Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹承礎(Seng-Cho Chou)
dc.contributor.authorYi-Ju Chienen
dc.contributor.author簡翊如zh_TW
dc.date.accessioned2023-03-19T21:12:47Z-
dc.date.copyright2022-08-24
dc.date.issued2022
dc.date.submitted2022-08-18
dc.identifier.citationInformation explosion. Available at Wikipedia: https://en.wikipedia.org/wiki/Information_explosion (Accessed: 01 June 2021). 2016 United States presidential election. Available at Wikipedia: https://en.wikipedia.org/wiki/2016_United_States_presidential_election (Accessed: 05 July 2021). Allcott, H. & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, vol. 31, no. 2, pp. 211–36, 2017. 蘇啟誠. Available at Wikipedia: https://zh.m.wikipedia.org/zh-tw/%E8%98%87%E5%95%9F%E8%AA%A0 (Accessed: 05 July 2021). Fake news. Available at Wikipedia: https://en.wikipedia.org/wiki/Fake_news (Accessed: 05 July 2021). 中央社 (2018). 颱風燕子襲日釀11死 關西機場成孤島[Video] . YouTube. Available at: https://www.cna.com.tw/news/firstnews/201809055003.aspx (Accessed: 17 July 2021). 有話好說 PTSTalk. (2019). 假新聞害死外交官?!NHK紀錄片探討!(公共電視 - 有話好說)[Video]. YouTube. Available at: https://www.youtube.com/watch?v=HmV0MpLSNR8 (Accessed: 17 July, 2022). Farid, H. (2009). Image forgery detection. IEEE Signal Processing Magazine, vol. 26, no. 2, pp. 16-25, March 2009, doi: 10.1109/MSP.2008.931079. Keras Applications. https://keras.io/api/applications/ (Accessed: 06 June, 2022). ImageNet. https://www.image-net.org/challenges/LSVRC/ (Accessed: 17 July, 2022). Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Li F.-F. (2015). ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015. Tembe, A. U., & Thombre. S. S. (2017). Survey of copy-paste forgery detection in digital image forensic. 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 2017, pp. 248-252, doi: 10.1109/ICIMIA.2017.7975613. Wang, Y., Tian, L., & Li, C. (2017). LBP-SVD Based Copy Move Forgery Detection Algorithm. 2017 IEEE International Symposium on Multimedia (ISM), 2017, pp. 553-556, doi: 10.1109/ISM.2017.108. Dong, J., Wang, W., & Tan, T. (2013). CASIA Image Tampering Detection Evaluation Database. 2013 IEEE China Summit and International Conference on Signal and Information Processing, 2013, pp. 422-426, doi: 10.1109/ChinaSIP.2013.6625374. Ng, T.-T., & Chang S.-F. (2004). A data set of authentic and spliced image blocks. ADVENT Technical Report 203-2004-3 Columbia University, June 2004. Columbia Image Splicing Detection Evaluation Dataset. https://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm (Accessed: 17 July, 2022). Fridrich, J., Soukal, D., & Luk?s, J. (2003). Detection of Copy-Move Forgery in Digital Images. Int. J. Comput. Sci. Issues. 3. 55-61. Popescu, A. C., Farid, H. (2004). Exposing Digital Forgeries by Detecting Duplicated Image Regions. Tech. Rep. T R2004-515, Dartmouth College, 2004 Li, G., Wu, Q., Tu, D., &Sun, S. (2007). A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries Based on DWT and SVD. 2007 IEEE International Conference on Multimedia and Expo, 2007, pp. 1750-1753, doi: 10.1109/ICME.2007.4285009. Bayram, S., Taha Sencar, H., & Memon, N. (2009). An efficient and robust method for detecting copy-move forgery. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, pp. 1053-1056, doi: 10.1109/ICASSP.2009.4959768. Bo, X., Junwen, W., Guangjie, L., & Yuewei, D. (2010). Image Copy-Move Forgery Detection Based on SURF. 2010 International Conference on Multimedia Information Networking and Security, 2010, pp. 889-892, doi: 10.1109/MINES.2010.189. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., & Serra, G. (2011). A SIFT-Based Forensic Method for Copy–Move Attack Detection and Transformation Recovery. IEEE Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 1099-1110, Sept. 2011, doi: 10.1109/TIFS.2011.2129512. Muhammad, G., Al-Hammadi, M., Hussain, M., & Bebis, G. (2014). Image Forgery Detection Using Steerable Pyramid Transform and Local Binary Pattern. Machine Vision and Applications. 25. 985-995. 10.1007/s00138-013-0547-4. Local binary patterns. Available at Wikipedia: https://en.wikipedia.org/wiki/Local_binary_patterns (Accessed: 06 June, 2022). Ojala, T., Pietikainen, M., & Harwood, D. (1994). Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. Proceedings of 12th International Conference on Pattern Recognition, 1994, pp. 582-585 vol.1, doi: 10.1109/ICPR.1994.576366. Ojala, T., Pietik?inen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, Volume 29, Issue 1, 1996, Pages 51-59, ISSN 0031-3203, https://doi.org/10.1016/0031-3203(95)00067-4. Error level analysis. Available at Wikipedia: https://en.wikipedia.org/wiki/Error_level_analysis (Accessed: 06 June, 2022). Wang, W., Dong, J., Tan, T. (2011). Tampered Region Localization of Digital Color Images Based on JPEG Compression Noise. In: Kim, HJ., Shi, Y.Q., Barni, M. (eds) Digital Watermarking. IWDW 2010. Lecture Notes in Computer Science, vol 6526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18405-5_10. Jaiswal, A. K., & Srivastava, R. (2019). Image Splicing Detection using Deep Residual Network. Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE) 2019, Available at SSRN: https://ssrn.com/abstract=3351072 or http://dx.doi.org/10.2139/ssrn.3351072. Almawas, L., Alotaibi, A., & Kurdi, H. (2020). Comparative performance study of classification models for image-splicing detection. Procedia Computer Science, Volume 175, 2020, Pages 278-285, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.07.041. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). Wang, Y., Tian, L., & Li, C. (2017). LBP-SVD Based Copy Move Forgery Detection Algorithm. 2017 IEEE International Symposium on Multimedia (ISM), 2017, pp. 553-556, doi: 10.1109/ISM.2017.108. Qi, P., Cao, J., Yang, T., Guo, J., & Li, J. (2019). Exploiting Multi-domain Visual Information for Fake News Detection. 2019 IEEE International Conference on Data Mining (ICDM), 2019, pp. 518-527, doi: 10.1109/ICDM.2019.00062. Abdalla, Y., Iqbal, T., & Shehata, M. (2019). Convolutional Neural Network for Copy-Move Forgery Detection. Symmetry. 11. 1280. 10.3390/sym11101280. Ahmed, I. T., Hammad, B. T., & Jamil, N. (2021). Effective Deep Features for Image Splicing Detection. 2021 IEEE 11th International Conference on System Engineering and Technology (ICSET), 2021, pp. 189-193, doi: 10.1109/ICSET53708.2021.9612569. Rao Y., & Ni, J. (2016). A deep learning approach to detection of splicing and copy-move forgeries in images. 2016 IEEE International Workshop on Information Forensics and Security (WIFS), 2016, pp. 1-6, doi: 10.1109/WIFS.2016.7823911.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83642-
dc.description.abstract在當今的社會中,人們可以輕易地透過網路獲得資訊,而最常見的一種方法即是透過圖片的傳播。然而,隨著圖片編輯軟體的快速發展,人們可能沒有察覺到自己已經被偽造的圖片所欺騙。因此,我們將提出一個機器學習的方法,以實作出虛假圖片的偵測。在此研究中,會使用CASIA此資料集做訓練,其中包含了兩種不同的偽造圖片:圖片拼接(Splicing)以及圖片複製移動(Copy-move)。 基於卷積神經網路,我們會使用局部二值模式(Local Binary Patterns)和錯誤級別分析(Error Level Analysis)這兩種資料前處理方法去提升模型的準確度。根據實驗結果,自建的CNN搭配ELA方法表現最好,準確度達到約90%。此外,模型對於假圖片的敏感度也超過了95%。為了了解模型的弱點,我們同時也對預測錯誤的圖片進行了分析,並在最後討論此研究方法的限制為何。zh_TW
dc.description.abstractNowadays, people can easily acquire information on the Internet, and the most common way to deliver messages is through the images. However, with the rapid development of editing software, people might be cheated by the tampered images without consciousness. Therefore, we will propose a machine learning method to implement fake image detection. In this study, the used dataset is CASIA 2.0 which include two types of fake images: splicing and copy-moving. Based on Convolutional Neural Network (CNN), and we will additionally apply the data pre-process methods, Local Binary Patterns (LBP) and Error Level Analysis (ELA), which are empirically effective in image forensic to increase the accuracy of CNN models. The best model of the research is a self-build CNN with ELA, and the accuracy is about 91% in training and 90% in validation. Furthermore, the sensitivity towards fake images is over 95%, which is well-performed model on fake image detection. Meanwhile, we analyzed the false predictions of the model to realize the weakness of the proposed model. Last, we also discuss the limitations of this research method.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:12:47Z (GMT). No. of bitstreams: 1
U0001-1708202214513500.pdf: 3598635 bytes, checksum: b3697b6ee9870615b7862942faba8d57 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAPPROVAL i ACKNOWLEDGEMENT ii CHINESE ABSTRACT iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Objectives 3 Chapter 2 Related Works 5 2.1 Fake Image Definition 5 2.2 Datasets 8 2.3 Fake Image Detection Methods – Image Preprocess 12 2.4 Fake Image Detection Methods – Deep Learning 15 Chapter 3 Methodology 19 3.1 Overall Workflow 19 3.2 Data Selection 20 3.3 Data Preprocessing 21 3.4 CNN Model Structure 22 3.5 Experient Settings 28 3.6 Performance Evaluation 28 Chapter 4 Results 31 4.1 Accuracy 31 4.2 Sensitivity and Specificity 33 4.3 Discussion 36 Chapter 5 Conclusion 39 Reference 40
dc.language.isoen
dc.subject卷積神經網路zh_TW
dc.subject機器學習zh_TW
dc.subject圖片分類zh_TW
dc.subject假圖片zh_TW
dc.subject偽造圖片zh_TW
dc.subject圖片拼接zh_TW
dc.subject錯誤級別分析zh_TW
dc.subjectError Level Analysisen
dc.subjectImage Classificationen
dc.subjectCNNen
dc.subjectCopy-Moveen
dc.subjectMachine Learningen
dc.subjectTampered Imageen
dc.subjectImage Splicingen
dc.subjectFake Imageen
dc.title基於CNN的假圖片分類模型改善與評估zh_TW
dc.titleImprovement and Evaluation of CNN-based Fake Image Classification Modelen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建錦(Chien-Chin Chen),盧信銘(Hsin-Min Lu)
dc.subject.keyword機器學習,卷積神經網路,圖片分類,假圖片,偽造圖片,圖片拼接,錯誤級別分析,zh_TW
dc.subject.keywordMachine Learning,CNN,Image Classification,Fake Image,Tampered Image,Image Splicing,Copy-Move,Error Level Analysis,en
dc.relation.page43
dc.identifier.doi10.6342/NTU202202506
dc.rights.note未授權
dc.date.accepted2022-08-18
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-1708202214513500.pdf
  未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved