Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金藝璘(Katherine A. Kim)
dc.contributor.authorYu-Ting Yangen
dc.contributor.author楊喻婷zh_TW
dc.date.accessioned2023-03-19T21:09:42Z-
dc.date.copyright2022-10-08
dc.date.issued2022
dc.date.submitted2022-09-02
dc.identifier.citation[1] Xuan Hung Mai, Jee-Hoon Jung, and Katherine A. Kim. Electric thermal photovoltaic model characteristics validation. In 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), pages 208–213, 2016. [2] Xuan Hung Mai, Sang-Kyu Kwak, Jee-Hoon Jung, and Katherine A. Kim. Comprehensive electric thermal photovoltaic modeling for power-hardware-in-the-loop simulation (phils) applications. IEEE Transactions on Industrial Electronics, 64(8):6255–6264, 2017. [3] Hoejeong Jeong, Seungbin Park, Jee-Hoon Jung, Taewon Kim, A-Rong Kim, and Katherine A. Kim. Segmented differential power processing converter unit and control algorithm for photovoltaic systems. IEEE Transactions on Power Electronics, 36(7):7797–7809, 2021. [4] Issa Batarseh and Khalil Alluhaybi. Emerging opportunities in distributed power electronics and battery integration: Setting the stage for an energy storage revolution.IEEE Power Electronics Magazine, 7(2):22–32, 2020. [5] Khalil Alluhaybi, Xi Chen, and Issa Batarseh. A grid connected photovoltaic microinverter with integrated battery. In IECON 2018 44th Annual Conference of the IEEE Industrial Electronics Society, pages 1597–1602, 2018. [6] Yu-Ting Yang, Katherine A. Kim, and Jonghoon Kim. Bidirectional cllc resonant converter design for photovoltaic microinverters with li-ion batteries. In 2021 IEEE International Future Energy Electronics Conference (IFEEC), pages 1–6, 2021. [7] Adel Merabet, Khandker Tawfique Ahmed, Hussein Ibrahim, Rachid Beguenane, and Amer M. Y. M. Ghias. Energy management and control system for laboratory scale microgrid based wind-pv-battery. IEEE Transactions on Sustainable Energy, 8(1):145–154, 2017. [8] Shahab Poshtkouhi and Olivier Trescases. Flyback mode for improved low-power efficiency in the dual-active-bridge converter for bidirectional pv microinverters with integrated storage. IEEE Transactions on Industry Applications, 51(4):3316–3324, 2015. [9] Muhannad Alshareef, Zhengyu Lin, Fulong Li, and Fei Wang. A grid interface current control strategy for dc microgrids. CES Transactions on Electrical Machines and Systems, 5(3):249–256, 2021. [10] Navid Eghtedarpour and Ebrahim Farjah. Power control and management in a hybrid ac/dc microgrid. IEEE Transactions on Smart Grid, 5(3):1494–1505, 2014. [11] Faisal R. Badal, Subrata K. Sarker, Shahriar Rahman Fahim, Sajal K. Das, Md. Rabiul Islam, Abbas Z. Kouzani, and M. A. Parvez Mahmud. Robust controller design for tracking enhancement of a grid-tied pv-battery microgrid under industrial loads. IEEE Transactions on Applied Superconductivity, 31(8):1–5, 2021. [12] Yinghao Shan, Jiefeng Hu, Ka Wing Chan, Qing Fu, and Josep M. Guerrero. Model predictive control of bidirectional dc–dc converters and ac/dc interlinking converters—a new control method for pvwindbattery microgrids. IEEE Transactions on Sustainable Energy, 10(4):1823–1833, 2019. [13] Ahmad Aziz Al Alahmadi, Youcef Belkhier, Nasim Ullah, Habti Abeida, Mohamed S. Soliman, Yahya Salameh Hassan Khraisat, and Yasser Mohammed Alharbi. Hybrid wind/pv/battery energy management-based intelligent non-integer control for smart dc-microgrid of smart university. IEEE Access, 9:98948–98961, 2021. [14] Vijesh Jayan and Amer Mohammad Yusuf Mohammad Ghias. A single-objective modulated model predictive control for a multilevel flying-capacitor converter in a dc microgrid. IEEE Transactions on Power Electronics, 37(2):1560–1569, 2022. [15] Murat ?olak and ?hsan Kaya. Multicriteria evaluation of energy storage technologies based on hesitant fuzzy information: A case study