請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡文聰 | zh_TW |
| dc.contributor.advisor | Andrew M. Wo | en |
| dc.contributor.author | 王星明 | zh_TW |
| dc.contributor.author | Sing-Ming Wang | en |
| dc.date.accessioned | 2023-03-19T21:12:50Z | - |
| dc.date.available | 2023-12-25 | - |
| dc.date.copyright | 2022-08-19 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Pucci, C., C. Martinelli, and G. Ciofani, Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019. 13. 2. Wu, L. and X. Qu, Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews, 2015. 44(10): p. 2963-2997. 3. Ignatiadis, M., G.W. Sledge, and S.S. Jeffrey, Liquid biopsy enters the clinic—Implementation issues and future challenges. Nature reviews Clinical oncology, 2021. 18(5): p. 297-312. 4. Marrugo-Ramírez, J., M. Mir, and J. Samitier, Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. International journal of molecular sciences, 2018. 19(10): p. 2877. 5. Mader, S. and K. Pantel, Liquid biopsy: current status and future perspectives. Oncology research and treatment, 2017. 40(7-8): p. 404-408. 6. Siravegna, G., et al., Integrating liquid biopsies into the management of cancer. Nature reviews Clinical oncology, 2017. 14(9): p. 531-548. 7. Schwarzenbach, H., D.S. Hoon, and K. Pantel, Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer, 2011. 11(6): p. 426-437. 8. Zhang, W., et al., Liquid biopsy for cancer: circulating tumor cells, circulating free DNA or exosomes? Cellular Physiology and Biochemistry, 2017. 41(2): p. 755-768. 9. Yang, B., Y. Chen, and J. Shi, Exosome biochemistry and advanced nanotechnology for next‐generation theranostic platforms. Advanced materials, 2019. 31(2): p. 1802896. 10. Anthony, D. and P. Shiels, Exploiting paracrine mechanisms of tissue regeneration to repair damaged organs. Transplantation research, 2013. 2: p. 10. 11. Johnstone, R.M., Exosomes biological significance: a concise review. Blood Cells, Molecules, and Diseases, 2006. 36(2): p. 315-321. 12. Shtam, T., et al., Functional properties of circulating exosomes mediated by surface-attached plasma proteins. Journal of Hematology, 2018. 7(4): p. 149. 13. Zhou, B., et al., Application of exosomes as liquid biopsy in clinical diagnosis. Signal transduction and targeted therapy, 2020. 5(1): p. 1-14. 14. Kalluri, R., The biology and function of exosomes in cancer. The Journal of clinical investigation, 2016. 126(4): p. 1208-1215. 15. Ståhl, A.-l., et al., Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric Nephrology, 2019. 34(1): p. 11-30. 16. Chen, Q.Y., et al., Exosomal proteins and miRNAs as mediators of amyotrophic lateral sclerosis. Frontiers in Cell and Developmental Biology, 2021. 9: p. 718803. 17. Segrest, J.P., et al., The amphipathic α helix: a multifunctional structural motif in plasma apolipoproteins. Advances in protein chemistry, 1994. 45: p. 303-369. 18. Havel, R.J., H.A. Eder, and J.H. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. The Journal of clinical investigation, 1955. 34(9): p. 1345-1353. 19. Bricarello, D.A., et al., Reconstituted lipoprotein: a versatile class of biologically-inspired nanostructures. ACS nano, 2011. 5(1): p. 42-57. 20. Poupardin, R., M. Wolf, and D. Strunk, Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Advanced Drug Delivery Reviews, 2021. 176: p. 113872. 21. Rothblat, G.H. and M.C. Phillips, High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Current opinion in lipidology, 2010. 21(3): p. 229. 22. Simonsen, J.B., What are we looking at? Extracellular vesicles, lipoproteins, or both? Circulation research, 2017. 121(8): p. 920-922. 23. Van Deun, J., et al., Integrated dual‐mode chromatography to enrich extracellular vesicles from plasma. Advanced biosystems, 2020. 4(12): p. 1900310. 24. Coumans, F.A., et al., Methodological guidelines to study extracellular vesicles. Circulation research, 2017. 120(10): p. 1632-1648. 25. Yakimchuk, K., Exosomes: isolation and characterization methods and specific markers. Mater Methods, 2015. 5: p. 1450. 26. Zhang, P., et al., Molecular assessment of circulating exosomes toward liquid biopsy diagnosis of Ewing sarcoma family of tumors. Translational Research, 2018. 201: p. 136-153. 27. Stubbs, G.W. and B.J. Litman, Effect of alterations in the amphipathic microenvironment on the conformational stability of bovine opsin. 1. Mechanism of solubilization of disk membranes by the nonionic detergent, octyl glucoside. Biochemistry, 1978. 17(2): p. 215-219. 28. Dave, N. and T. Joshi, A concise review on surfactants and its significance. Int. J. Appl. Chem, 2017. 13(3): p. 663-672. 29. Heerklotz, H., Interactions of surfactants with lipid membranes. Quarterly reviews of biophysics, 2008. 41(3-4): p. 205-264. 30. Majeed, S., et al., Lipid membrane mimetics in functional and structural studies of integral membrane proteins. Membranes, 2021. 11(9): p. 685. 31. Lichtenberg, D., R.J. Robson, and E.A. Dennis, Solubilization of phospholipids by detergents structural and kinetic aspects. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1983. 737(2): p. 285-304. 32. Aguirre-Ramírez, M., et al., Surfactants: physicochemical interactions with biological macromolecules. Biotechnology Letters, 2021. 43(3): p. 523-535. 33. Almgren, M., Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants. Biochimica et biophysica acta (BBA)-biomembranes, 2000. 1508(1-2): p. 146-163. 34. Ali, Y., et al., Macromolecules as targeted drugs delivery vehicles: an overview. Designed Monomers and Polymers, 2019. 35. Shoji, Y., et al., Liposome solubilization induced by surfactant molecules in a microchip. Analytical Sciences, 2012. 28(4): p. 339-339. 36. Azouz, M., et al., Lipid selectivity in detergent extraction from bilayers. Biochemical and Biophysical Research Communications, 2020. 531(2): p. 140-143. 37. Lichtenberg, D., et al., Detergent solubilization of lipid bilayers: a balance of driving forces. Trends in biochemical sciences, 2013. 38(2): p. 85-93. 38. Buckelew Jr, A.R. and G. Colacicco, Lipid monolayers. Interactions with staphylococcal α-toxin. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1971. 233(1): p. 7-16. 39. Fiandaca, M.S., et al., Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case‐control study. Alzheimer's & Dementia, 2015. 11(6): p. 600-607. e1. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83644 | - |
| dc.description.abstract | 隨著癌症檢測技術的進展,新興的液態生物檢體技術有別於過往的活體組織切片技術,液態生物檢測方式是屬於非侵入式,透過檢測生物體液中的生物標記來反映疾病的狀況,目前許多研究指出血液的偵測可以在癌症與相關疾病發揮作用,因為血液中富含細胞吐出的外泌體。然而,目前面臨的最大挑戰是血液中的脂蛋白,檢測時脂蛋白會阻擋外泌體訊號,使得偵測到外泌體的訊號並不顯著,限制了外泌體在臨床測試上的實用性。 本研究的目標是研發具備臨床研究潛力的去除樣品中之雜質以達到外泌體純化方法。使用的方法為,利用親水與疏水端對樣品中之雜質進行分解。結果顯示前處理和密度梯度超高速離心法(DGUC)兩者實驗的搭配,可去除部分的樣品中之雜質,進而萃取純度較高的外泌體。並且,發現將經過細胞培養且純化後的外泌體與添加物反應,進而可以萃取出外泌體特點蛋白。初步結果指出本研究有助於辨識病人的外泌體訊號,但是仍然需要更多的測試才能確實佐證未來的檢測潛力。 | zh_TW |
| dc.description.abstract | The emergence of liquid biopsy offers a promise to advance non-invasive diagnosis in comparison to traditional tissue biopsy. Therefore, many clinical trials have shown that blood samples can play a role in most solid tumors due to the abundance of components generated by tumor cells and arrived at the circulation, such as exosomes. However, lipoprotein can cause significant issue in hampering effective isolation of exosomes rendering realization of exosomal signal towards liquid biopsy challenging. The main goal of this thesis was to reduce sample impurities in order to improve exosomal signal. Towards this end, properties of hydrophilic head and the hydrophobic tail were utilized to decompose impurities in samples. Results indicated that the combination of reagent and density gradient ultra-centrifugation (DGUC) experiments removed most impurities, thereby extracting exosomes with high purity. Moreover, it was found that the approach enabled intracellular proteins from purified exosomes from cell-cultured medium. Therefore, the current approach seems to be able to treat impurities, which were helpful to detect the exosomal signals of patients. Additional data is needed to realize the full potential of this approach for future use. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:12:50Z (GMT). No. of bitstreams: 1 U0001-1708202212365800.pdf: 3662306 bytes, checksum: ec4d45726564bab6e78e05153fab14c8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試檢定 i 致謝 ii 中文摘要 iii Abstract iv Table of Contents v List of Figures vii List of Tables ix Chapter 1. Introduction 1 1.1 Early-stage Examination for Cancer 1 1.2 Liquid Biopsy 2 1.3 Characteristics of Exosomes 3 1.4 Lipoproteins in the Blood 4 1.5 The Influence of Lipoproteins 6 1.6 Methods of Exosomes Isolation 7 1.7 The Effect of Surfactants on Lipid Membrane 8 1.8 Lipoprotein Reduction by Surfactant Treatment 11 1.9 The Reaction Process of Surfactants and Monolayer Lipoproteins 12 Chapter 2. Materials and Methods 13 2.1Materials 13 2.1.1 Reagents, Antibody and Consumable 13 2.2 Software and Apparatus 15 2.2.1 AquaMax Microplate Washer 16 2.2.2 SpectraMax® iD3 Microplate Reader 16 2.3 Methods 18 2.3.1 The Process of Blood Plasma Preparation 18 2.3.2 Exosomes Extraction from Cell Culture Medium 19 2.3.3 Lipoproteins Preparation from Plasma Samples 20 2.3.4 Size Exclusion Chromatography of Plasma Exosome Isolation 21 2.3.5 Density Gradient Ultracentrifugation (DGUC) of Plasma Exosome 22 2.3.6 Deformation of Lipoproteins by Surfactant-A (SA) Treatment 23 2.3.7 Exosomes Immobilization and Detection 24 Chapter 3. Results and Discussion 26 3.1 The Effect of SA for Reducing Lipoproteins from Plasma 26 3.2 Purification of Exosomes in Plasma with SA Treatment 30 3.3 Confirm the Exosomal Signal Enhancement with SA Treatment 33 3.4 Optimization of SA Protocol 35 3.5 Using SEC and DGUC Method to Observe the Effect of SA on Lipoprotein and Exosome 39 3.6 Using SA in the Clinical Application 45 3.7 Explore Alternative Effect of Exosome Lumen Using SA 48 Chapter 4. Conclusions 56 References 57 | - |
| dc.language.iso | en | - |
| dc.subject | 疾病檢測 | zh_TW |
| dc.subject | 外泌體 | zh_TW |
| dc.subject | 脂蛋白 | zh_TW |
| dc.subject | 介面活性劑 | zh_TW |
| dc.subject | 外泌體 | zh_TW |
| dc.subject | 脂蛋白 | zh_TW |
| dc.subject | 介面活性劑 | zh_TW |
| dc.subject | 疾病檢測 | zh_TW |
| dc.subject | lipoprotein | en |
| dc.subject | lipoprotein | en |
| dc.subject | exosome | en |
| dc.subject | disease diagnosis | en |
| dc.subject | surfactant | en |
| dc.subject | exosome | en |
| dc.subject | disease diagnosis | en |
| dc.subject | surfactant | en |
| dc.title | 外泌體前處理以減少樣品雜質之研究 | zh_TW |
| dc.title | Processing of Exosomes towards Reduction of Sample Impurities | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李雨;許聿翔 | zh_TW |
| dc.contributor.oralexamcommittee | U Lei;Yu-Hsiang Hsu | en |
| dc.subject.keyword | 外泌體,脂蛋白,介面活性劑,疾病檢測, | zh_TW |
| dc.subject.keyword | exosome,lipoprotein,surfactant,disease diagnosis, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202202493 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-08-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 3.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
