Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 分子暨比較病理生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83595
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃威翔(Wei-Hsiang Huang)-
dc.contributor.authorAnn Nee Leeen
dc.contributor.author李艾妮zh_TW
dc.date.accessioned2023-03-19T21:11:26Z-
dc.date.copyright2022-08-29-
dc.date.issued2022-
dc.date.submitted2022-08-25-
dc.identifier.citation指定禁止飼養輸入或輸出之動物。(2021) 臺北市: 行政院農業委員會。 李俊億,謝幸媚。(2008) 親子鑑定的演算邏輯。 臺北市: 臺大出版中心。 李學勇。(1989) 大學科學叢書族群遺傳學導論。 臺北市: 聯經出版事業公司。 楊宗倫。(2008) 從Y染色體單體型探討台灣犬的種緣關係。 臺北市: 國防醫學院生物化學研究所。 郭力瑋。(2012) 台灣犬多形性STR標誌基因庫建立及基因多態性分析。 嘉義: 國立嘉義大學農學院獸醫學系。 AKC Dog breeds. (2022). American Kennel Club. https://www.akc.org/dog-breeds/ American bully official UKC breed standard. (2013). United Kennel Club https://www.ukcdogs.com/docs/breeds/american-bully-breed.pdf DeRosa, A. (2011). Australian officials to kill Pit Bulls, other 'dangerous' breeds. VinNewsService. https://news.vin.com/default.aspx?pid=210&Id=5120474 Dog bite risk and prevention: The role of breed. (2014). American Veterinary Medical Association. https://www.avma.org/resources-tools/literature-reviews/dog-bite-risk-and-prevention-role-breed Dog Breed Info Center?: American bully. (1998-2022). Dog Breed Info Center?. https://www.dogbreedinfo.com/a/americanbully.htm#:~:text=The%20American%20Bully%20was%20created,and%20sometimes%20non%20bully%20breeds. FCI breeds nomenclature. (2022). Federation Cynologique Internationale http://www.fci.be/en/nomenclature/ Gephardt, B. (2013). Some dog breeds too risky for insurance companies. KSL Broadcasting Salt Lake City Utah. https://www.ksl.com/article/25091614/some-dog-breeds-too-risky-for-insurance-companies Get to know the boxer. (2022). American Kennel Club. http://www.akc.org/dog-breeds/boxer/#standard The history of Pit Bulls. (2021). Love-A-bull. https://love-a-bull.org/resources/the-history-of-pit-bulls/#:~:text=The%20history%20of%20the%20Pit,known%20as%20%E2%80%9Cbull%20baiting%E2%80%9D. Level I trauma studies. (2021). DogsBite.org. https://www.dogsbite.org/dog-bite-statistics-studies-level-1-trauma-table-2011-present.php Padmabandu, M. (2022). Discover your dog’s genetic relatives with Embark’s relative finder. Embark Veterinary Inc. https://embarkvet.com/resources/dog-genetics/understanding-genetic-relatedness-in-dogs/ Peterson, L. (2022). Can a registered purebred dog appear as mixed breed on a DNA test? Embark Veterinary Inc. https://embarkvet.com/resources/dog-breeders/can-a-registered-purebred-dog-appear-as-mixed-breed-on-a-dna-test-2/ tKC Breed standards. (2020). The Kennel Club. https://www.thekennelclub.org.uk/breed-standards/ UKC Breed standards. (2020). United Kennel Club. https://www.ukcdogs.com/breed-standards Wilson, M. (2021). What is The American bully? The bully breed 101. https://breedingbusiness.com/what-is-the-american-bully-standard-xl-pocket/ An act to amend the Dog Owners' Liability Act to increase public safety in relation to dogs, including pit bulls, and to make related amendments to the Animals for Research Act. (2005). ASPCA policy and position statements. (2019). https://web.archive.org/web/20190616202010/https://www.aspca.org/about-us/aspca-policy-and-position-statements/position-statement-breed-specific-legislation ASPCA position statement on dangerous dog laws. (2022). https://www.aspca.org/about-us/aspca-policy-and-position-statements/position-statement-dangerous-dog-laws Certeriorari — Summary dispositions (Order list: 552 U.S.). (2008). https://web.archive.org/web/20100607043850/http://www.supremecourt.gov/orders/courtorders/021908pzor.pdf Cochrane v. Ontario (Attorney General), 2008 ONCA 718. (2008). https://www.canlii.org/en/on/onca/doc/2008/2008onca718/2008onca718.pdf Dangerous dog law: Guidance for enforcers. (2009). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69263/dogs-guide-enforcers.pdf List of scheduled dogs. (2010). https://web.archive.org/web/20150827031216/http://www.ava.gov.sg/docs/default-source/tools-and-resources/resources-for-businesses/summaryofab_doglicensingcontrol_rules_15nov2010 Nolen, R. S. (2017). The dangerous dog debate. https://www.avma.org/javma-news/2017-11-15/dangerous-dog-debate Revised Municipal Code — City and County of Denver, Colorado. (2009). Swann, K. E. (2009a). Irrationality unleashed: The pitfalls of breed-specific legislation (UMKC Law Review, Issue. https://web.archive.org/web/20190326163501/https://heinonline.org/HOL/LandingPage?collection=journals&handle=hein.journals%2Fumkc78&div=32&id=&page= Toledo v. Tellings, 114 Ohio St.3d 278, 2007-Ohio-3724. (2009). https://web.archive.org/web/20090512062527/https://www.sconet.state.oh.us/rod/docs/pdf/0/2007/2007-Ohio-3724.pdf Who let the dogs out? (2009). https://web.archive.org/web/20110614160617/http://www.law.ualberta.ca/centres/ccs/news/?id=310#_edn8 Pit Bulls being sold as Staffy crosses by the RSPCA, Australia. (2012). Youtube. https://www.youtube.com/watch?v=giaxUm4pZRc Aasen, E., & Medrano, J. F. (1990). Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Bio/Technology, 8(12), 1279-1281. Anderson, A. D., & Weir, B. S. (2007). A maximum-likelihood method for the estimation of pairwise relatedness in structured populations. Genetics, 176(1), 421-440. Angleby, H., & Savolainen, P. (2005). Forensic informativity of domestic dog mtDNA control region sequences. Forensic Science International, 154(2-3), 99-110. Arif, I., & Khan, H. (2009). Molecular markers for biodiversity analysis of wildlife animals: a brief review. Animal Biodiversity and Conservation, 32(1), 9-17. Bailey, C. M., Hinchcliff, K. M., Moore, Z., & Pu, L. L. Q. (2020). Dog bites in the United States from 1971 to 2018: A systematic review of the peer-reviewed literature. Plastic Reconstructive Surgery, 146(5), 1166-1176. https://doi.org/10.1097/prs.0000000000007253 Beaver, B. V., Baker, M., Gloster, R. C., Grant, W. A., Harris, J. M., & Hart, B. L. (2001). A community approach to dog bite prevention. Journal of American Veterinary Medical Association 218, 1732-1749. Beuzen, N., Stear, M., & Chang, K. (2000). Molecular markers and their use in animal breeding. The Veterinary Journal, 160(1), 42-52. Bhavani, D. D., Quadri, M. H. S., & Reddy, Y. R. (2019). Dog Breed Identification Using Convolutional Neural Networks on Android. CVR Journal of Science and Technology, 17(1), 62-66. Blouin, M., Parsons, M., Lacaille, V., & Lotz, S. (1996). Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology, 5(3), 393-401. Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314. Brown, S. K., Pedersen, N. C., Jafarishorijeh, S., Bannasch, D. L., Ahrens, K. D., Wu, J.-T., Okon, M., & Sacks, B. N. (2011). Phylogenetic distinctiveness of Middle Eastern and Southeast Asian village dog Y chromosomes illuminates dog origins. PloS One, 6(12), e28496. Collier, S. (2006). Breed-specific legislation and the pit bull terrier: Are the laws justified? Journal of Veterinary Behavior, 1(1), 17-22. Cornuet, J.-M., Piry, S., Luikart, G., Estoup, A., & Solignac, M. (1999). New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics, 153(4), 1989-2000. Creedon, N., & ? S?illeabh?in, P. S. (2017). Dog bite injuries to humans and the use of breed-specific legislation: a comparison of bites from legislated and non-legislated dog breeds. Irish Veterinary Journal, 70(1), 1-9. Dayton, M., Koskinen, M. T., Tom, B. K., Mattila, A.-M., Johnston, E., Halverson, J., Fantin, D., DeNise, S., Budowle, B., & Glenn Smith, D. (2009). Developmental validation of short tandem repeat reagent kit for forensic DNA profiling of canine biological material. Croatian Medical Journal, 50(3), 268-285. DeNise, S., Johnston, E., Halverson, J., Marshall, K., Rosenfeld, D., McKenna, S., Sharp, T., & Edwards, J. (2004). Power of Exclusion for parentage verification and probability of match for identity in American Kennel Club breeds using 17 canine microsatellite markers. Animal Genetics, 35(1), 14-17. Eichmann, C., Berger, B., & Parson, W. (2004). A proposed nomenclature for 15 canine-specific polymorphic STR loci for forensic purposes. International Journal of Legal Medicine, 118(5), 249-266. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620. Fatjo, J., Amat, M., Mariotti, V. M., de la Torre, J. L. R., & Manteca, X. (2007). Analysis of 1040 cases of canine aggression in a referral practice in Spain. Journal of Veterinary Behavior, 2(5), 158-165. Francisco, L., Langsten, A., Mellersh, C., Neal, C., & Ostrander, E. (1996). A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mammalian Genome, 7(5), 359-362. Fran?ois, O., & Gain, C. (2021). A spectral theory for Wright’s inbreeding coefficients and related quantities. PLoS Genetics, 17(7), e1009665. Gunter, L. M., Barber, R. T., & Wynne, C. D. (2018). A canine identity crisis: Genetic breed heritage testing of shelter dogs. PloS One, 13(8), e0202633. Guyon, R., Lorentzen, T. D., Hitte, C., Kim, L., Cadieu, E., Parker, H. G., Quignon, P., Lowe, J. K., Renier, C., & Gelfenbeyn, B. (2003). A 1-Mb resolution radiation hybrid map of the canine genome. Proceedings of the National Academy of Sciences, 100(9), 5296-5301. Halverson, J., & Basten, C. (2005). A PCR multiplex and database for forensic DNA identification of dogs. Journal of Forensic Science, 50(2), JFS2004207-2004212. Haned, H. (2011). Forensim: an open-source initiative for the evaluation of statistical methods in forensic genetics. Forensic Science International: Genetics, 5(4), 265-268. Harris, A. M., & DeGiorgio, M. (2017). An unbiased estimator of gene diversity with improved variance for samples containing related and inbred individuals of any ploidy. G3: Genes, Genomes, Genetics, 7(2), 671-691. Hellmann, A. P., Rohleder, U., Eichmann, C., Pfeiffer, I., Parson, W., & Schleenbecker, U. (2006). A proposal for standardization in forensic canine DNA typing: allele nomenclature of six canine?specific STR loci. Journal of Forensic Sciences, 51(2), 274-281. Hoffman, C. L., Harrison, N., Wolff, L., & Westgarth, C. (2014). Is that dog a Pit Bull? A cross-country comparison of perceptions of shelter workers regarding breed identification. Journal of Applied Animal Welfare Science, 17(4), 322-339. Jamieson, A., & CS Taylor, S. (1997). Comparisons of three probability formulae for parentage exclusion. Animal Genetics, 28(6), 397-400. Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099-1106. Kanthaswamy, S. (2009). Development and validation of a standardized canine STR panel for use in forensic casework. National Institute of Justice (NIJ) National Criminal Justice Reference Service. Kanthaswamy, S., Oldt, R., Montes, M., & Falak, A. (2019). Comparing two commercial domestic dog (Canis familiaris) STR genotyping kits for forensic identity calculations in a mixed?breed dog population sample. Animal Genetics, 50(1), 105-111. Kanthaswamy, S., Tom, B. K., Mattila, A. M., Johnston, E., Dayton, M., Kinaga, J., Joy?Alise Erickson, B., Halverson, J., Fantin, D., & DeNise, S. (2009). Canine population data generated from a multiplex STR kit for use in forensic casework. Journal of Forensic Sciences, 54(4), 829-840. Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49(4), 725. Kitada, S., Nakamichi, R., & Kishino, H. (2021). Understanding population structure in an evolutionary context: population-specific FST and pairwise FST. G3: Genes, Genomes, Genetics, 11(11), jkab316. Klaassen, B., Buckley, J., & Esmail, A. (1996). Does the dangerous dogs act protect against animal attacks: a prospective study of mammalian bites in the accident and emergency department. Injury, 27(2), 89-91. Koskinen, M. (2003). Individual assignment using microsatellite DNA reveals unambiguous breed identification in the domestic dog. Animal Genetics, 34(4), 297-301. Koskinen, M., & Bredbacka, P. (2000). Assessment of the population structure of five Finnish dog breeds with microsatellites. Animal Genetics, 31(5), 310-317. Lee, M., Hwang, I. K., Jung, J. Y., Kim, J. Y., Chang, M., & Moon, S. (2021). Construction of an in?house allelic ladder for Canine Genotypes? Panel 2.1 Kit. Journal of Forensic Sciences, 66(6), 2362-2368. Levine, R., & Poray-Wybranowska, J. (2016). American bully: Fear, paradox, and the new family dog. Otherness: Essays and Studies, 5(2), 151-200. Lynch, M., & Ritland, K. (1999). Estimation of pairwise relatedness with molecular markers. Genetics, 152(4), 1753-1766. Mellersh, C. S., Hitte, C., Richman, M., Vignaux, F., Priat, C., Jouquand, S., Werner, P., Andr?, C., DeRose, S., & Patterson, D. F. (2000). An integrated linkage-radiation hybrid map of the canine genome. Mammalian Genome, 11(2), 120-130. Milligan, B. G. (2003). Maximum-likelihood estimation of relatedness. Genetics, 163(3), 1153-1167. Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283-292. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583-590. Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19(2), 153-170. Ogden, R., Mellanby, R. J., Clements, D., Gow, A. G., Powell, R., & McEwing, R. (2012). Genetic data from 15 STR loci for forensic individual identification and parentage analyses in UK domestic dogs (Canis lupus familiaris). Forensic Science International: Genetics, 6(2), e63-e65. Oishi, N., Maeda, M., Makimura, K., Sawaguchi, T., Hayashiya, M., Kubo, T., Kano, R., Hasegawa, A., & Kasahara, M. (2005). Microsatellite polymorphism in Japanese mongrel dogs. Journal of Veterinary Medical Science, 67(10), 1055-1057. Okumura, N., Ishiguro, N., Nakano, M., Matsui, A., & Sahara, M. (1996). Intra?and interbreed genetic variations of mitochondrial DNA major non?coding regions in Japanese native dog breeds [Canis familiaris. Animal Genetics, 27(6), 397-405. Olson, K. R., Levy, J., Norby, B., Crandall, M., Broadhurst, J., Jacks, S., Barton, R., & Zimmerman, M. (2015). Inconsistent identification of Pit Bull-type dogs by shelter staff. The Veterinary Journal, 206(2), 197-202. Ostrander, E. A., Sprague Jr, G. F., & Rine, J. (1993). Identification and characterization of dinucleotide repeat (CA) n markers for genetic mapping in dog. Genomics, 16(1), 207-213. Paetkau, D., Calvert, W., Stirling, I., & Strobeck, C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4(3), 347-354. Pagnotta, M. A. (2018). Comparison among methods and statistical software packages to analyze germplasm genetic diversity by means of codominant markers. MDPI, 1(1), 197-215. Paradis, E., & Schliep, K. (2019). Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528. Patronek, G., Twining, H., & Arluke, A. (2000). Managing the stigma of outlaw breeds: A case study of Pit Bull owners. Society & Animals, 8(1), 25-52. Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, ?., & Lareu, M. V. (2013). An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics, 4, 98. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. Raghavan, M. (2008). Fatal dog attacks in Canada, 1990–2007. The Canadian Veterinary Journal, 49(6), 577. Rannala, B., & Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences, 94(17), 9197-9201. Rousset, F. (2002). Inbreeding and relatedness coefficients: What do they measure? Heredity, 88(5), 371-380. Sacks, J. J., Sinclair, L., Gilchrist, J., Golab, G. C., & Lockwood, R. (2000). Breeds of dogs involved in fatal human attacks in the United States between 1979 and 1998. Journal of the American Veterinary Medical Association, 217(6), 836-840. S?nchez-Vel?squez, J. J., Pinedo-Bernal, P. N., Reyes-Flores, L. E., Yz?siga-Barrera, C., & Zelada-M?zmela, E. (2021). Genetic diversity and relatedness inferred from microsatellite loci as a tool for broodstock management of fine flounder Paralichthys adspersus. Aquaculture and Fisheries. Savolainen, P., Rosen, B., Holmberg, A., Leitner, T., Uhlen, M., & Lundeberg, J. (1997). Sequence analysis of domestic dog mitochondrial DNA for forensic use. Journal of Forensic Science, 42(4), 593-600. Shibuya, H., Collins, B., Huang, T.-M., & Johnson, G. (1994). A polymorphic (AGGAAT) n tandem repeat in an intron of the canine von Willebrand factor gene. Animal Genetics 25(2). Streitberger, K., Schweizer, M., Kropatsch, R., Dekomien, G., Distl, O., Fischer, M., Epplen, J., & Hertwig, S. (2012). Rapid genetic diversification within dog breeds as evidenced by a case study on Schnauzers. Animal Genetics, 43(5), 577-586. Swann, K. E. (2009b). Irrationality unleashed: The pitfalls of breed-specific legislation. UMKC L. Rev., 78, 839. Taberlet, P., & Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society, 68(1-2), 41-55. Takezaki, N., & Nei, M. (1996). Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144(1), 389-399. Teneva, A. (2009). Molecular markers in animal genome analysis. Biotechnology in Animal Husbandry, 25(5-6-2), 1267-1284. Tom, B. K., Koskinen, M. T., Dayton, M., Mattila, A. M., Johnston, E., Fantin, D., DeNise, S., Spear, T., Smith, D. G., & Satkoski, J. (2010). Development of a nomenclature system for a canine STR multiplex reagent kit. Journal of Forensic Sciences, 55(3), 597-604. Tsuda, K., Kikkawa, Y., Yonekawa, H., & Tanabe, Y. (1997). Extensive interbreeding occurred among multiple matriarchal ancestors during the domestication of dogs: evidence from inter-and intraspecies polymorphisms in the D-loop region of mitochondrial DNA between dogs and wolves. Genes & Genetic Systems, 72(4), 229-238. Ueno, S., Tomaru, N., Yoshimaru, H., Manabe, T., & Yamamoto, S. (2002). Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity, 89(2), 120-126. Voith, V. L., Ingram, E., Mitsouras, K., & Irizarry, K. (2009). Comparison of adoption agency breed identification and DNA breed identification of dogs. Journal of Applied Animal Welfare Science, 12(3), 253-262. Voith, V. L., Trevejo, R., Dowling-Guyer, S., Chadik, C., Marder, A., Johnson, V., & Irizarry, K. (2013). Comparison of visual and DNA breed identification of dogs and inter-observer reliability. American Journal of Sociological Research, 3(2), 1729. Waits, L. P., Luikart, G., & Taberlet, P. (2001). Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology, 10(1), 249-256. Wang, J. (2007). Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetics Research, 89(3), 135-153. Wang, J. (2011). COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11(1), 141-145. Webster, C. A., & Farnworth, M. J. (2019). Ability of the public to recognize dogs considered to be dangerous under the dangerous dogs act in the United Kingdom. Journal of Applied Animal Welfare Science, 22(3), 240-254. Wictum, E., Kun, T., Lindquist, C., Malvick, J., Vankan, D., & Sacks, B. (2013). Developmental validation of DogFiler, a novel multiplex for canine DNA profiling in forensic casework. Forensic Science International: Genetics, 7(1), 82-91. Wilkinson, M., McInerney, J. O., Hirt, R. P., Foster, P. G., & Embley, T. M. (2007). Of clades and clans: terms for phylogenetic relationships in unrooted trees. Trends in Ecology & Evolution, 22(3), 114-115. Blackman, D. (1995). Practicality of Breed Specific Legislation in Reducing or Eliminating Dog Attacks on Humans and Dogs. In. Halverson, J., Dvorak, J., & Stevenson, T. (1999). Microsatellite sequences for canine genotyping. In: Google Patents. Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., & McGlinn, D. (2017). Vegan: community ecology package. R package version 2.4–4.2. In. Halverson, J. L., & Edwards, J. W. (2000). Microsatellite polymorphism in dog breeds-the AKC parent club study. 27th ISAG Conference of Animal Genetics, R?duly, Z., Sulyok, C., Vad?szi, Z., & Z?lde, A. (2018). Dog breed identification using deep learning. 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY), Pastorino, M. J., & Marchelli, P. (2021). Genetic resources: The base material for managing nature. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821139-7.00192-6 Paun, O., & Sch?nswetter, P. (2012). Amplified Fragment Length Polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. In Plant DNA Fingerprinting and Barcoding (pp. 75-87). Springer. Butler, J. M. (2014). Advanced topics in forensic DNA typing: interpretation. Academic Press. Coile, D. C. (2020). Pit Bulls for dummies. John Wiley & Sons. Dickey, B. (2017). Pit Bull: The battle over an American icon. Vintage. Fogle, B. (2009). The encyclopedia of the dog. DK Publishing. Lange, K. (2002). Mathematical and statistical methods for genetic analysis (Vol. 488). Springer. Morris, D. (2002). Dogs: The ultimate dictionary of over 1,000 dog breeds. Trafalgar Square. Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press. Neil A. Campbell, J. B. R. (2011). The evolution of populations. In: Biology (9th ed.). Pearson Education, Inc.-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83595-
dc.description.abstract因比特類犬隻攻擊並傷害犬隻及人類事件不斷增加,根據動物保護法第八條規定,行政院農業委員會於2021年10月26日禁止飼養、輸入或輸出美國比特鬥牛犬和美國史大佛夏牛頭犬。為幫助未來立法的實施,必須制定一個有效的品種鑑定標準。比特類犬包含了數個品種及該品種之混種犬。目測品種鑑定已被證實不準確,所以我們應考慮使用更客觀的方法,例如分子標記。研究顯示,使用核?DNA之單一核?酸多型性(SNP)和短縱列重複序列(STR),可成功將動物品種分類並鑑別。品種鑑定之建立需要參考族群,但我們對於台灣的比特類犬族群所知甚少。 因此,本研究目的有三:一、透過外觀比例,評估較?客觀的目測品種鑑定;二、探討台灣比特類犬族群結構和其相關性;三、建構台灣比特類犬的STR基因庫,作為未來發展比特類犬隻品種分子鑑定技術之基礎。此研究對象共78隻犬隻(55隻比特類犬隻、16隻非比特類犬隻及7隻未確認品種之犬隻),材料?犬隻唾液及口腔黏膜拭子。除提及之外,研究中的犬隻品種皆由Embark Veterinary Inc.先通過SNP品種鑑定服務,確認目標犬隻之品種後,再進行分組。 首先,本研究根據1991年英國危險犬法(DDA)公佈的指引,透過50隻犬隻(9隻福爾摩沙高山犬FMD、25隻混種比特類犬MPT及6隻美國比特犬APT)進行目測品種鑑定評估。結果顯示APT組所獲得的平均分數顯著高於其他組,而?了提高準確性,所有外觀測量比例標準一起作評估。我們也利用了商用犬隻基因型鑑定套組Canine Genotype Panels 1.1及2.1經篩選後所得之25個基因座,對42隻犬隻(11隻FMD、14隻MPT、17隻APT)進行基因多型性分析、族群結構性及遺傳分化差異性分析。APT組的基因多型性低於MPT組及FMD組,但相較於其餘文獻之結果之德國狼犬和黃金獵犬,具有相似或略高的基因多型性,而相較柯基犬具更高的基因多型性,與其他研究中的當地犬種相比,基因多型性則較低。各組別之間沒有顯著 的遺傳分化差異,而相較於MPT和APT之間,FMD與MPT及FMD與APT之間的遺傳分化差異較大,MPT和APT之間的遺傳分化差異則小至可忽略。族群結構性分析則可見APT及MPT被分配到同一個集群中,而FMD 和其中一隻具有有趣品種成分的MPT 個體被分配到另一個集群中。PCoA分析則顯示MPT 和 APT 可以被分為兩個獨立但緊密且重疊的集群。與族群結構性分析結果相似,Neighbour-Joining (NJ) 算法可以將族群形成兩個獨立的群體,即比特類犬和非比特類犬。 NJ 方法和個體基因分配測試均取得了合理的分配成功率(56.2%-75.0%),而等位基因頻率可達到較高且較有效的品種分配。這兩個商用犬隻基因型鑑定套組亦顯示接近 0 的累積Probability of identity, P(ID) 值、累積 P(ID)sibs 值及高的Exclusion probability (EP),有效於個體鑑定及親緣鑑定,因此可以應用於獸醫法醫中。 總結來?,這項研究證明了分子標記對於準確的品種鑑定仍然更加可靠,而透過商用犬隻基因型鑑定套組,我們可建立台灣一小部分比特類犬遺傳多型性基因庫,同時建立一個基礎的 DNA 的品種鑑定系統。zh_TW
dc.description.abstractDue to the rising cases regarding the aggression of pitbull-type dogs in Taiwan, the Council of Agriculture, Executive Yuan, has banned American Pit Bull Terrier and American Staffordshire Terrier from being owned, imported or exported under Animal Protection Law on the 26th of October 2021. Standards of breed identification must be formulated to aid the implementation of the legislation in the future. Pitbull-type dogs encompass purebred dogs of various breeds and dogs presumed to be mixes of those breeds. Visual breed identification among breeds is often shown to be inaccurate. Thus, a more objective method, such as molecular markers, should be considered. Single Nucleotide Polymorphism (SNP) and Short Tandem Repeat (STR) of nuclear DNA have been described in animal breed-related studies and have revealed promising results. To identify a breed, a reference population is required, and there is little knowledge of the pitbull-type dog population in Taiwan. Therefore, this study aims to assess visual breed identification via body measurement ratio, determine the population structure and relatedness, and construct STR profiles of pitbull-type dogs in Taiwan for future molecular technique establishment for canine breed identification. A total of 78 dogs (55 pitbull-type dogs, 16 non-pitbull-type dogs and 7 dogs with breeds unconfirmed) were included in the study, and saliva swabs were taken from each dog. The breeds of dogs in the current study are confirmed via SNP breed identification by Embark Veterinary Inc., except as mentioned. Firstly, visual breed identification was assessed through 50 dogs (9 Formosan Mountain Dogs, FMD, 25 mixed pitbull-type dogs, MPT and 16 American pitbull terrier dogs, APT) using a more objective body measurement ratios based on guidelines of The Dangerous Dogs Act (DDA) 1991 (UK). Results showed that the APT group obtained a significantly higher average score compared to the other groups and all body measurement ratio criteria should be evaluated together to increase accuracy. We also utilized commercial Canine Genotype Panels 1.1 and 2.1, which after selection, amount to 25 loci, to undergo a genetic polymorphism analysis, population substructure, genetic differentiation analysis on 42 dogs (11 FMD, 14 MPT, and 17 APT). APT was genetically less diverse than the MPT and the FMD group, while having a similar or slightly higher genetic diversity compared to German Shepherd and Golden retrievers, a higher genetic diversity than Pembroke Welsh Corgi, and less variable gene pool compared to the local dog breeds in other studies. There was no significant genetic differentiation among the groups, while there were higher genetic differences between FMD and MPT as well as FMD and APT compared to the negligible differences between MPT and APT. APT and MPT were assigned to a single common cluster, while FMD and a single MPT individual with an interesting breed profile were assigned into another in population structure. PCoA analysis showed that MPT and APT could be grouped into separate yet close and overlapping clusters. Similar to the population substructure results, two separate clans could be formed by the NJ algorithm, which is pitbull-type and non pitbull-type group. Both the Neighbour-Joining (NJ) method and individual assignment tests achieved a fair assignment success (56.2%-75.0%), with the allele frequency method having the highest assignment success and efficacy. The two kits also showed close to 0 cumulative Probability of identity, P(ID) value, cumulative P(ID)sibs value and high exclusion probability which is exemplary for individual identification and parentage analysis, thus will be useful in veterinary forensics application. In conclusion, this study suggested that molecular markers are still more reliable for an accurate breed identification and an informative genetic diversity profile of a small part of the pitbull-type dog population in Taiwan as well as DNA-based breed identification can be established and achieved using the commercial Canine Genotype kits.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:11:26Z (GMT). No. of bitstreams: 1
U0001-2508202211413600.pdf: 6488111 bytes, checksum: 6ffd844ce38570fe2c97008406c495df (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 I 致謝 III 摘要 V Abstract VII List of Figures XVII List of Tables XIX Abbreviation list XXI Chapter 1: Introduction 1 1.1 Background of pitbull-type dogs 1 1.2 Aggression related issues surrounding pitbull-type dogs 3 1.3 Dog aggression related law and legislations around the world 5 1.4 Banning of pitbull-type dogs in Taiwan 7 1.5 Visual breed identification of dogs 8 1.6 Breed identification via Artificial Intelligence 9 1.7 DNA-based molecular markers 10 1.7.1 1st generation molecular markers (Hybridization-based) 10 1.7.2 2nd generation molecular markers (PCR-based) 11 1.7.3 3rd generation molecular markers (DNA chip and sequencing-based) 12 1.8 Breed identification and population genetics with molecular markers 12 1.9 Population genetics and genetic polymorphism analysis 14 1.9.1 Hardy-Weinberg equilibrium (HWE) 14 1.9.2 Allele frequency and heterozygosity (H) 15 1.9.3 Number of effective alleles (Ne) 17 1.9.4 Wright’s fixation index statistics (F statistics) 17 1.9.5 Genetic distances 19 1.9.5.1 Pairwise Fst and Nei’s genetic distances 19 1.9.5.2 Euclidean genetic distances and PCoA analysis 20 1.9.6 Relatedness (r) 21 1.9.7 Wahlund effect and population structure 21 1.10 Individual identification, parentage analysis and application of Canine Genotype Panels in Veterinary Forensics 22 1.10.1 Probability of identity, P(ID) and P(ID)sibs 22 1.10.2 Exclusion probability (EP) 22 1.10.3 Polymorphic Information Content (PIC) 23 1.10.4 Random match probability (RMP) and Likelihood ratio (LR) 24 1.11 Aim 25 1.12 Hypothesis 25 Chapter 2: Materials and methods 27 2.1 Case collection 27 2.2 Assessment of visual breed identification of pitbull-type dogs 28 2.2.1 Selection of criteria 28 2.2.2 Photography and morphological observations 28 2.3 STR analysis of study samples 29 2.3.1 Sampling 29 2.3.2 Selection of STR markers 29 2.3.3 DNA extraction 30 2.3.4 List of DNA extraction kits and devices 30 2.3.5 Multiplex Polymerase chain reaction (PCR) 31 2.3.6 List of PCR reagents and devices 31 2.3.5 Capillary Electrophoresis 32 2.4 Data Analysis 32 2.4.1 Allele binning 32 2.4.2 Genetic Polymorphism analysis 33 2.4.3 Population structure 33 2.4.4 Individual Euclidean distances and Principal Coordinates Analysis (PCoA) 33 2.4.5 Relatedness and inbreeding coefficient 34 2.4.6 Breed assignment 34 2.4.6.1 Neighbor-Joining Algorithm and phylogenetic tree 34 2.4.6.2 Individual genetic assignment 34 2.5 Individual identification, parentage analysis and application of Canine Genotype Panels in Veterinary Forensics 35 2.5.1 Assessment of loci 35 2.5.2.1 Case study: mixture analysis 35 Chapter 3: Results 37 3.1 Assessment of visual breed identification of pitbull-type dogs 37 3.2 STR and data analysis of study samples 38 3.2.1 Allele binning 38 3.2.2 Analysis of genetic data 38 3.2.2.1 Genetic Polymorphism analysis 39 3.2.2.1.1 HWE 39 3.2.2.1.2 Na and Ne 39 3.2.2.1.3 Ho, He and μHe 40 3.2.2.1.4 Fis, Fst and AMOVA 40 3.2.2.2 Population structure 41 3.2.2.3 Individual Euclidean distances and PCoA analysis 42 3.2.2.4 Relatedness and inbreeding coefficient 43 3.2.2.5 Breed assignment 43 3.2.2.5.1 Neighbor-Joining Algorithm and phylogenetic tree 44 3.2.2.5.2 Individual genetic assignment 44 3.2.2.6 Individual identification, parentage analysis and application of Canine Genotype Panels in Veterinary Forensics 45 3.2.2.6.1 Probability of identity, P(ID) and P(ID)sibs 45 3.2.2.6.2 Exclusion probability (EP) 46 3.2.2.6.3 Polymorphic Information Content (PIC) 46 3.2.2.6.4 Case study: mixture analysis 47 Chapter 4: Discussion 49 4.1 Assessment of visual breed identification of pitbull-type dogs 49 4.2 STR and data analysis of study samples 50 4.2.1 Allele binning 50 4.2.2 Analysis of genetic data 50 4.2.2.1 Genetic diversity between populations 50 4.2.2.2 Genetic differentiation and structure among populations 52 4.2.2.3 Relatedness and inbreeding coefficient 54 4.2.2.4 Breed assignment 55 4.2.2.4.1 Neighbor-Joining Algorithm and phylogenetic tree 55 4.2.2.4.2 Individual genetic assignment 55 4.2.1.5 Individual identification, parentage analysis and application of Canine Genotype Panels in Veterinary Forensics 56 Chapter 5: Conclusions 59 Figures 63 Tables 81 Acknowledgement 105 References 107-
dc.language.isoen-
dc.subject比特類犬zh_TW
dc.subject動物法醫學zh_TW
dc.subject遺傳多型性分析zh_TW
dc.subjectSTR基因庫zh_TW
dc.subjectveterinary forensic scienceen
dc.subjectgenetic polymorphism analysisen
dc.subjectSTR databaseen
dc.subjectPitbull-type dogsen
dc.title以商用犬隻基因型鑑定套組進行台灣之比特類犬STR基因庫建立及基因多型性分析zh_TW
dc.titleConstructing STR database and genetic polymorphism analysis of pitbull-type dogs in Taiwan using commercial Canine Genotype kitsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee于宏燦(Hon-Tsen Yu),林俊彥(Chun-Yen Lin),廖泰慶(Tai-Ching Liao)-
dc.subject.keyword比特類犬,STR基因庫,遺傳多型性分析,動物法醫學,zh_TW
dc.subject.keywordPitbull-type dogs,STR database,genetic polymorphism analysis,veterinary forensic science,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202202797-
dc.rights.note未授權-
dc.date.accepted2022-08-26-
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept分子暨比較病理生物學研究所zh_TW
顯示於系所單位:分子暨比較病理生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-2508202211413600.pdf
  未授權公開取用
6.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved