請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8362
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊烽正(Feng-Cheng Yang) | |
dc.contributor.author | Yun-Yuan Liu | en |
dc.contributor.author | 劉昀沅 | zh_TW |
dc.date.accessioned | 2021-05-20T00:52:48Z | - |
dc.date.available | 2022-08-31 | |
dc.date.available | 2021-05-20T00:52:48Z | - |
dc.date.copyright | 2020-08-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-29 | |
dc.identifier.citation | Bilge, Ü., Ulusoy, G. (1995). A time window approach to simultaneous scheduling of machines and material handling system in an FMS. Operations Research, 43(6), 1058-1070. doi:10.1287/opre.43.6.1058 Brailsford, S. C., Potts, C. N., Smith, B. M. (1999). Constraint satisfaction problems: Algorithms and applications. European Journal of Operational Research, 119(3), 557-581. doi:Doi 10.1016/S0377-2217(98)00364-6 Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations research, 41(3), 157-183. Demir, Y., Kürşat İşleyen, S. (2013). Evaluation of mathematical models for flexible job-shop scheduling problems. Applied Mathematical Modelling, 37(3), 977-988. doi:https://doi.org/10.1016/j.apm.2012.03.020 Dincbas, M., Hentenryck, P. V., Simonis, H., Aggoun, A., Graf, T., Berthier, F. (1988). The Constraint Logic Programming Language CHIP. Ham, A. (2020). Transfer-robot task scheduling in job shop. International Journal of Production Research, 1-11. doi:10.1080/00207543.2019.1709671 Haralick, R. M., Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14(3), 263-313. doi:https://doi.org/10.1016/0004-3702(80)90051-X Jaffar, J., Lassez, J.-L. (1987). Constraint logic programming. Paper presented at the Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, Munich, West Germany. https://doi.org/10.1145/41625.41635 Kacem, I., Hammadi, S., Pierre, B. (2002). Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 31(1), 1-13. Kondili, E., Pantelides, C. C., Sargent, R. W. H. (1993). A general algorithm for short-term scheduling of batch operations—I. MILP formulation. Computers Chemical Engineering, 17(2), 211-227. doi:https://doi.org/10.1016/0098-1354(93)80015-F Ku, W. Y., Beck, J. C. (2016). Mixed Integer Programming models for job shop scheduling: A computational analysis. Computers Operations Research, 73, 165-173. doi:10.1016/j.cor.2016.04.006 Laborie, P. (2009). IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three Problems, Berlin, Heidelberg. Laborie, P., Rogerie, J., Shaw, P., Vilím, P. (2018). IBM ILOG CP optimizer for scheduling. Constraints, 23(2), 210-250. doi:10.1007/s10601-018-9281-x Liang, Y., Lin, L., Gen, M., Chien, C.-F. (2012). A hybrid evolutionary algorithm for FMS optimization with AGV dispatching. In Proceedings of the 42nd international conference on computers and industrial engineering, 296.291-296.214. Liao, C. J., You, C. T. (1992). An Improved Formulation for the Job-Shop Scheduling Problem. Journal of the Operational Research Society, 43(11), 1047-1054. Retrieved from <Go to ISI>://WOS:A1992JX29300004 Lin, L., Gen, M. (2009). A random key-based genetic algorithm for AGV dispatching in FMS. IJMTM, 16, 58-75. doi:10.1504/IJMTM.2009.021504 Manne, A. S. (1960). On the Job-Shop Scheduling Problem. Operations Research, 8(2), 219-223. doi:DOI 10.1287/opre.8.2.219 Ozguven, C., Ozbakir, L., Yavuz, Y. (2010). Mathematical models for job-shop scheduling problems with routing and process plan flexibility. Applied Mathematical Modelling, 34(6), 1539-1548. doi:10.1016/j.apm.2009.09.002 Sabin, D., Freuder, E. C. (1997). Understanding and improving the MAC algorithm. Principles and Practice of Constraint Programming - Cp 97, 1330, 167-181. Retrieved from <Go to ISI>://WOS:000077602600013 Sawik, T. (1996). A multilevel machine and vehicle scheduling in a flexible manufacturing system. Mathematical and Computer Modelling, 23(7), 45-57. doi:Doi 10.1016/0895-7177(96)00028-3 Simonis, H. (2008). A Problem Classification Scheme for Finite Domain Constraint Solving. Tsang, E. (1995). Foundations of constraint satisfaction. Journal of the Operational Research Society, 46(5), 666. Wagner, H. M. (1959). An integer linear-programming model for machine scheduling. Naval Research Logistics Quarterly, 6(2), 131-140. doi:10.1002/nav.3800060205 Xiao, H., Wu, X., Zeng, Y., Zhai, J. (2020). A CEGA-Based Optimization Approach for Integrated Designing of a Unidirectional Guide-Path Network and Scheduling of AGVs. Mathematical Problems in Engineering, 2020, 3961409. doi:10.1155/2020/3961409 Xie, C., Allen, T. T. (2015). Simulation and experimental design methods for job shop scheduling with material handling: a survey. International Journal of Advanced Manufacturing Technology, 80(1-4), 233-243. doi:10.1007/s00170-015-6981-x 李佳陽. (2019). 彈性零工生產與搬運排程問題及啟發式求解法. 國立臺灣大學, Available from Airiti AiritiLibrary database. (2019年) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8362 | - |
dc.description.abstract | 彈性零工生產與搬運排程問題源於使用無人搬運車(以下簡稱AGV)搬運工件的彈性製造系統。此類型問題複雜度高,難以建立數學規劃求解模型,以往大多使用啟發式演算法求解。本研究針對此問題研擬限制規劃求解模型,期能求得問題的最佳解。已知各產品的加工作業順序已、加工作業的候選機台和對應的加工時間、各設施間的取貨點和卸貨點之間的距離、以及AGV運行的速度。求解目標是排定產品加工作業執行的順序,選定加工機台並派遣AGV搬運工件,排出能使產品完工時間最小的排程。本研究除了限制規劃求解模型的研擬外,也使用IBM ILOG CPLEX的CP Optimizer建構模型。為了驗證本模型的求解效能,以(李佳陽, 2019)文獻中使用的中小型Y群標竿和大型L群標竿問題為測試範例。求解結果與GA+啟發式演算法比較。測試結果顯示本求解模型能求得比GA+法更佳的解,降低產品完工時間並提升機台和AGV的稼動率。此外,因實務上產品訂單可能來自多個客戶,本研究另研擬目標函式為最小化產品總完工時間的求解模型,測試不同情境下兩種模型的求解結果分析,供使用者根據排程目標選用。 | zh_TW |
dc.description.abstract | The Flexible Job and Material Delivery Scheduling Problem is derived from the flexible manufacturing system that transports the parts of products with Automated guided vehicle (hereinafter referred to as AGV). This type of problem is highly complicated, hence it’s difficult to establish the mathematical programming model. In the past, heuristic algorithms were mostly used to solve this problem. However, a constraint programming model developed in this paper in order to find the best solution of this problem. The processed sequence of each operation from each product, the candidate machines for each operation and the corresponding processing time, the distance between the pickup port and the delivery port of each facility, and the moving speed of AGVs are known. The goal is to schedule the processing order of each operation, select a candidate machine and dispatch an AGV to deliver the part that can minimize the largest completion time of the products. Aside from constructing the constraint programming model, our research also implemented the model with CP Optimizer of IBM ILOG CPLEX. With an aim to verify the effectiveness of the model, the small and medium scale Y group problems and the large-scale L group problems used in the academic literature (李佳陽, 2019) are tested as benchmarks. The solution is compared with the GA+ heuristic algorithm, and the result shows that this model can obtain a greater solution that reduces the largest completion time and improves the utilization rate of machines and AGVs. Since the production order may come from multiple customers in practice, this paper also developed another constraint programming model using the objective function of minimizing the total completion time of the products. Our research analyses the result of two models in different scenarios for users to choose according to their scheduling target. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:52:48Z (GMT). No. of bitstreams: 1 U0001-2907202018485400.pdf: 2103579 bytes, checksum: f0c2be6eaf9c8bd0f9b4cd081d5604b5 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法 3 第2章 文獻探討 5 2.1 典型生產排程問題 5 2.1.1. 零工式生產排程問題 5 2.1.2. 彈性零工式生產排程問題 5 2.2 考量搬運的彈性製造系統 6 2.3 彈性零工生產與搬運排程問題 8 2.4 限制條件滿足問題及限制條件優化問題 9 2.5 限制規劃 10 2.6 IBM ILOG® CP Optimizer 11 2.6.1. 區段變數(Interval Variable)及其限制設定 12 2.6.2. 序列變數(Sequence Variable)及其限制設定 16 第3章 彈性零工生產與搬運排程問題及限制規劃求解模型 21 3.1 彈性零工生產與搬運排程問題 21 3.1.1. 問題描述與假設 21 3.1.2. 彈性零工生產與搬運排程問題的數學模式 22 3.1.3. 產品、機台、和AGV的狀態轉換 26 3.2 時段與時段變數 31 3.3 限制規劃求解模型 33 3.3.1. 時段變數和序列變數 33 3.3.2. 限制條件 34 3.3.3. 目標函式 47 3.4 小節 49 第4章 彈性零工生產與搬運排程問題的求解測試及應用 52 4.1 標竿問題 52 4.1.1. 標竿問題格式 52 4.1.2. Y群問題 53 4.1.3. L群問題 55 4.2 求解系統 56 4.3 範例測試與效能分析 61 4.4 小結 72 第5章 結論與未來研究建議 74 5.1 結論 74 5.2 未來研究建議 75 參考文獻 76 附錄一 78 附錄二 80 附錄三 87 | |
dc.language.iso | zh-TW | |
dc.title | 以限制規劃求解彈性零工生產與搬運排程問題 | zh_TW |
dc.title | Constraint Programming Models For Flexible Job And Material Delivery Scheduling Problem | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊曙榮(Sunny S. Yang),王宏鍇(Hung-Kai Wang),羅士哲(Shih-Che Lo) | |
dc.subject.keyword | 彈性零工生產與搬運排程問題,彈性製造系統,限制規劃,IBM ILOG CPLEX CP Optimizer,無人搬運車, | zh_TW |
dc.subject.keyword | Flexible Job and Material Delivery Scheduling Problem,Flexible Manufacturing System,Constraint Programming,IBM ILOG CPLEX CP Optimizer,AGV, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU202002054 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2907202018485400.pdf | 2.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。