請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83600
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭信宏(Shin-Hong Shiao) | |
dc.contributor.author | Yu-Chen Lee | en |
dc.contributor.author | 李昱蓁 | zh_TW |
dc.date.accessioned | 2023-03-19T21:11:35Z | - |
dc.date.copyright | 2022-10-05 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-24 | |
dc.identifier.citation | 1. Organization, W.H. and UNICEF, Global vector control response 2017-2030. 2017, World Health Organization. 2. Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-7. 3. Cogan, J.E. Dengue and severe dengue. 2022. 4. Roy, S.K. and S. Bhattacharjee, Dengue virus: epidemiology, biology, and disease aetiology. Canadian Journal of Microbiology, 2021. 67(10): p. 687-702. 5. Perera, R. and R.J. Kuhn, Structural proteomics of dengue virus. Current Opinion in Microbiology, 2008. 11(4): p. 369-377. 6. Kimura, R., Inoculation of degue virus into mice. Nippon Igaku, 1944. 3379: p. 629-633. 7. Harapan, H., et al., Dengue: A Minireview. Viruses, 2020. 12(8): p. 829. 8. Guzman, M.G. and E. Harris, Dengue. The Lancet, 2015. 385(9966): p. 453-465. 9. Katzelnick, L.C., et al., Antibody-dependent enhancement of severe dengue disease in humans. Science (New York, N.Y.), 2017. 358(6365): p. 929-932. 10. Boonnak, K., et al., Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. Journal of virology, 2011. 85(4): p. 1671-1683. 11. Guzman, M.G., M. Alvarez, and S.B. Halstead, Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Archives of Virology, 2013. 158(7): p. 1445-1459. 12. de Alwis, R., et al., Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog, 2014. 10(10): p. e1004386. 13. Thomas, S.J. and I.-K. Yoon, A review of Dengvaxia?: development to deployment. Human vaccines & immunotherapeutics, 2019. 15(10): p. 2295-2314. 14. Sridhar, S., et al., Effect of dengue serostatus on dengue vaccine safety and efficacy. New England Journal of Medicine, 2018. 379(4): p. 327-340. 15. Olajiga, O., et al., Vertebrate Responses against Arthropod Salivary Proteins and Their Therapeutic Potential. Vaccines, 2021. 9(4): p. 347. 16. Pierson, T.C. and M.S. Diamond, Degrees of maturity: the complex structure and biology of flaviviruses. Current Opinion in Virology, 2012. 2(2): p. 168-175. 17. Chan, C.Y.Y., et al., Antibody-Dependent Dengue Virus Entry Modulates Cell Intrinsic Responses for Enhanced Infection. mSphere, 2019. 4(5): p. e00528-19. 18. van der Schaar, H.M., et al., Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS pathogens, 2008. 4(12): p. e1000244-e1000244. 19. Pierson, T.C. and M. Kielian, Flaviviruses: braking the entering. Current opinion in virology, 2013. 3(1): p. 3-12. 20. Screaton, G., et al., New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol, 2015. 15(12): p. 745-59. 21. Prasad, V.M., et al., Structure of the immature Zika virus at 9 ? resolution. Nature structural & molecular biology, 2017. 24(2): p. 184-186. 22. Pierson, T.C. and M.S. Diamond, The continued threat of emerging flaviviruses. Nature microbiology, 2020. 5(6): p. 796-812. 23. Guzman, M.G., et al., Dengue infection. Nature Reviews Disease Primers, 2016. 2(1): p. 16055. 24. Cheng, G., et al., Mosquito Defense Strategies against Viral Infection. Trends in parasitology, 2016. 32(3): p. 177-186. 25. Foote, R.H., <i>Aedes Aegypti (L.), the Yellow Fever Mosquito</i>. Its life history, bionomics, and structure. Sir S. Rickard Christophers. Cambridge University Press, New York, 1960. xii + 739 pp. Illus. $14.50. Science, 1961. 133(3463): p. 1473-1474. 26. Calvo, E., et al., Function and Evolution of a Mosquito Salivary Protein Family*. Journal of Biological Chemistry, 2006. 281(4): p. 1935-1942. 27. Ribeiro, J.M.C., et al., An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC genomics, 2007. 8: p. 6-6. 28. Thangamani, S. and S.K. Wikel, Differential expression of Aedes aegypti salivary transcriptome upon blood feeding. Parasites & vectors, 2009. 2(1): p. 34-34. 29. Calvo, E., et al., An insight into the sialotranscriptome of the West Nile mosquito vector, Culex tarsalis. BMC genomics, 2010. 11: p. 51-51. 30. Machain-Williams, C., et al., Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity. Parasite Immunol, 2012. 34(1): p. 15-22. 31. Surasombatpattana, P., et al., Aedes aegypti Saliva Enhances Dengue Virus Infection of Human Keratinocytes by Suppressing Innate Immune Responses. Journal of Investigative Dermatology, 2012. 132(8): p. 2103-2105. 32. Conway, M.J., et al., Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. Journal of virology, 2014. 88(1): p. 164-175. 33. Surasombatpattana, P., et al., Aedes aegypti Saliva Contains a Prominent 34-kDa Protein that Strongly Enhances Dengue Virus Replication in Human Keratinocytes. Journal of Investigative Dermatology, 2014. 134(1): p. 281-284. 34. McCracken, M.K., et al., Aedes aegypti salivary protein 'aegyptin' co-inoculation modulates dengue virus infection in the vertebrate host. Virology, 2014. 468-470: p. 133-139. 35. Chagas, A.C., et al., Collagen-binding protein, Aegyptin, regulates probing time and blood feeding success in the dengue vector mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(19): p. 6946-6951. 36. Ribeiro, J.M.C., et al., A Deep Insight into the Sialome of Male and Female Aedes aegypti Mosquitoes. PLOS ONE, 2016. 11(3): p. e0151400. 37. Conway, M.J., et al., Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection. PLOS Neglected Tropical Diseases, 2016. 10(9): p. e0004941. 38. Martin-Martin, I., et al., ADP binding by the Culex quinquefasciatus mosquito D7 salivary protein enhances blood feeding on mammals. Nature communications, 2020. 11(1): p. 2911-2911. 39. Martin-Martin, I., et al., Biochemical characterization of AeD7L2 and its physiological relevance in blood feeding in the dengue mosquito vector, Aedes aegypti. The FEBS Journal, 2021. 288(6): p. 2014-2029. 40. Sri-in, C., et al., A salivary protein of Aedes aegypti promotes dengue-2 virus replication and transmission. Insect Biochemistry and Molecular Biology, 2019. 111: p. 103181. 41. Elanga Ndille, E., et al., First attempt to validate human IgG antibody response to Nterm-34kDa salivary peptide as biomarker for evaluating exposure to Aedes aegypti bites. PLoS Negl Trop Dis, 2012. 6(11): p. e1905. 42. Wasinpiyamongkol, L., et al., Blood-feeding and immunogenic Aedes aegypti saliva proteins. Proteomics, 2010. 10(10): p. 1906-16. 43. Surasombatpattana, P., et al., Aedes aegypti saliva contains a prominent 34-kDa protein that strongly enhances dengue virus replication in human keratinocytes. J Invest Dermatol, 2014. 134(1): p. 281-284. 44. Meister, M., B. Lemaitre, and J.A. Hoffmann, Antimicrobial peptide defense in Drosophila. Bioessays, 1997. 19(11): p. 1019-26. 45. Lemaitre, B. and J. Hoffmann, The host defense of Drosophila melanogaster. Annu Rev Immunol, 2007. 25: p. 697-743. 46. Hancock, R.E.W. and A. Rozek, Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiology Letters, 2002. 206(2): p. 143-149. 47. Mukherjee, D., et al., The Mosquito Immune System and the Life of Dengue Virus: What We Know and Do Not Know. Pathogens (Basel, Switzerland), 2019. 8(2): p. 77. 48. Zhang, R., et al., Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells. Frontiers in cellular and infection microbiology, 2017. 7: p. 22-22. 49. Weng, S.C. and S.H. Shiao, Frizzled 2 is a key component in the regulation of TOR signaling-mediated egg production in the mosquito Aedes aegypti. Insect Biochem Mol Biol, 2015. 61: p. 17-24. 50. Chang, C.H., et al., The non-canonical Notch signaling is essential for the control of fertility in Aedes aegypti. PLoS Negl Trop Dis, 2018. 12(3): p. e0006307. 51. Sri-In, C., et al., A simplified method for blood feeding, oral infection, and saliva collection of the dengue vector mosquitoes. PLoS One, 2020. 15(5): p. e0233618. 52. Sakuma, C. and H. Kanuka, A simple and affordable method for estimating the fluid volume a mosquito sucks using food dyes. Tropical Medicine and Health, 2021. 49(1): p. 13. 53. Mitra, S., et al., Olfaction-Related Gene Expression in the Antennae of Female Mosquitoes From Common Aedes aegypti Laboratory Strains. Frontiers in Physiology, 2021. 12. 54. de Boer, J.G., et al., Avoidance of the Plant Hormone Cis-Jasmone by Aedes aegypti Depends On Mosquito Age in Both Plant and Human Odor Backgrounds. J Chem Ecol, 2021. 47(8-9): p. 810-818. 55. Tallon, A.K., S.R. Hill, and R. Ignell, Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Scientific Reports, 2019. 9(1): p. 43. 56. Au - Li, I., et al., Using the Fluorescent Dye, Rhodamine B, to Study Mating Competitiveness in Male Aedes aegypti Mosquitoes. JoVE, 2021(171): p. e62432. 57. Hill, S.R., T. Taparia, and R. Ignell, Regulation of the antennal transcriptome of the dengue vector, Aedes aegypti, during the first gonotrophic cycle. BMC Genomics, 2021. 22(1): p. 71. 58. Jiang, X., et al., Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes. Genome Biol Evol, 2015. 7(7): p. 1914-24. 59. Shetty, V., et al., Impact of disabled circadian clock on yellow fever mosquito Aedes aegypti fitness and behaviors. Scientific Reports, 2022. 12(1): p. 6899. 60. Xiang, B.W.W., et al., Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host. Proceedings of the National Academy of Sciences, 2022. 119(3): p. e2117589119. 61. Clements, A.N., The biology of mosquitoes. Volume 1: development, nutrition and reproduction. 1992: Chapman & Hall. 62. Sim, S., J.L. Ramirez, and G. Dimopoulos, Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. PLOS Pathogens, 2012. 8(3): p. e1002631. 63. Dong, S., et al., Pleiotropic Odorant-Binding Proteins Promote Aedes aegypti Reproduction and Flavivirus Transmission. mBio, 2021. 12(5): p. e0253121. 64. Arnoldi, I., et al., A salivary factor binds a cuticular protein and modulates biting by inducing morphological changes in the mosquito labrum. Current Biology, 2022. 65. Eleftherianos, I., et al., Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. International Journal of Biological Macromolecules, 2021. 191: p. 277-287. 66. Sri-In, C., et al., Effects of Aedes aegypti salivary protein on duck Tembusu virus replication and transmission in salivary glands. Acta Trop, 2022. 228: p. 106310. 67. Manning, J.E., et al., Mosquito Saliva: The Hope for a Universal Arbovirus Vaccine? J Infect Dis, 2018. 218(1): p. 7-15. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83600 | - |
dc.description.abstract | 登革病毒隸屬於黃病毒屬,而埃及斑蚊為傳播此病毒的重要病媒蚊之一,目前全球大約有1/3的人口暴露於受登革病毒感染的風險之中。登革病毒在病媒蚊體內的複製過程中,會與蚊子體內之蛋白有相互作用,而此階段對於病毒的繁殖極為關鍵。於過往的實驗裡,我們發現蚊子體內的一個唾腺蛋白並命名為AaSG34,其具有影響登革病毒複製與傳播之能力。AaSG34會促進登革病毒於蚊子唾腺內的複製,進而提高人類受病媒蚊叮咬後染疫的機率。然而,關於AaSG34於蚊子唾腺內如何調控登革病毒之複製,其詳細的分子機制則尚待釐清。因而本篇研究中,我們著重於探討AaSG34與登革病毒兩者間相互作用之詳盡分子機制。由於AaSG34特定表現於埃及斑蚊的唾腺,所以首先我們想了解埃及斑蚊的唾液是否會改變病毒的穩定性,我們的結果顯示,埃及斑蚊的唾液具有提升四型登革病毒穩定度與感染力之效益。透過Far-Western blotting assay及免疫沉澱法,我們也發現AaSG34與登革病毒之NS1、E此兩種病毒蛋白之間具有交互作用。並且在抑制AaSG34的情況下,會促進蚊子體內部分的抗菌?(Antimicrobial peptides, AMP)的表現上升致使登革病毒的複製量降低。此外,我們同時發現AaSG34表現量降低會影響部分嗅覺結合蛋白(olfactory binding protein, OBP)的基因表現,進而使埃及斑蚊的吸血行為產生改變。綜觀我們的研究結果,AaSG34除具有調控登革病毒的複製能力外,尚與病媒蚊吸血行為存在著關聯性,此二者與登革病毒之傳播脣齒相依。因而我們認為此篇研究在未來,將有助於病蚊媒傳播疾病防治策略之制定。 | zh_TW |
dc.description.abstract | Dengue virus (DENV) is a member of the genus Flavivirus that causes dengue fever and is responsible for tremendous human morbidity and mortality worldwide. DENV is transmitted to humans by Aedes aegypti mosquitoes. During viral replication in the mosquito and transmission to a new host, DENV interacts with a variety of mosquito proteins, which are important for each step of the viral cycle. We have recently investigated the effect of a salivary protein AaSG34 on DENV replication and transmission. We demonstrated that AaSG34 increases DENV replication in mosquito salivary glands and promotes the viral transmission to the mammalian host. However, the detailed molecular mechanisms of how AaSG34 regulates DENV replication and the role of AaSG34 in mosquito salivary glands remain largely unknown. In this study, we aim to investigate the detailed molecular interactions between AaSG34 and DENV. Given that AaSG34 is a salivary gland-specific protein, we first determined the effect of mosquito saliva in maintaining virus stability. We showed that the saliva of Aedes aegypti significantly stabilizes DENV and promotes the infectivity of four serotypes of DENV. We also showed that AaSG34 interacts with DENV NS1 and E proteins by Far-Western blotting analysis and immunoprecipitation assay. Inhibition of AaSG34 enhanced several antimicrobial peptides (AMPs) and suppressed dengue viral replication in mosquitoes. In addition, we have observed that silencing of AaSG34 resulted in the impairment of mosquito feeding frequency probably which were through regulating olfactory binding proteins (OBPs). Taken together, our results suggested that AaSG34 plays a dual role in the promotion of dengue virus replication and the host-seeking behavior of mosquitoes. In consequence, clarifying the function of AaSG34 provides new tools for generating novel vector control strategies in the future. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:11:35Z (GMT). No. of bitstreams: 1 U0001-2308202217170300.pdf: 2970933 bytes, checksum: 8778fee9fb1b0411705cde9f0b94a5ef (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Acknowledgement ii 中文摘要 iv Abstract v Table of Contents vii List of figures xi List of tables xii Chapter 1. Introduction 1 1.1. Mosquito-borne disease 1 1.2. Dengue fever 1 1.3. Dengue virus life cycle 3 1.3.1. Dengue virus replication in the host cell 3 1.3.2. Dengue virus replication in vector 5 1.4. Aedes aegypti life cycle 6 1.5. Salivary gland and saliva protein in the mosquitoes 7 1.6. AaSG34 of Aedes aegypti 8 1.7. Antimicrobial peptides of Aedes aegypti 9 1.8. Specific aims and hypothesis 10 Chapter 2. Materials and Methods 12 2.1. Materials and Methods 12 2.1.1. Mosquitoes rearing 12 2.1.2. Saliva collection 13 2.1.3. RNA isolation 13 2.1.4. Reverse transcription (RT) 14 2.1.5. Quantitative polymerase chain reaction(qPCR) 14 2.1.6. Double stranded RNA synthesis and purification 15 2.1.7. RNA interference 18 2.1.8. Cell culture 18 2.1.9. Virus culture 19 2.1.10. DENV infection 19 2.1.11. Plague assay 20 2.1.12. Focus-forming assay (FFA) 20 2.1.13. Protein extraction and western blotting 21 2.1.14. Far-western blot analysis 23 2.1.15. Immunoprecipitation (IP) 23 2.1.16. Feeding behavior 24 2.1.17. Egg-laying behavior 25 2.1.18. Mating assay 26 2.1.19. Statistical analysis 26 Chapter 3. Results 27 3.1. Saliva of Aedes aegypti enhanced the stability and infectivity of Dengue virus in the ATC-10 cell line 27 3.2. AaSG34 interacted with viral E and NS1 protein of dengue 28 3.3. AaSG34 inhibited the AMPs induction in DENV-infected salivary glands 29 3.4. AaSG34 promoted host-seeking behavior of mosquitoes 31 3.5. Knocking down AaSG34 had no effect on the fecundity and mating activity of mosquitoes 32 Chapter 4. Discussion 35 Figures 40 Appendixes of Tables 66 Table 1. Oligonucleotides used in this study 66 Table 2. Antibodies used in this study 69 Supplementary 70 References 71 | |
dc.language.iso | en | |
dc.title | 探討埃及斑蚊唾液蛋白對登革病毒複製與病媒蚊攝食行為之影響 | zh_TW |
dc.title | A salivary protein of Aedes aegypti controls dengue virus replication and host-seeking behavior | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張永祺(Yung-Chiy Chang),林志萱(JR-Shiuan Lin) | |
dc.subject.keyword | 埃及斑蚊,登革病毒,嗅覺結合蛋白,唾腺蛋白,抗菌?,吸血行為, | zh_TW |
dc.subject.keyword | Aedes aegypti,dengue virus,odorant-binding protein,saliva protein,antimicrobial peptides,host-seeking behavior, | en |
dc.relation.page | 79 | |
dc.identifier.doi | 10.6342/NTU202202717 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-08-25 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2308202217170300.pdf 目前未授權公開取用 | 2.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。