研究台灣地區ML ? 6.0地震於時間域b值變化分析的空間參數。時間窗內以大於MC以上地震數量為50筆事件為基準,時間窗的重疊程度取75%可提供穩定的時間域b值解析能力。本研究發現分析的17個ML ? 6.0地震中僅有2018 ML 6.3花蓮地震能觀察到明顯震前b值下降,而17個大地震的震後b值結果缺乏一致性時序變化,推測可能與餘震或震後滑移分布有關。本研究結果可作為未來台灣地區以b值研究大地震前兆現象的基礎。zh_TW
dc.description.abstractb-value is regarded as a subject of precursor studies of large earthquakes. Taiwan island is a young orogenic belt where the plates collide actively and lead to numerous earthquakes with magnitude greater than ML 6.0. Earthquake detection capability of the Central Weather Bureau Seismic Network (CWBSN) has been largely improved since 2012. The magnitude completeness (MC) of the inland regions is around 1.5. This improvement can help us preliminarily survey the continuously temporal b-value variation before and after the large earthquakes in Taiwan. In recent years around the world, there are several pieces of evidence of the temporal b-value decrease before large earthquakes. This study aims to find out whether similar phenomenon can be observed in Taiwan. This study also puts the emphasis on temporal b-value variation after large earthquakes in Taiwan region, which is not discussed by previous studies. Since the b-value calculation highly depends on the characteristic of earthquake distribution, this study uses a relocated earthquake catalog with earthquakes recorded by CWBSN since 2012. We use the maximum curvature and maximum likelihood to calculate MC and b-value distribution, respectively, from the earthquakes with depths shallower than 40 km. We calculate temporal b-value variations in the epicentral areas of large earthquakes using moving windows with a constant radius. The moving windows require sufficient number of events in each window for the robust b-value estimation while overlapping with various time periods. The influence of the window’s overlapping on temporal b-value variation has also been analyzed. Our results show that the inland b-values are mainly between 0.7 to 1.1, which is similar to previous studies. The ML ? 6.0 earthquakes are almost located at the low b-value regions smaller than 0.9. The results of moving windows show that a 20-km radius from the epicenters is an appropriate spatial parameter for studying the temporal b-value variation pre- and post- ML ? 6.0 earthquakes in Taiwan region. The moving windows overlapping with 75% event numbers in which the number of earthquakes requires at least 50 with magnitude greater than MC can provide high-resolution temporal b-value variation. This study found that there’s a clear temporal b-value decrease before the 2018 ML 6.3 Hualien earthquake. The temporal b-value variarions after the ML ? 6.0 earthquakes do not vary consistently, which may be related to the localized aftershocks and afterslips. Our results can provide a fundamental framework of b-value earthquake precursors of the coming large earthquakes in Taiwan.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:13:38Z (GMT). No. of bitstreams: 1
U0001-1608202201343400.pdf: 27574137 bytes, checksum: ba9987bd330d8971c9c21a90660c7382 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 xiv 第一章 緒論 1 1.1 地震b值簡介 1 1.2 研究動機與目的 3 1.2.1 時間域b值變化與大地震的相關性 3 1.2.2 前人在台灣地區的主震前b值時間變化研究 7 1.2.3 最小完整規模MC的顯著降低 12 1.3 研究區域簡介 14 第二章 研究資料與方法 18 2.1 地震資料 18 2.1.1 中央氣象局地震觀測網 (CWBSN) 簡介 18 2.1.2 地震資料選取 19 2.2 最大曲率法 22 2.3 最大似然法 24 2.4 研究流程 26 2.5 搜尋半徑 26 2.6 移動時間窗法 42 第三章 結果 51 3.1 八年地震資料平均Mc與b值 51 3.2 時間域b值變化:以時間窗固定半年為例 55 3.3 時間域b值變化:以時間窗固定地震事件數量為例 63 3.4 其他 78 3.4.1 3.2節其餘結果圖 78 3.4.2 3.3節其餘結果圖 82 第四章 討論 89 4.1 3.1節的參數測試 89 4.2 移動時間窗法有效性與限制 98 4.3 案例分析:2018年ML 6.3花蓮地震 109 4.4 震央區空間參數與時間域b值變化關聯性 114 第五章 結論 115 參考文獻 116 附錄一 126 附錄二 144
dc.language.isozh-TW
dc.subject2018花蓮地震zh_TW
dc.subjectb值zh_TW
dc.subject地震前兆zh_TW
dc.subject移動時間窗法zh_TW
dc.subject時間域b值變化zh_TW
dc.subjectb-valueen
dc.subject2018 Hualien earthquakeen
dc.subjecttemporal b-value variationen
dc.subjectmoving window approachen
dc.subjectearthquake precursoren
dc.title台灣地震規模頻率分布於地震前後之時序變化:以2012到2019 ML ? 6.0地震為例zh_TW
dc.titleTemporal b-value variation before and after ML ? 6.0 Taiwan earthquakes from 2012 to 2019en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建志(Chien-Chih Chen),詹忠翰(Chung-Han Chan),陳冠翔(Kuan-Hsiang Chen)
dc.subject.keywordb值,地震前兆,移動時間窗法,時間域b值變化,2018花蓮地震,zh_TW
dc.subject.keywordb-value,earthquake precursor,moving window approach,temporal b-value variation,2018 Hualien earthquake,en
dc.relation.page153
dc.identifier.doi10.6342/NTU202202429
dc.rights.note未授權
dc.date.accepted2022-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-1608202201343400.pdf
  未授權公開取用
26.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved