Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83540
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余峻瑜zh_TW
dc.contributor.advisorJiun-Yu Yuen
dc.contributor.author黃茂霖zh_TW
dc.contributor.authorMao-Lin Huangen
dc.date.accessioned2023-03-19T21:10:00Z-
dc.date.available2023-12-29-
dc.date.copyright2022-09-02-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationArdimento, Pasquale & Bernardi, Mario & Cimitile, Marta & Ruvo, Giuseppe.(2019). Learning analytics to improve coding abilities: a fuzzy-based process mining approach. 1-7.
Bennett, James & Lanning, Stan & Netflix, Netflix. (2009). The Netflix Prize.
Bodong Chen, Yizhou Fan, Guogang Zhang, and Qiong Wang.(2017). Examining motivations and self-regulated learning strategies of returning MOOCs learners. In Proceedings of the Seventh International Learning Analytics & Knowledge Conference.ACM, 542-543
Davidson, James & Liebald, Benjamin & Liu, Junning & Nandy, Palash & Vleet, Taylor & Gargi, Ullas & Gupta, Sujoy & He, Yu & Lambert, Michel & Livingston, Blake & Sampath, Dasarathi. (2010). The YouTube video recommendation system. 293- 296. 10.1145/1864708.1864770.
Gamage, Dilrukshi & Perera, Indika & Fernando, Shantha. (2020). Exploring MOOC User Behaviors Beyond Platforms. International Journal of Emerging Technologies in Learning (iJET). 15. 161-179.
He, Xiangnan & Liao, Lizi & Zhang, Hanwang. (2017). Neural Collaborative Filtering. Proceedings of the 26th International Conference on World Wide Web.
Kluver, Daniel & Ekstrand, Michael & Konstan, Joseph. (2018). Rating-Based Collaborative Filtering: Algorithms and Evaluation.
Lombardi, S & Anand, S & Gorgoglione, M. (2009). Context and customer behavior in recommendation.
Mallik, Sitikantha. (2017). collaborative filtering recommender system.
Nagarnaik, Paritosh & Thomas, A.. (2015). Survey on recommendation system methods.2nd International Conference on Electronics and Communication Systems, ICECS 2015. 1603-1608. 10.1109/ECS.2015.7124857.
Palmisano C., Tuzhilin, A., Gorgoglione, M. 2008. Using Context to Improve Predictive Modeling of Customers in Personalization Applications. IEEE TKDE 20, 11, 1535-1549.
Rana, Chhavi & Jain, Sanjay. (2012). Building a book recommender system using time based content filtering. 11. 27-33.
René F Kizilcec, Chris Piech, and Emily Schneider. 2013. Deconstruct-ing disengagement: analyzing learner subpopulations in massive open online courses. In Proceedings of the third international conference on learning analytics and knowledge. ACM, 170-179.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. 1994. GroupLens: An Open Architecture forCollaborative Filtering of Netnews. In Proc. of CSCW 94 (Chapel Hill, NC, USA, October 22-26) , 175-186.
Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook Recommender systems handbook (pp. 1-35): Springer.
Zhou, Renjie & Khemmarat, Samamon & Gao, Lixin. (2010). The impact of YouTube recommendation system on video views. Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC. 404-410. 10.1145/1879141.1879193.
行銷資料科學(2019)–你怎麼處理顧客交易資訊?Apriori演算法。取自網址:https://medium.com/marketingdatascience/%E4%BD%A0%E6%80%8E%E9%BA%BC%E8%99%95%E7%90%86%E9%A1%A7%E5%AE%A2%E4%BA%A4%E6%98%93%E8%B3%87%E8%A8%8A-apriori%E6%BC%94%E7%AE%97%E6%B3%95-1523b1f8443b
Yi Ting Kwa(2022)–使用者行為分析指南。取自網址:https://mixpanel.com/zh-hant/blog/%E4%BD%BF%E7%94%A8%E8%80%85%E8%A1%8C%E7%82%BA%E5%88%86%E6%9E%90%E6%8C%87%E5%8D%97/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83540-
dc.description.abstract早在2010年時,推薦系統就已不再是新穎的話題,而是所有電商、串流平台甚至是餐飲業者邁向成功的一項基石。「你可能喜歡…」、「你可能想看…」、「和你瀏覽相同商品的人也…」,在現在的生活中無處沒有推薦系統,從收聽音樂到觀看電影,從網購商品至出遊旅行,生活中大大小小的決定都有著推薦列表輔助我們進行決策,就好像不管想做什麼事情、想去哪裡都有人引領我們一般,而這種便利的生活模式也早已被視作理所當然。
本次研究對象「臺大開放式課程(NTU OpenCourseWare)」缺乏一套完善且有效之推薦系統,為此本研究從其網站之使用者與課程資料做資料分析,從近60萬筆瀏覽紀錄中找出潛在的行為模式,同時考量課程本身可能出現的週期性、被觀看次序性,讓今後上線之推薦系統獲得更加全面性的優化,納入時間與序列性等參考指標,輔以推薦模型之邏輯設計與建置。
研究結果顯示,於課程資料中,除了每個課程都有自己的觀看週期性外,部分課程與課程之間亦擁有強大關聯性,時常是觀眾在此平台上一併觀看之組合,同時也存在明顯之學習次序性,觀眾在先看後看的行為上有一致的表現。此外,於用戶資料中,能夠發掘用戶存在「穩定」、「密集」點擊兩種行為模式,且密集點擊行為人也對於點擊不同課程之意願較穩定點擊行為人還高,在學習次序上也擁有著比穩定點擊行為人更加一致的學習狀態。
zh_TW
dc.description.abstractAs early as 2010, recommendation systems are no longer new but a cornerstone of success for all e-commerce, streaming platforms, and restaurants. "You may like...", "You may want to watch..." and "People who browse the same products as you also..." are recommended everywhere in our daily life, from online shopping to movie watching, from music listening to traveling. There have great recommendation systems for introductions and suggestions for every single decision of life. No matter what we want to do or where we want to go, recommendation systems always help us make decisions. This convenience has been
around us for a long time, and we cannot live without it.
NTU OpenCourseWare lacks a complete and adequate recommendation system. For this reason, this research analyzes NTU OpenCourseWare's user and course data. Find potential behavior patterns from nearly 600,000 browsing records, and also consider the possible periodicity and viewing order of the course itself, so that the recommendation system launched in the future can be more comprehensively optimized.
The research results show that, in course data, in addition to each course having its viewing cycle, some courses also strongly correlate with each other. It’s often a combination of audiences watching together on this platform, and they also have some apparent learning order, the audience has a consistent performance in the behavior of watching first and then watching; in the user data, it can be found that users have two behavior patterns of "stable" and "intensive" clicks, and the intensive clickers also have more willingness of watching different courses than that of the stable clickers, and their learning orders also are more consistent than the stable clickers.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:10:00Z (GMT). No. of bitstreams: 1
U0001-0408202222041000.pdf: 2416306 bytes, checksum: aa9181e917cb2061dbba0ed2c6f68a3b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 viii

第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
1.3 研究架構 2

第二章 文獻回顧 3
2.1 推薦系統介紹 3
2.2 推薦系統優化 4
2.3 行為模式分析 4

第三章 研究方法 6
3.1 用戶行為模式分析 6
3.2 T-test 方法介紹 7
3.3 Apriori 方法介紹 7

第四章 研究過程 9
4.1 資料來源與清洗 9
4.2 課程資料 9
4.3 用戶行為資料 10
4.4 資料合併 10
4.5 欄位新增 11
4.6 時間軸選取 12
4.7 探索式資料分析 12

第五章 實驗與分析結果 14
5.1 以課程角度出發之資料剖析 14
5.1.1 研究新上架課程是否具有一致點擊趨勢 14
5.1.2 研究學術課程是否因為大考而增加觀看時間 16
5.1.3 分辨個別課程之觀看週期 20
5.2 以用戶角度出發之資料剖析 22
5.2.1 研究觀眾之觀看行為 22
5.2.2 判定個別用戶之觀看組別 28
5.2.3 分類出具有關聯性之課程組合 31
5.3 交叉分析 - 研究關聯課程之學習次序 34

第六章 結論與建議 37
6.1 分析總結與建議 37
6.2 未來展望與挑戰 39
6.3 總結 42
參考文獻 43
-
dc.language.isozh_TW-
dc.title推薦系統之觀眾行為模式分析: 以臺大開放式課程網為例zh_TW
dc.titleAnalysis of Viewer Behavior Pattern of Recommendation System: A Study of NTU OpenCourseWareen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹魁元;馮勃翰zh_TW
dc.contributor.oralexamcommitteeKuei-Yuan Chan;Po-Han Fongen
dc.subject.keyword推薦系統,用戶行為模式,資料分析,zh_TW
dc.subject.keywordrecommendation system,user behavior,data analysis,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202202074-
dc.rights.note未授權-
dc.date.accepted2022-09-01-
dc.contributor.author-college管理學院-
dc.contributor.author-dept商學研究所-
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  目前未授權公開取用
2.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved