Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83602
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author吳家成zh_TW
dc.contributor.authorJia-Cheng Wuen
dc.date.accessioned2023-03-19T21:11:39Z-
dc.date.available2023-12-29-
dc.date.copyright2022-08-31-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] R. B. Ridley, "A new, continuous-time model for current-mode control (power converters)," in IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 271-280, April 1991.
[2] N. Kondrath and M. K. Kazimierczuk, “Control-to-output transfer function of DC-DC PWM buck converter in CCM,” IET Proc. on Power Electron., vol. 5, no. 5, pp. 582-590, May 2012.
[3] G. C. Verghese, C. A. Bruzos and K. N. Mahabir, "Averaged and sampled-data models for current mode control: a re-examination," 20th Annual IEEE Power Electronics Specialists Conference, 1989, pp. 484-491 vol.1.
[4] A. R. Brown and R. D. Middlebrook, "Sampled-data modeling of switching regulators," 1981 IEEE Power Electronics Specialists Conference, 1981, pp. 349-369.
[5] V. Vorperian, "Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode," in IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 490-496, May 1990
[6] Y. Yu, F. C. Y. Lee and J. Kolecki, "Modeling and analysis of power processing systems," 1979 IEEE Power Electronics Specialists Conference, 1979.
[7] Yu-Chien Hsu, Dan Chen, Sheng-Fu Hsiao, Chun-Shih Huang and Hung-Yu Cheng, "Modeling of the control behavior of current-mode constant on-time boost converters," 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), 2015, pp. 1-6
[8] Y. Yan, F. C. Lee and P. Mattavelli, "Analysis and design of average current mode control using describing function-based equivalent circuit model," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 2237-2244.
[9] X. Jing and P. K. T. Mok, "A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum," in IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2442-2456, Oct. 2013.
[10] X. Hong, J. Wu and C. Wei, "98.1%-Efficiency Hysteretic-Current-Mode Noninverting Buck-Boost DC-DC Converter With Smooth Mode Transition," in IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2008-2017, March 2017.
[11] Yu-Chien Hsu, Dan Chen, Sheng-Fu Hsiao, Chun-Shih Huang and Hung-Yu Cheng, "Modeling of the control behavior of current-mode constant on-time boost converters," 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), 2015, pp. 1-6.
[12] J. Li and F. C. Lee, "New Modeling Approach and Equivalent Circuit Representation for Current-Mode Control," in IEEE Transactions on Power Electronics, vol. 25, no. 5, pp. 1218-1230, May 2010.
[13] R. Ahmadi, D. Paschedag and M. Ferdowsi, "Closed-loop input and output impedances of DC-DC switching converters operating in voltage and current mode control," IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, 2010, pp. 2311-2316.
[14] P. Huang, W. Wu, H. Ho and K. Chen, "Hybrid Buck–Boost Feedforward and Reduced Average Inductor Current Techniques in Fast Line Transient and High-Efficiency Buck-Boost Converter," in IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 719-730, March 2010.
[15] Y. Yan, F. C. Lee and P. Mattavelli, "Analysis and design of average current mode control using describing function-based equivalent circuit model," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 2237-2244.
[16] F. Yu, F. C. Lee and P. Mattavelli, "A small signal model for average current mode control based on describing function approach," 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 405-412.
[17] J. T. Mossoba and P. T. Krein, "Output impedance of high performance current mode dc-dc buck converters, with applications to voltage-regulator module control combinations," Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04., 2004, pp. 1315-1321 vol.2.
[18] C. Ling, C. Wen, W. Huang and X. Yang, "Design of a novel nonlinear slope compensation circuit for peak current mode boost DC-DC converter," 2010 International Conference on Anti-Counterfeiting, Security and Identification, 2010, pp. 63-66.
[19] B. Bryant and M. K. Kazimierczuk, "Voltage loop of boost PWM DC-DC converters with peak current-mode control," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 1, pp. 99-105, Jan. 2006.
[20] Song, Chunping. “Accuracy Analysis of Constant-On Current-Mode DC-DC Converters for Powering Microprocessors.” 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition (2009): 97-101.
[21] Yi-Rong Huang. “The Stability Analysis and Improvement of Four-Switch Buck/Boost Converter with Peak Virtual Inductor Current Mode Control,” Master Thesis, Graduate Institute of Electrical Engineering, National Taiwan University, 2017, pp. 1-98.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83602-
dc.description.abstract當提到物聯網(IoT)和智慧裝置時,它們的運算能力通常由微控制器(MCU)來驅動,由於微控制器經常會在工作模式和待機模式間切換,因此其電源轉換器需要快速的負載暫態響應。本論文分析的電路拓撲結構是一個四開關降壓/升壓轉換器,可以在降壓或升壓模式下運行,用於物聯網應用。控制方案為立錡科技公司提出的改良式峰值虛擬電感電流模式(Improved PVICM)控制方式,該控制方案通過輸出電壓反饋耦合產生虛擬電感電流,以改善暫態響應和負脈衝(Undershoot)。本論文旨在建立改良式峰值虛擬電感電流模式控制之降壓/升壓轉換器的小訊號模型,建模方法基於修正型平均模型,為R.B.Ridley為峰值電流模式(PCM)控制建模所使用的方法。改良式峰值虛擬電感電流模式控制之四開關降壓/升壓轉換器已用離散元件實現,建模中得出的轉移函數,包括控制到輸出的轉移函數和迴路增益,與Simplis模擬和實驗結果相匹配,這證實了該模型可以預測實際電路的小信號特性。zh_TW
dc.description.abstractWhen it comes to the Internet of Things (IoT) and smart devices, their computational ability is usually driven by microcontrollers or MCUs. Since the microcontrollers often switch between work mode and sleep mode, their power converter requires a fast load transient response. The circuit topology analyzed in this thesis is a four-switch buck/boost converter that can operate in either buck or boost mode for IoT applications. The control scheme is the Improved Peak Virtual Inductor Current Mode (Improved PVICM) control proposed by Richtek Technology, which generates a virtual inductor current with the output voltage feedback coupling to improve the transient response and the undershoot. The thesis aims to develop a small-signal model of the Buck/Boost converter with Improved Peak Virtual Inductor Current Mode control. The small-signal modeling approach is based on the modified average modeling method, which is used to model the Peak Current Mode (PCM) control by R. B. Ridley [1]. A four-switch buck/boost converter with Improved PVICM control was implemented with discrete components. The derived transfer functions, including the control-to-output transfer function and loop gain, match with Simplis simulations and the experiment. This confirms that the model can predict the small-signal characteristics of the actual circuit.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:11:39Z (GMT). No. of bitstreams: 1
U0001-2408202214092400.pdf: 5775999 bytes, checksum: d34c7f11bc8954e2b6557933bf7f5174 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
Table of Contents V
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation 2
1.3 Thesis Outline 3
Chapter 2 Topology and Operation of Four-Switch Buck/Boost Converter with Improved PVICM Control 5
2.1 Four-Switch Buck/Boost Converter 5
2.2 Improved PVICM Control 8
2.3 Overall Circuit Topology 10
Chapter 3 Analysis of Four-Switch Buck/Boost Converter with Improved PVICM Control 13
3.1 Review of Small-Signal Model Derivation of PCM Control 13
3.2 Small-Signal Model Derivation of Improved PVICM Control 16
3.2.1 Buck mode Small-Signal Model 16
3.2.2 Boost mode Small-Signal Model 29
3.3 Simulation Verifications of Improved PVICM Control 36
3.3.1 Description of Simulation Settings 36
3.3.2 Small-Signal Model Verifications 36
3.3.2.1 Control-to-Output Transfer Function Gvc(s) – Buck Mode 36
3.3.2.2 Control-to-Output Transfer Function Gvc(s) – Boost Mode 38
3.4 Design Considerations and Examples of Boost Mode Improved PVICM Control 40
3.4.1 Simplify the transfer function into pole-zero separate form 40
3.4.2 Virtual Inductor Current Loop Design 42
3.4.2.1 ωzVIC Pre-compensation and Right-half-plane Zero Issue 43
3.4.2.2 External Ramp Slope Compensation 43
3.4.3 Compensation Loop Design Consideration 46
Chapter 4 Experimental Verification of Boost Mode Improved PVICM Control 51
4.1 Description of Hardware Implementation 51
4.2 Discrete component composition of subcircuits 54
4.3 Control Law Verifications (Steady State) 57
4.4 Small-Signal Model Verifications 59
4.5 Transient Response Verifications 60
4.6 Summary 63
Chapter 5 Conclusions and Future Works 64
5.1 Conclusions 64
5.2 Future Works 64
Appendix A Derivation process of Gvc(s) of pole and zero separated form 67
Appendix B Bill of Materials (BOM) List 70
Reference 71
-
dc.language.isoen-
dc.subject小訊號模型zh_TW
dc.subject四開關降壓/升壓型轉換器zh_TW
dc.subject峰值虛擬電感電流模式控制zh_TW
dc.subject微控制器zh_TW
dc.subject負載暫態響應zh_TW
dc.subjectLoad Transient Responseen
dc.subjectPeak Virtual Inductor Current Mode Controlen
dc.subjectFour-switch Buck/Boost Converteren
dc.subjectSmall-Signal Modelen
dc.subjectMicrocontrolleren
dc.title改良虛擬電感電流控制之四開關降壓/升壓轉換器建模與分析zh_TW
dc.titleModeling and Analysis of Four-Switch Buck/Boost Converter with Improved Peak Virtual Inductor Current Controlen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳耀銘;林宗賢zh_TW
dc.contributor.oralexamcommitteeYaow-Ming Chen;Tsung-Hsien Linen
dc.subject.keyword峰值虛擬電感電流模式控制,四開關降壓/升壓型轉換器,小訊號模型,微控制器,負載暫態響應,zh_TW
dc.subject.keywordPeak Virtual Inductor Current Mode Control,Four-switch Buck/Boost Converter,Small-Signal Model,Microcontroller,Load Transient Response,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202202756-
dc.rights.note未授權-
dc.date.accepted2022-08-25-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
5.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved