請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83632
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳政鴻(Cheng-Hung Wu) | |
dc.contributor.author | Wan-Chen Chen | en |
dc.contributor.author | 陳琬臻 | zh_TW |
dc.date.accessioned | 2023-03-19T21:12:28Z | - |
dc.date.copyright | 2022-08-31 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-22 | |
dc.identifier.citation | [1] Afzalirad, M., & Rezaeian, J. (2016). Design of high-performing hybrid meta-heuristics for unrelated parallel machine scheduling with machine eligibility and precedence constraints. Engineering Optimization, 48(4), 706–726. [2] Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega, 27(2), 219–239. [3] Anghinolfi, D., & Paolucci, M. (2007). Parallel machine total tardiness scheduling with a new hybrid metaheuristic approach. Computers & Operations Research, 34(11), 3471–3490. [4] Araya, J. M. (2012). Value stream mapping adapted to high-mix, low-volume manufacturing environments. [5] Arima, S., Bu, H., Wang, Y.-F., & Ishizaki, Y. (2017). Real-Time shceduling of HMLV productions using the optimum production cycle extended by ATSP solver. 1–5. IEEE. [6] Armentano, V. A., & de Franca Filho, M. F. (2007). Minimizing total tardiness in parallel machine scheduling with setup times: An adaptive memory-based GRASP approach. European Journal of Operational Research, 183(1), 100–114. [7] Arnaout, J.-P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent Manufacturing, 21(6), 693–701. [8] Baker, K. R. (1974). Introduction to sequencing and scheduling. John Wiley & Sons. [9] Balakrishnan, N., Kanet, J. J., & Sridharan, V. (1999). Early/tardy scheduling with sequence dependent setups on uniform parallel machines. Computers & Operations Research, 26(2), 127–141. [10] Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms: Part 1, fundamentals. University Computing, 15(2), 56–69. [11] Becker, J. M. J., Borst, J., & van der Veen, A. (2015). Improving the overall equipment effectiveness in high-mix-low-volume manufacturing environments. CIRP Annals, 64(1), 419–422. [12] Belouadah, H., & Potts, C. N. (1994). Scheduling identical parallel machines to minimize total weighted completion time. Discrete Applied Mathematics, 48(3), 201–218. https://doi.org/10.1016/0166-218X(92)00176-M [13] Bilge, ?., K?ra?, F., Kurtulan, M., & Pekg?n, P. (2004). A tabu search algorithm for parallel machine total tardiness problem. Computers & Operations Research, 31(3), 397–414. [14] Birbil, ?. ?., & Fang, S.-C. (2003). An electromagnetism-like mechanism for global optimization. Journal of Global Optimization, 25(3), 263–282. [15] Blackstone, J. H., Phillips, D. T., & Hogg, G. L. (1982). A state-of-the-art survey of dispatching rules for manufacturing job shop operations. The International Journal of Production Research, 20(1), 27–45. [16] Boriah, S., Chandola, V., & Kumar, V. (2008). Similarity measures for categorical data: A comparative evaluation. 243–254. SIAM. [17] Bruno, J., Coffman, J., & Sethi, R. (1974). Scheduling independent tasks to reduce mean finishing time. Communications of the ACM, 17(7), 382–387. https://doi.org/10.1145/361011.361064 [18] Caniyilmaz, E., Benli, B., & Ilkay, M. S. (2015). An artificial bee colony algorithm approach for unrelated parallel machine scheduling with processing set restrictions, job sequence-dependent setup times, and due date. The International Journal of Advanced Manufacturing Technology, 77(9), 2105–2115. [19] Chaudhry, I. A., & Elbadawi, I. A. (2017). Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm. S?dhan?, 42(1), 11–21. [20] Chen, C.-L. (2012). Iterated hybrid metaheuristic algorithms for unrelated parallel machines problem with unequal ready times and sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 60(5), 693–705. [21] Chen, J.-F. (2009). Scheduling on unrelated parallel machines with sequence-and machine-dependent setup times and due-date constraints. The International Journal of Advanced Manufacturing Technology, 44(11), 1204–1212. [22] Chen, J.-F. (2013). Unrelated parallel-machine scheduling to minimize total weighted completion time. Journal of Intelligent Manufacturing, 26(6), 1099–1112. https://doi.org/10.1007/s10845-013-0842-y [23] Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. 785–794. [24] Cochran, J. K., Horng, S.-M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers & Operations Research, 30(7), 1087–1102. [25] Conway, R. W. (1967). Theory of scheduling / by Richard W. Conway, William L. Maxwell [and] Louis W. Miller. Reading, Mass: Addison-Wesley Pub. Co. [26] De Bruijne, M. (2016). Machine learning approaches in medical image analysis: From detection to diagnosis. Medical Image Analysis, 33, 94–97. [27] Dequeant, K., Vialletelle, P., Lemaire, P., & Espinouse, M.-L. (2016). A literature review on variability in semiconductor manufacturing: The next forward leap to Industry 4.0. 2598–2609. IEEE. [28] Diana, R. O., de Souza, S. R., & Moacir Filho, F. (2018). A Variable Neighborhood Descent as ILS local search to the minimization of the total weighted tardiness on unrelated parallel machines and sequence dependent setup times. Electronic Notes in Discrete Mathematics, 66, 191–198. [29] Diana, R. O. M., & de Souza, S. R. (2020). Analysis of variable neighborhood descent as a local search operator for total weighted tardiness problem on unrelated parallel machines. Computers & Operations Research, 117, 104886. [30] Driessel, R., & M?nch, L. (2011). Variable neighborhood search approaches for scheduling jobs on parallel machines with sequence-dependent setup times, precedence constraints, and ready times. Computers & Industrial Engineering, 61(2), 336–345. [31] Duan, T., Anand, A., Ding, D. Y., Thai, K. K., Basu, S., Ng, A., & Schuler, A. (2020). Ngboost: Natural gradient boosting for probabilistic prediction. 2690–2700. PMLR. [32] Fernandes, R., Gouveia, J. B., & Pinho, C. (2012). Product mix strategy and manufacturing flexibility. Journal of Manufacturing Systems, 31(3), 301–311. [33] Fleszar, K., Charalambous, C., & Hindi, K. S. (2012). A variable neighborhood descent heuristic for the problem of makespan minimisation on unrelated parallel machines with setup times. Journal of Intelligent Manufacturing, 23(5), 1949–1958. [34] Fowler, J., Horng, S. M., & Cochran, J. K. (2003). A hybridized genetic algorithm to solve parallel machine scheduling problems with sequence dependent setups. International Journal of Industrial Engineering: Theory Applications and Practice, 10(3), 232–243. [35] Gao, K. Z., Suganthan, P. N., Chua, T. J., Chong, C. S., Cai, T. X., & Pan, Q. K. (2015). A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion. Expert Systems with Applications, 42(21), 7652–7663. [36] Garey, M. R. (1979). Computers and intractability: A guide to the theory of NP-completeness / Michael R. Garey, David S. Johnson. New York: W. H. Freeman. [37] Gharehgozli, A., Tavakkoli-Moghaddam, R., & Zaerpour, N. (2009). A fuzzy-mixed-integer goal programming model for a parallel-machine scheduling problem with sequence-dependent setup times and release dates. Robotics and Computer-Integrated Manufacturing, 25(4–5), 853–859. [38] G?dri, I., Kardos, C., Pfeiffer, A., & V?ncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68(1), 471–474. [39] Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. In Annals of discrete mathematics (Vol. 5, pp. 287–326). Elsevier. [40] Guan, Z., Peng, Y., Ma, L., Zhang, C., & Li, P. (2008). Operation and control of flow manufacturing based on constraints management for high-mix/low-volume production. Frontiers of Mechanical Engineering in China, 3(4), 454–461. [41] Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John Wiley & Sons. [42] Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. MIT press. [43] Holtewert, P., & Bauernhansl, T. (2016). Interchangeable product designs for the increase of capacity flexibility in production systems. Procedia CIRP, 50, 252–257. [44] Horn, W. (1973). Minimizing average flow time with parallel machines. Operations Research, 21(3), 846–847. [45] Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., … Cheng-Yue, R. (2015). An empirical evaluation of deep learning on highway driving. ArXiv Preprint ArXiv:1504.01716. [46] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer …. [47] Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214(1), 108–132. [48] Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697. [49] Karaboga, N. (2009). A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of the Franklin Institute, 346(4), 328–348. [50] Katragjini, K., Vallada, E., & Ruiz, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research, 51(3), 780–797. [51] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., … Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30. [52] Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767–2787. [53] Kim, D.-W., Kim, K.-H., Jang, W., & Chen, F. F. (2002). Unrelated parallel machine scheduling with setup times using simulated annealing. Robotics and Computer-Integrated Manufacturing, 18(3–4), 223–231. [54] Kim, S.-I., Choi, H.-S., & Lee, D.-H. (2007). Scheduling algorithms for parallel machines with sequence-dependent set-up and distinct ready times: Minimizing total tardiness. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(6), 1087–1096. [55] King, J. (1976). The theory-practice gap in job-shop scheduling. Production Engineer, 55(3), 137–143. [56] Lee, Z.-J., Lin, S.-W., & Ying, K.-C. (2010). Scheduling jobs on dynamic parallel machines with sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 47(5), 773–781. [57] Lei, D., & Yang, H. (2022). Scheduling unrelated parallel machines with preventive maintenance and setup time: Multi-sub-colony artificial bee colony. Applied Soft Computing, 109154. [58] Liao, C.-J., Lee, C.-H., & Tsai, H.-T. (2016). Scheduling with multi-attribute set-up times on unrelated parallel machines. International Journal of Production Research, 54(16), 4839–4853. [59] Lin, C.-H., & Liao, C.-J. (2008). Makespan minimization for multiple uniform machines. Computers & Industrial Engineering, 54(4), 983–992. https://doi.org/10.1016/j.cie.2007.11.009 [60] Lin, C.-W., Lin, Y.-K., & Hsieh, H.-T. (2013). Ant colony optimization for unrelated parallel machine scheduling. The International Journal of Advanced Manufacturing Technology, 67(1), 35–45. [61] Lin, S.-W., Lee, Z.-J., Ying, K.-C., & Lu, C.-C. (2011). Minimization of maximum lateness on parallel machines with sequence-dependent setup times and job release dates. Computers & Operations Research, 38(5), 809–815. [62] Lin, Y.-K., & Hsieh, F.-Y. (2014). Unrelated parallel machine scheduling with setup times and ready times. International Journal of Production Research, 52(4), 1200–1214. [63] Logendran, R., McDonell, B., & Smucker, B. (2007). Scheduling unrelated parallel machines with sequence-dependent setups. Computers & Operations Research, 34(11), 3420–3438. [64] Lopes, M. J. P., & de Carvalho, J. V. (2007). A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times. European Journal of Operational Research, 176(3), 1508–1527. [65] Mamasioulas, A., Mourtzis, D., & Chryssolouris, G. (2020). A manufacturing innovation overview: Concepts, models and metrics. International Journal of Computer Integrated Manufacturing, 33(8), 769–791. [66] Martello, S., Soumis, F., & Toth, P. (1997). Exact and approximation algorithms for makespan minimization on unrelated parallel machines. Discrete Applied Mathematics, 75(2), 169–188. https://doi.org/10.1016/S0166-218X(96)00087-X [67] Nakajima, S. (1988). Introduction to TPM: total productive maintenance.(Translation). Productivity Press, Inc., 1988, 129. [68] Neoh, S.-C., Morad, N., Lim, C.-P., & Aziz, Z. A. (2009). A layered-encoding cascade optimization approach to product-mix planning in high-mix–low-volume manufacturing. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(1), 133–146. [69] Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management Science, 42(6), 797–813. [70] Panwalkar, S., Dudek, R., & Smith, M. (1973). Sequencing research and the industrial scheduling problem. 29–38. Springer. [71] Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., & Provost, F. (2014). Machine learning for targeted display advertising: Transfer learning in action. Machine Learning, 95(1), 103–127. [72] Pinedo, M. L. (2012). Scheduling (Vol. 29). Springer. [73] Rabadi, G., & Helal, M. (2006). A tabu search algorithm to minimize the makespan for the unrelated parallel machines scheduling problem with set... [74] Ramasesh, R. (1990). Dynamic job shop scheduling: A survey of simulation research. Omega, 18(1), 43–57. [75] Rocha, P. L., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2008). Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times. Computers & Operations Research, 35(4), 1250–1264. [76] Ruiz, R., & Andr?s-Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 57(5), 777–794. [77] Ruiz, R., & St?tzle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033–2049. [78] Schutten, J. M., & Leussink, R. (1996). Parallel machine scheduling with release dates, due dates and family setup times. International Journal of Production Economics, 46, 119–125. [79] Stevenson*, M., Hendry, L. C., & Kingsman, B. G. (2005). A review of production planning and control: The applicability of key concepts to the make-to-order industry. International Journal of Production Research, 43(5), 869–898. [80] Stoop, P. P., & Wiers, V. C. (1996). The complexity of scheduling in practice. International Journal of Operations & Production Management. [81] Toma?evi?, I., Stojanovi?, D., Slovi?, D., Simeunovi?, B., & Jovanovi?, I. (2021). Lean in High-Mix/Low-Volume industry: A systematic literature review. Production Planning & Control, 32(12), 1004–1019. [82] Veerakamolmal, P., & Gupta, S. M. (1998). High-mix/low-volume batch of electronic equipment disassembly. Computers & Industrial Engineering, 35(1–2), 65–68. [83] Veile, J. W., Kiel, D., M?ller, J. M., & Voigt, K.-I. (2019). Lessons learned from Industry 4.0 implementation in the German manufacturing industry. Journal of Manufacturing Technology Management. [84] Vose, M. D. (1999). The simple genetic algorithm: Foundations and theory. MIT press. [85] Wang, L., Zhou, G., Xu, Y., Wang, S., & Liu, M. (2012). An effective artificial bee colony algorithm for the flexible job-shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 60(1), 303–315. [86] Wu, Y.-H., Chang, Y.-H., Tien, Y.-J., Yu, C.-J., Wang, S.-D., & Wu, C.-H. (2020). Using partial combination models to improve prediction quality and transparency in mixed datasets. IEEE Access, 8, 132106–132120. [87] Yildiz, B., Bilbao, J. I., & Sproul, A. B. (2017). A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renewable and Sustainable Energy Reviews, 73, 1104–1122. [88] Ying, K.-C., & Lin, S.-W. (2014). Efficient wafer sorting scheduling using a hybrid artificial immune system. The Journal of the Operational Research Society, 65(2), 169–179. https://doi.org/10.1057/jors.2013.8 [89] Ying, Kuo-Ching, & Cheng, H.-M. (2010). Dynamic parallel machine scheduling with sequence-dependent setup times using an iterated greedy heuristic. Expert Systems with Applications, 37(4), 2848–2852. [90] Zhao, Z., Zhou, M., & Liu, S. (2021). Iterated greedy algorithms for flow-shop scheduling problems: A tutorial. IEEE Transactions on Automation Science and Engineering. [91] Zhou, K., Liu, T., & Zhou, L. (2015). Industry 4.0: Towards future industrial opportunities and challenges. 2147–2152. IEEE. [92] Zhu, Z., & Heady, R. B. (2000). Minimizing the sum of earliness/tardiness in multi-machine scheduling: A mixed integer programming approach. Computers & Industrial Engineering, 38(2), 297–305. [93] 張貴雯. (2021). 混合資料集之階層式展開集成學習預測方法. 臺灣大學工業工程學研究所. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83632 | - |
dc.description.abstract | 在少量多樣化的生產排程系統中,由於市場需求不穩定、產品多樣性高,導致備料困難和整備時間增加,使得機台無法有效利用產能。然而,一個好的排程應兼顧設備利用率、生產品質與準時交貨。為此,本研究出一種解決非相關平行機台排程問題的方法,利用多階段分解的概念,克服少量多樣化生產排程系統的限制,包含順序相依的整備時間、到達時間和機台的特性,最小化訂單延遲時間。 為了能提升排程求解效率,本研究提出的多階段排程方法將複雜的排程問題拆解為若干子問題,分別為工單指派、單機台工單排序和多機台排程問題:首先求解線性規劃模型,使指派的工單在各個機台達到工作量平衡,接著利用排序法則和交換方法改善工單在單一機台上的工作順序,最後再藉由調度工單至不同機台的方式,得到近似原問題的最佳解。 本研究亦將多階段排程方法應用於紡織業染色製程資料集並與文獻中結合變數鄰近下降法與反覆貪婪演算法、蜂群演算法、基因演算法所得出之優化演算法做比較,證實本研究之多階段排程方法在改善遲交訂單數與遲交天數方面可以顯著優於上述排程方法,找到排程最佳解。綜合以上,考慮生產製造環境的不確定性,本研究的方法不僅可以彈性的因應多變的生產環境、快速調配生產資源,更能提高產品達交率與顧客滿意度。 | zh_TW |
dc.description.abstract | Due to unstable market demand and high product diversity, material preparation will be difficult and setup times will increase, preventing capacity from being effectively utilized in a high-mix low-volume production scheduling system. A good schedule, on the other hand, should consider equipment utilization, production quality, and on-time delivery all at once. Therefore, this research proposes the multi-stage scheduling method for the problem of tardiness minimization on unrelated parallel machine scheduling with sequence-dependent setup times, release times, and processing constraints. To improve scheduling efficiency, the multi-stage scheduling method divides the complex scheduling problem into several sub-problem, including job allocation, single-machine job sequencing, and multi-machine scheduling. First, the linear programming model is used to allocate jobs and balance the workload of each machine. Then, sorting rules and exchange methods are used to improve the order of jobs on a single machine. Finally, an optimal solution that approximates the original problem is obtained by moving jobs to different machines. Moreover, the results show that the multi-stage scheduling method outperforms methods combining variable neighborhood decent with iterated greedy search, artificial bee colony, and genetic algorithm on the textile dyeing process dataset in terms of reducing the number of tardy orders and tardy days. This research considers the uncertainty of the manufacturing environment, allowing it to not only respond to changing production environments and quickly allocate production resources but also improve the order fill rate and customer satisfaction. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:12:28Z (GMT). No. of bitstreams: 1 U0001-1408202223082500.pdf: 2107790 bytes, checksum: 34f1d4a9a1925b7dc71d5597c56fa48b (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.1.1 少量多樣化生產的挑戰 1 1.1.2 現場生產排程的不確定性 2 1.1.3 加工時間與排程的複雜性 2 1.2 研究目的 3 1.2.1 克服排程求解挑戰 3 1.2.2 減少遲交時間以提升顧客滿意度 3 1.2.3 提升加工時間預測的準確性 4 1.2.4 研究目的總結 6 1.3 研究方法與流程 6 第二章 文獻回顧 9 2.1 少量多樣化生產 9 2.2 啟發式演算法在排程問題的應用 11 2.2.1 基因演算法 11 2.2.2 蜂群演算法 13 2.2.3 反覆貪婪演算法 13 2.3 排程問題分類及其應用 14 2.3.1 排程分類 14 2.3.2 PMSSDST+RT問題 16 2.3.3 UPMSSDST+RT的問題 17 2.3.4 小結 18 2.4 靜態派工法則 19 2.5 處理混合資料集的機器學習預測模型 19 2.5.1 現階段的機器學習預測模型 19 2.5.2 Xgboost 20 2.5.3 分層展開預測模型 21 2.5.4 階層式展開預測模型 21 第三章 問題假設及模型建構 22 3.1 研究問題描述與假設 22 3.1.1 研究問題描述 22 3.1.2 研究問題假設 23 3.2 研究問題符號及模型建構 25 3.2.1 參數與變數符號定義 25 3.2.2 數學規劃模型 26 3.2.3 小結 27 3.3 求解工單指派問題 28 3.3.1 求解線性規劃模型 28 3.3.2 線性規劃問題的整數解 30 3.4 求解單機台工單排序問題 31 3.4.1 給定個別機台的工單加工順序 31 3.4.2 初始解的編碼方式 32 3.4.3 修正初始解 32 3.5 求解多機台排程問題 34 第四章 數值範例與實驗結果及分析 36 4.1 程式設計與使用流程說明 36 4.2 數值範例 40 4.3 實驗結果與分析 41 4.3.1 總遲交天數 41 4.3.2 遲交訂單數 44 4.3.3 整備次數 45 4.3.4 運算效能運算 47 4.3.5 小結 48 第五章 結論與未來研究方向 50 5.1 結論 50 5.2 未來研究方向 51 參考文獻 52 附錄一 60 附錄二 65 | |
dc.language.iso | zh-TW | |
dc.title | 應用於少量多樣化生產的多階段排程方法 | zh_TW |
dc.title | Multi-stage Scheduling Method for High-mix Low-volume Manufacturing | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳文智(Wen-Chih Chen),李宛玲(Wan-Ling Li),余承叡(Cheng-Juei Yu) | |
dc.subject.keyword | 排程,非相關平行機台,最小化延遲時間,多階段分解,整備時間,到達時間, | zh_TW |
dc.subject.keyword | scheduling,unrelated parallel machines,minimum tardiness,multi-stage decomposition,setup time,release time, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU202202385 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-08-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1408202223082500.pdf 目前未授權公開取用 | 2.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。