for turkey. Journal of Energy Storage, 28:101211, 2020. [16] Pongsakorn Sintupatsuk, Surin Khomfoi, and Prapart Paisuwanna. A dc to dc multilevel modular capacitor clamped converter with electrical grounding isolation and bidirectional power flow for a dc microgrid application. In 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pages 1–4, 2012. [17] Muhannad Alshareef, Zhengyu Lin, Fulong Li, and Fei Wang. A grid interface current control strategy for dc microgrids. CES Transactions on Electrical Machines and Systems, 5(3):249–256, 2021. [18] K. I. Hwu and Y. T. Yau. Ky converter and its derivatives. IEEE Transactions on Power Electronics, 24(1):128–137, 2009. [19] K. I. Hwu and Y. H. Chen. Bidirectional control of inverse ky converter. In 2009 IEEE International Symposium on Industrial Electronics, pages 809–812, 2009. [20] Liran Zheng, Rajendra Prasad Kandula, and Deepak Divan. Current-source solid state dc transformer integrating lvdc microgrid, energy storage, and renewable energy into mvdc grid. IEEE Transactions on Power Electronics, 37(1):1044–1058, 2022. [21] Liran Zheng, Rajendra Prasad Kandula, and Deepak Divan. Current-source solid state dc transformer integrating lvdc microgrid, energy storage, and renewable energy into mvdc grid. IEEE Transactions on Power Electronics, 37(1):1044–1058, 2022. [22] Ross P. Twiname, Duleepa J. Thrimawithana, Udaya K. Madawala, and Craig A.Baguley. A dual-active bridge topology with a tuned clc network. IEEE Transactions on Power Electronics, 30(12):6543–6550, 2015. [23] A.K.S. Bhat. Analysis and design of lcl-type series resonant converter. IEEE Transactions on Industrial Electronics, 41(1):118–124, 1994. [24] Junming Zeng, Guidong Zhang, Samson Shenglong Yu, Bo Zhang, and Yun Zhang. Llc resonant converter topologies and industrial applications —a review. Chinese Journal of Electrical Engineering, 6(3):73–84, 2020. [25] Seyed Milad Tayebi, Haibing Hu, Sam Abdel-Rahman, and Issa Batarseh. Dual-input single-resonant tank llc converter with phase shift control for pv applications. IEEE Transactions on Industry Applications, 55(2):1729–1739, 2019. [26] Tianhua Zhu, Fang Zhuo, Fangzhou Zhao, Feng Wang, Hao Yi, and Tong Zhao. Optimization of extended phase-shift control for full-bridge cllc resonant converter with improved light-load efficiency. IEEE Transactions on Power Electronics, 35(10):11129–11142, 2020. [27] Bin Zhao, Xin Zhang, and Jingjing Huang. Design of cllc resonant converters for the hybrid ac/dc microgrid applications. In 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), pages 1–5, 2018. [28] Chunjiang Zhang, Pengcheng Li, Zhizhong Kan, Xiuhui Chai, and Xiaoqiang Guo. Integrated half-bridge cllc bidirectional converter for energy storage systems. IEEE Transactions on Industrial Electronics, 65(5):3879–3889, 2018. [29] Shota Okutani, PinYu Huang, Ryo Nishiyama, and Yuichi Kado. Analysis and comparison of series resonant converter with embedded filters for high power density dcx of solid-state transformer. IEEE Access, 10:7716–7733, 2022. [30] Hwa-Pyeong Park, Mina Kim, Jongbok Baek, Moses Kang, and Jee-Hoon Jung. Spread spectrum based power line communication and em noise reduction technique for bidirectional hb cllc resonant converter. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pages 5470–5473, 2020. [31] Yuliang Cao, Minh Ngo, Rolando Burgos, Agirman Ismail, and Dong Dong. Switching transition analysis and optimization for bidirectional cllc resonant dc transformer. IEEE Transactions on Power Electronics, 37(4):3786–3800, 2022. [32] Jun Min and Martin Ordonez. Asymmetric parameters design for bidirectional resonant cllc battery charger. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pages 5375–5379, 2020. [33] Jun Min and Martin Ordonez. Unified bidirectional resonant frequency tracking for cllc converters. IEEE Transactions on Power Electronics, 37(5):5637–5649, 2022. [34] Jun Min and Martin Ordonez. Bidirectional resonant cllc charger for wide battery voltage range: Asymmetric parameters methodology. IEEE Transactions on Power Electronics, 36(6):6662–6673, 2021. [35] Zhe Shi, Yingjun Guo, Pengcheng Li, and Hexu Sun. A boost cllc converter controlled by pwm and pfm hybrid modulation for photovoltaic power generation. IEEE Access, 8:112015–112026, 2020. [36] Jee-Hoon Jung, Ho-Sung Kim, Myung-Hyo Ryu, and Ju-Won Baek. Design methodology of bidirectional cllc resonant converter for high-frequency isolation of dc distribution systems. IEEE Transactions on Power Electronics, 28(4):1741–1755, 2013. [37] Bin Zhao, Xin Zhang, and Jingjing Huang. Design of cllc resonant converters for the hybrid ac/dc microgrid applications. In 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), pages 1–5, 2018. [38] Arun Sankar, Ayan Mallik, and Alireza Khaligh. Extended harmonics based phase tracking for synchronous rectification in cllc converters. IEEE Transactions on Industrial Electronics, 66(8):6592–6603, 2019. [39] Zheng Lv, Xiangwu Yan, Yukang Fang, and Lei Sun. Mode analysis and optimum design of bidirectional cllc resonant converter for high-frequency isolation of dc distribution systems. In 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pages 1513–1520, 2015. [40] Long Pei, Lixin Jia, Laili Wang, Lie Zhao, Shaojie Song, Yunqing Pei, Xu Yang, and Yongmei Gan. A time-domain-model-based digital synchronous rectification algorithm for cllc resonant converters utilizing a hybrid modulation. IEEE Transactions on Power Electronics, 37(3):2815–2829, 2022. [41] Shenli Zou, Ayan Mallik, Jiangheng Lu, and Alireza Khaligh. Sliding mode control scheme for a cllc resonant converter. IEEE Transactions on Power Electronics, 34(12):12274–12284, 2019. [42] Huan Chen, Kai Sun, Languang Lu, Shuoqi Wang, and Minggao Ouyang. A constant current control method with improved dynamic performance for cllc converters. IEEE Transactions on Power Electronics, 37(2):1509–1523, 2022. [43] Huan Chen, Kai Sun, Haixu Shi, JungIk Ha, and Sangwon Lee. A battery charging method with natural synchronous rectification features for full-bridge cllc converters. IEEE Transactions on Power Electronics, 37(2):2139–2151, 2022. [44] Fanfan Lin, Xin Zhang, Xinze Li, Hao Ma, and Chunwei Cai. Design of symmetrical cllc resonant dc transformer considering voltage transfer ratio and cascaded system stability. IEEE Transactions on Industrial Electronics, pages 1–1, 2021. [45] K. Wang, C.Y. Lin, L. Zhu, D. Qu, F.C. Lee, and J.S. Lai. Bidirectional dc to dc converters for fuel cell systems. In Power Electronics in Transportation (Cat. No.98TH8349), pages 47–51, 1998. [46] Wei Chen, Ping Rong, and Zhengyu Lu. Snubberless bidirectional dc–dc converter with new cllc resonant tank featuring minimized switching loss. IEEE Transactions on Industrial Electronics, 57(9):3075–3086, 2010. [47] Ajeet K. Dhakar, Abhinav Soni, Vivek Saini, and Saurav Chandel. Design of bidirectional cllc resonant converter with planar transformer and synchronous rectification for energy storage systems. In 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pages 1–8, 2020. [48] Bin Li, Fred C. Lee, Qiang Li, and Zhengyang Liu. Bi-directional onboard charger architecture and control for achieving ultra-high efficiency with wide battery voltage range. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 3688–3694, 2017. [49] Yu-Chen Liu, Chen Chen, Kai-De Chen, Yong-Long Syu, and Meng-Chi Tsai. High-frequency llc resonant converter with gan devices and integrated magnetics. Energies, 12(9), 2019. [50] Yadong Wang, Wencheng Zhao, and Bangyin Liu. Optimal design of resonant network for cllc resonant converter. In 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), pages 1–7, 2021. [51] Shenli Zou, Jiangheng Lu, Ayan Mallik, and Alireza Khaligh. 3.3kw cllc converter with synchronous rectification for plugin electric vehicles. In 2017 IEEE Industry Applications Society Annual Meeting, pages 1–6, 2017. [52] Yu-Chen Liu, Chen Chen, Kai-De Chen, Yong-Long Syu, and Nguyen Anh Dung. High-frequency and high-efficiency isolated two-stage bidirectional dc –dc converter for residential energy storage systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3):1994–2006, 2020. [53] Bin Li, Qiang Li, and Fred C. Lee. A wbg based three phase 12.5 kw 500 khz cllc resonant converter with integrated pcb winding transformer. In 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 469–475, 2018. [54] Mehdi Mohammadi and Martin Ordonez. Llc synchronous rectification using homopolarity cycle modulation. In 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pages 3776–3780, 2017. [55] R.L. Steigerwald. A comparison of half-bridge resonant converter topologies. IEEE Transactions on Power Electronics, 3(2):174–182, 1988. [56] Robert W. Erickson and Dragan Maksimovic. Fundamentals of Power Electronics. Springer, 2ed edition, 2001. [57] Robert W. Erickson and Dragan Maksimovic. Fundamentals of Power Electronics. Springer, 3th edition, 2020. [58] Zheng Lv, Xiangwu Yan, Yukang Fang, and Lei Sun. Mode analysis and optimum design of bidirectional cllc resonant converter for high-frequency isolation of dc distribution systems. In 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pages 1513–1520, 2015. [59] S. Sivakumar, K. Natarajan, and A.M. Sharaf. Optimal trajectory control of series resonant converter using modified capacitor voltage control technique. In PESC ’91Record 22nd Annual IEEE Power Electronics Specialists Conference, pages 752–759, 1991. [60] Ahmed Nabih, Feng Jin, Qiang Li, and Fred. C. Lee. Soft start-up of three phase cllc converter based on state trajectory control. In 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), pages 1927–1932, 2021. [61] Bodong Li, Min Chen, Xiaoqing Wang, Ning Chen, Xinnan Sun, and Dongbo Zhang. An optimized digital synchronous rectification scheme based on time-domain model of resonant cllc circuit. IEEE Transactions on Power Electronics, 36(9):10933–10948, 2021. [62] Weiyi Feng, Fred C. Lee, and Paolo Mattavelli. Simplified optimal trajectory control (sotc) for llc resonant converters. IEEE Transactions on Power Electronics, 28(5):2415–2426, 2013. [63] M. R. Palac?n and A. de Guibert. Why do batteries fail? Science, 351(6273):1253292, 2016. [64] Wenjie Zhang, Liye Wang, Lifang Wang, Chenglin Liao, and Yuwang Zhang. Joint state-of-charge and state-of-available-power estimation based on the online parameter identification of lithium-ion battery model. IEEE Transactions on Industrial Electronics, 69(4):3677–3688, 2022. [65] Bolun Xu, Alexandre Oudalov, Andreas Ulbig, G?ran Andersson, and Daniel S. Kirschen. Modeling of lithium-ion battery degradation for cell life assessment. IEEE Transactions on Smart Grid, 9(2):1131–1140, 2018. [66] Wangxin Huang and Jaber A. Abu Qahouq. An online battery impedance measurement method using dc–dc power converter control. IEEE Transactions on Industrial Electronics, 61(11):5987–5995, 2014. [67] Wooyong Kim, PyeongYeon Lee, Jonghoon Kim, and KyungSoo Kim. A robust state of charge estimation approach based on nonlinear battery cell model for lithium ion batteries in electric vehicles. IEEE Transactions on Vehicular Technology, 70(6):5638–5647, 2021. [68] H. Wenzl. Batteries | capacity. In J?rgen Garche, editor, Encyclopedia of Electrochemical Power Sources, pages 395–400. Elsevier, Amsterdam, 2009. [69] Marko Petkovi? and Dra?en Duji?. Hardware-in-the-loop characterization of source affected output characteristics of cascaded h-bridge converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(3):3083–3094, 2021. [70] Philippe Bontemps, Stefan Milovanovic, and Drazen Dujic. Distributed real-time model of the m3c for hil systems using small-scale simulators. IEEE Open Journal of Power Electronics, 2:603–613, 2021. [71] Stefan Milovanovi?, Simon Strobl, Philippe Ladoux, and Dra?en Duji?. Hardware-in-the-loop modeling of an actively fed mvdc railway systems of the future. IEEE Access, 9:151493–151506, 2021. [72] Erik Goldammer, Marius Gentejohann, Michael Schl?ter, Daniel Weber, Wolfgang Wondrak, Sibylle Dieckerhoff, Clemens G?hmann, and Julia Kowal. The impact of an overlaid ripple current on battery aging: The development of the sicwell dataset. Batteries, 8(2), 2022. [73] Zhiyuan Hu, Yan-Fei Liu, and Paresh C. Sen. Bang-bang charge control for llc resonant converters. IEEE Transactions on Power Electronics, 30(2):1093–1108, 2015. [74] Jhih-Da Hsu, Martin Ordonez, Wilson Eberle, Marian Craciun, and Chris Botting. Enhanced small-signal modeling for charge-controlled resonant converters. IEEE Transactions on Power Electronics, 37(2):1736–1747, 2022. [75] Zhiyuan Hu, Yan-Fei Liu, and P. C. Sen. Cycle-by-cycle average input current sensing method for llc resonant topologies. In 2013 IEEE Energy Conversion Congress and Exposition, pages 167–174, 2013. [76] X. Liu, Z. Q. Zhu, David A. Stone, Martin P. Foster, W. Q. Chu, Iain Urquhart, and James Greenough. Novel dual-phase-shift control with bidirectional inner phase shifts for a dual-active-bridge converter having low surge current and stable power control. IEEE Transactions on Power Electronics, 32(5):4095–4106, 2017. [77] Hua Bai and Chris Mi. Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc –dc converters using novel dual-phase shift control. IEEE Transactions on Power Electronics, 23(6):2905–2914, 2008. [78] Jong-Woo Kim and Gun-Woo Moon. A new llc series resonant converter with a narrow switching frequency variation and reduced conduction losses. IEEE Transactions on Power Electronics, 29(8):4278–4287, 2014. [79] Guangdi Li, Jin Xia, Kun Wang, Yan Deng, Xiangning He, and Yousheng Wang. Hybrid modulation of parallel-series llc resonant converter and phase shift full-bridge converter for a dual-output dc–dc converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(2):833–842, 2019. [80] Tianhua Zhu, Fang Zhuo, Fangzhou Zhao, Feng Wang, Hao Yi, and Tong Zhao. Optimization of extended phase-shift control for full-bridge cllc resonant converter with improved light-load efficiency. IEEE Transactions on Power Electronics, 35(10):11129–11142, 2020. [81] Ilker Kayaalp, Tugce Demirdelen, Tahsin Koroglu, M. Ugras Cuma, K. Cagatay Bayindir, and Mehmet Tumay. Comparison of different phase-shift control methods at isolated bidirectional dc-dc converter. International Journal of Applied Mathematics Electronics and Computers, 4(2):68–73, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83528-
dc.description.abstract將儲能系統整合到太陽能系統中有助於解決電力日益增多的需求之外,亦可解決再生能源間歇性的問題。由於太陽能板易受環境影響,因此有鋰電池之太陽能微型逆變器是一種解決方案,因整合的太陽能系統可提供更可靠的電力,並將之傳輸至電網。然而,這會導致更複雜的逆變器系統設計,因系統需要額外增加一個雙向直流轉直流的轉換器來對電池進行充電和放電。在該系統中,需要將適當的功率平衡控制來向電池傳輸能量與從電池取得能量,同時確保直流鏈電壓保持在可接受的電壓範圍內,從而正確地向電網供電。本研究驗證三種不同的雙向CLLC諧振轉換器控制方法,達到在整合鋰電池之太陽能逆變器中提供電池放電和充電模式之間的快速轉換。 在這此論文中,第貳章討論了對稱型的雙向CLLC轉換器的拓撲介紹,包括工作模式分析、共振腔的電壓增益和通過輸入阻抗分析的零電壓切換與零電流切換之邊界。第參章介紹了CLLC諧振轉換器的簡化穩態平面分析,提供一種更簡單方法觀察CLLC的工作模式。第肆章提出了鋰離子電池的仿真模型。由於CLLC諧振轉換器、鋰離子電池以及所提出的控制方式在文獻中很少被論及,因此在第伍章中介紹了三種動態平衡之電壓控制方法,並通過硬件在環系統驗證及比較三種功率平衡控制方法。第陸章討論包含雙向CLLC轉換器之硬體設計、CLLC電路之閉環測試、電路之穩態平面軌跡測試與效率測試等。 本論文獨特貢獻涵蓋: (1) 透過輸入阻抗推導CLLC轉換器之零電壓開關/零電流開關邊界、(2) CLLC轉換器之穩態彈道平面分析、(3)使用硬件在環驗驗證與比較三種動態電壓控制方法、(4) CLLC轉換器之硬體設計與(5) CLLC轉換器之開環與閉環測試。zh_TW
dc.description.abstractThe integration of storage into solar photovoltaic systems helps address the increasing electricity demands and the intermittent nature of renewable energy sources. Since photovoltaics (PV) are easily affected by environmental conditions, PV microinverters with integrated batteries are one solution to achieve a more reliable power output to the grid. However, this results in a more complex microinverter system design which requires an additional bidirectional dc-dc converter to charge and discharge the battery. In this system, proper power balancing control is required to transfer energy to and from the battery while ensuring the dc link voltage stays within an acceptable voltage to properly provide power to the grid. This research analyzes and evaluates three distinct system control methods of a bidirectional CLLC resonant converter together with Li-ion batteries to have a quick mode transition in the integrated microinverter. In this work, the validity of switching frequency control, charge control and dual phase shift control are verified by hardware-in-the-loop. The topology introductions of the CLLC converter, including the operating mode analysis, the voltage gain of the resonant tank and the ZVS/ZCS boundaries analyzed by input impedances, are discussed in chapter 2. The simplified steady-state state-plane analysis of CLLC resonant converter, which provides a easier way to observe the operation of CLLC, is mentioned in chapter 3. In chapter 4, the Lithium-ion battery's emulation model is introduced. As the CLLC resonant converter together with Lithium-ion batteries considering the three different controllers has not yet been fully investigated in the literature, the three controllers are introduced, their validity is verified using real-time hardware-in-the-loop system and comparison are discussed in chapter 5. In chapter 6, the CLLC hardware design, the closed loop (switching frequency control), the steady-state state-plane of the CLLC and the efficiency test are mentioned. The unique contributions of this work fully cover as follows: (1) the zero voltage switching/zero current switching boundaries derivation of the CLLC, (2) the steady-state state-plane analysis of the CLLC converter, (3) the hardware-in-the-loop verification and comparison of three controllers, (4) the hardware design of the CLLC converter and (5) the opened and closed loop test of the CLLC converter.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:09:42Z (GMT). No. of bitstreams: 1
U0001-2608202214013800.pdf: 38093372 bytes, checksum: 1842541ce5a1be88f0cf0003da727e0a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要3 Abstract 5 Contents 7 List of Figures 11 List of Tables 19 Chapter 1 Introduction 1 1.0.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1 1.0.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2 Topology Introduction 13 2.1 Bidirectional CLLC Converter Theoretical Analysis . . . . . . . . . 14 2.1.1 Operating Mode Analysis . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Resonant Tank Voltage Gain Analysis Using First Harmonic Approximation . . . 19 2.3 ZVS/ZCS Boundaries Analyzed by Input Impedances . . . . . . . . 23 Chapter 3 Steady-State State-Plane Analysis of The CLLC 33 3.1 State-Plane Analysis of The CLLC’s Primary Side for The Charging Mode . . . . 33 3.1.1 Magnetizing Inductor Voltage Derivation . . . . . . . . . . . . . . 34 3.2 Steady-State Trajectory of The Primary Side for The Charging Mode 42 3.2.1 Case I: At The Resonant Frequency . . . . . . . . . . . . . . . . . 42 3.2.2 Case II: Below The Resonant Frequency . . . . . . . . . . . . . . . 44 3.2.3 Case III: Above The Resonant Frequency . . . . . . . . . . . . . . 46 3.2.4 Summarized Steady-State Trajectory for Three Cases of The Primary Side for The Charging Mode . . . . . . . 48 3.3 State-Plane Analysis of The CLLC’s Secondary Side for The Charging Mode . . 49 3.4 Steady-State Trajectory of The Secondary Side for The Charging Mode 54 3.4.1 Case I: At The Resonant Frequency . . . . . . . . . . . . . . . . . 54 3.4.2 Case II: Below The Resonant Frequency . . . . . . . . . . . . . . . 56 3.4.3 Case III: Above The Resonant Frequency . . . . . . . . . . . . . . 58 3.4.4 Summarized Steady-State Trajectory for Three Cases of The Secondary Side for The Charging Mode . . . . . . . . . . . . . 60 Chapter 4 Lithium-ion Battery Model 61 4.1 Introduction of The Lithium-ion Battery Model . . . . . . . . . . . . 61 4.2 Parameters in The Battery Model and Charging/Discharging Tests . . 63 Chapter 5 Voltage Control Methods for Dynamically Balancing The DC Link 65 5.1 The Challenge of The Integrated PV Microinverter . . . . . . . . . . 65 5.2 Introduction of Real-Time Hardware-In-The-Loop . . . . . . . . . . 68 5.3 Switching Frequency Control . . . . . . . . . . . . . . . . . . . . . 70 5.3.1 Introduction of Switching Frequency Control . . . . . . . . . . . . 70 5.3.2 Hardware-In-The-Loop Results of Switching Frequency Control . . . . . . . 73 5.4 Charge Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4.1 Introduction of Charge Control . . . . . . . . . . . . . . . . . . . . 79 5.4.2 Hardware-In-The-Loop Results of Charge Control . . . . . . . . . . 84 5.5 Dual Phase Shift Control . . . . . . . . . . . . . . . . . . . . . . . . 89 5.5.1 Introduction of Dual Phase Shift Control . . . . . . . . . . . . . . . 89 5.5.2 Operating Mode Introduction . . . . . . . . . . . . . . . . . . . . . 92 5.5.3 Hardware-In-The-Loop Results of Phase Shift Control . . . . . . . 98 5.6 Hardware-In-The-Loop Experimental Results Comparison . . . . . . . . 102 Chapter 6 Hardware Design And Experimental Results 109 6.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.1.1 The Power Stage Circuit . . . . . . . . . . . . . . . . . . . . . . . 109 6.1.2 The Gate Driver Circuit . . . . . . . . . . . . . . . . . . . . . . . . 110 6.1.3 The Voltage Sensors Circuit . . . . . . . . . . . . . . . . . . . . . . 111 6.1.4 Printed Circuit Board Layout Design . . . . . . . . . . . . . . . . . 113 6.1.5 Summarized Components for The CLLC Board . . . . . . . . . . . 115 6.2 Experimental Results of The Opened Loop Test . . . . . . . . . . . . 116 6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2.2 Operating Waveforms for The Opened Loop Test . . . . . . . . . . 118 6.2.3 Steady-State State-Plane Experimental Results . . . . . . . . . . . . 126 6.2.4 Efficiency Test of The CLLC Converter . . . . . . . . . . . . . . . 128 6.3 Experimental Results of The Closed Loop Test . . . . . . . . . . . . 131 6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.3.2 The Closed Loop Test of Switching Frequency Control . . . . . . . 132 Chapter 7 Conclusion 135 7.0.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.0.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 References 137
dc.language.isoen
dc.subject鋰電池zh_TW
dc.subject太陽能系統zh_TW
dc.subject直流鏈電壓zh_TW
dc.subjectCLLC轉換器zh_TW
dc.subject整合之太陽能逆變器zh_TW
dc.subjectLi-ion batteriesen
dc.subjectdc link voltageen
dc.subjectphotovoltaic systemsen
dc.subjectintegrated microinverteren
dc.subjectCLLC converteren
dc.title評估具有鋰離子電池之太陽能逆變器中雙向CLLC諧振轉換器的控制方法zh_TW
dc.titleEvaluation of Control Methods for a Bidirectional CLLC Resonant Converter in a PV Microinverter with a Li-Ion Batteryen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳景然(Ching-Jan Chen),劉宇晨(Yu-Chen Liu)
dc.subject.keywordCLLC轉換器,鋰電池,直流鏈電壓,太陽能系統,整合之太陽能逆變器,zh_TW
dc.subject.keywordCLLC converter,dc link voltage,Li-ion batteries,photovoltaic systems,integrated microinverter,en
dc.relation.page148
dc.identifier.doi10.6342/NTU202202856
dc.rights.note未授權
dc.date.accepted2022-09-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-2608202214013800.pdf
  未授權公開取用
37.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved