Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8347
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林嬋娟(Chan-Jane Lin)
dc.contributor.authorQi-Jun Guoen
dc.contributor.author郭頎君zh_TW
dc.date.accessioned2021-05-20T00:52:30Z-
dc.date.available2020-08-06
dc.date.available2021-05-20T00:52:30Z-
dc.date.copyright2020-08-06
dc.date.issued2020
dc.date.submitted2020-07-31
dc.identifier.citation邱献良(民105年)。會計師事務所審計支援系統對審計品質之影響(未出版之博士論文)。國立政治大學,台北市。
周霈翎(民108年2月)。辦公室生力軍流程機器人。會計研究月刊,399,64-75。
莊蕎安(民108年1月)。金融區塊鍊函證正式商轉-專訪財金公司總經理林國良。會計研究月刊,398,66-69。
張書瑋(民108年12月)。會計人數位轉型大調查。會計研究月刊,409,64-75。
歐宜佩、陳信宏(民107年)。近期數位轉型發展趨勢之觀察。經濟前瞻,178,94-99。
劉姵呈(民109年2月25日)。疫情衝擊財報公告,金管會:會計師可採替代方案。中央通訊社。取自https://www.cna.com.tw/
Alles, M. G. (2015). Drivers of the use and facilitators and obstacles of the evolution of big data by the audit profession. Accounting Horizons, 29(2), 439-449.
AICPA (2015). Audit Data Standards Base Standard. Location: American Institute of Certified Public Accountants.
AICPA (2015). Audit Data Standards General Ledger Standard. Location: American Institute of Certified Public Accountants.
AICPA (2017). Guide to Audit Data Analytics. Location: American Institute of Certified Public Accountants.
AICPA (2019a). Audit Data Standard and Audit Data Analytics Working Group. Location: American Institute of Certified Public Accountants.
AICPA (2019b). Audit Data Analytics to Traditional Procedures Mapping Document. Location: American Institute of Certified Public Accountants.
Appelbaum, D. (2016). Securing big data provenance for auditors: the big data provenance black box as reliable evidence. Journal of Emerging Technologies in Accounting, 13(1), 17-36.
Appelbaum, D., Kogan, A., Vasarhelyi, M. A. (2017). Big data and analytics in the modern audit engagement: research needs. Auditing: A Journal of Practice Theory, 36(4), 1-27.
Appelbaum, D., Kogan, A., Vasarhelyi, M. A. (2018). Analytical procedures in external auditing: a comprehensive literature survey and framework for external audit analytics. Journal of Accounting Literature, 40, 83-101.
AUASB (2018). Use of Technology in the Audit including Data Analytics. Location: Australian Accounting Standards Board.
Austin, A., Carpenter, T., Christ, M. Nielson, C. (2019). The data analytics transformation: Evidence from auditors, CFOs, and standard-setters. Working paper, Retrieved from https://pdfs.semanticscholar.org/e308/2c715f168c2c2569ebe93ad449117858234e.pdf?_ga=2.82629462.1394988965.1595911545-2146495826.1581852640
Bauer, T. D., Estep, C. (2019). One team or two? investigating relationship quality between auditors and IT specialists: implications for audit team identity and the audit process. Contemporary Accounting Research, 36(4), 2142-2177.
Bierstaker, J., Janvrin, D., Lowe, D. J. (2014). What factors influence auditors' use of computer-assisted audit techniques. Advances in Accounting, incorporating Advances in International Accounting, 30, 67-74.
Brown-Liburd, H., Issa, H., Lombardi, D. (2015). Behavioral implication of big data’s impact on audit judgment and decision making and future research directions. Accounting Horizons, 29(2), 451-468.
Cao, M., Chychyla, R., Stewart, T. (2015). Big data analytics in financial statement audits. Accounting Horizons, 29(2), 423-429.
Chawla, V. (2020, January 7). Why the big four audit firms PwC, EY, Deloitte KPMG are investing heavily in AI. Analytics India Magazine. Retrieved from https://analyticsindiamag.com/
Chen, C .L. P., Zhang C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: a survey on big data. Information Sciences, 275, 314-347.
Cooper, L. A., Holderness, D. K., Sorensen, T. L., Wood, D. A. (2018). Robotic process automation in public accounting. Accounting Horizons, 33(4), 15-35.
Dai, J., Vasarhelyi, M. A. (2016). Imagineering audit 4.0. Journal of Emerging Technologies, 13(1), 1-15.
Dai, J., Vasarhelyi, M. A. (2017). Toward blockchain-based accounting and assurance. Journal of Information Systems, 31(3), 5-21.
Davenport, T. H., Raphael, J. (2017). Creating a cognitive audit. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/us/Documents/audit/us-audit-creating-cognitive-audit.pdf
Demchenko, Y., Grosso, P., De Laat, C., Membrey, P. (2013). Addressing Big Data Issues in Scientific Data Infrastructure. IEEE International Conference on Collaboration Technologies and Systems (CTS), 48-55.
Dell Technologies. (2019). Dell Technologies Digital Transformation Index II. Retrieved from https://www.dellemc.com/resources/en-us/asset/analyst-reports/solutions/dell_technologies_digital_transformation_index_ii_full_findings_report.pdf
Deloitte (2017). Delivering smarter audits. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/us/Documents/audit/us-audit-smarter-audits-dynamic-insights-through-innovation.pdf
Deloitte (2019). 2019 Transparency Report. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/au/Documents/audit/au-audit-transpaparency-report-2019.pdf
Deloitte (n.d.). Deloitte Omnia. Retrieved June 28, 2020, from https://www2.deloitte.com/us/en/pages/audit/solutions/deloitte-omnia-unifying-people-processes-and-technology-in-auditing.html
Earley, C. E. (2015). Data analytics in auditing: opportunities and challenges. Business Horizons, 58, 493-500.
Eilifsen, A., Kinserdal, F., Messier, W. F., McKee, T. E. (2019). An exploratory study into the use of audit data analytics on audit engagements. Working paper, Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3458485
Elliott, R. K. (1992). The third wave breaks on the shores of accounting. Accounting Horizons, 6(2), 61-85.
EY (2019). EY UK 2019 Transparency Report. Retrieved from https://assets.ey.com/content/dam/ey-sites/ey-com/en_uk/about-us/transparency-report-2019/ey-uk-2019-transparency-report.pdf
EY (n.d.). Audit innovation. Retrieved June 28, 2020, from https://www.ey.com/en_gl/audit/innovation
FRC (2017). Audit quality thematic review: the use of data analytics in the audit of financial statements. Location: Financial Reporting Council.
Frey, C. B., Osborne, M. A. (2013). The future of employment: how susceptible are jobs to computerisation? Working paper, Retrieved from https://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf
Gepp, A., Linnenluecke, M. K., O'Neill, T. J., Smith, T. (2018). Big data techniques in auditing research and practice: current trends and future opportunities. Journal of Accounting Literature, 40, 102-115.
Gonzalez, G. C., Sharma, P. N., Galletta, D. F. (2012). The antecedents of the use of continuous auditing in the internal auditing context. International Journal of Accounting Information Systems, 13, 248-262.
Hux, C. (2017). Use of specialists on audit engagements: a research synthesis and directions for future research. Journal of Accounting Literature, 39, 23-51.
IAASB (2016). Exploring the growing use of technology in the audit, with a focus on data analytics. Location: International Auditing and Assurance Standards Board.
IAASB (2018). Exploring the growing use of technology in the audit, with a focus on data analytics. Location: International Auditing and Assurance Standards Board.
IAASB (2019). Proposed strategy for 2020-2023 and work plan for 2020-2021. Location: International Auditing and Assurance Standards Board.
Jenkins, J. G., Negangard, E. M., Oler, M. J. (2018). Getting comfortable on audits: understanding firms’ usage of forensic specialists. Contemporary Accounting Research, 35(4), 1766-1797.
Katal, A., Wazid, M., Goudar, R. H. (2013). Big data: issues, challenges, tools and good practices. Paper presented at the Contemporary Computing (IC3), 2013 Sixth International Conference on.
Kirkos, E., Spathis, C., Manolopoulos, Y. (2008). Support vector machines, decision trees and neural networks for auditor selection. Journal of Computational Methods in Science and Engineering, 8(3), 213-224.
Koh, H. C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.
KPMG (2017). KPMG Clara. Retrieved from https://assets.kpmg/content/dam/kpmg/xx/pdf/2017/05/kpmg-clara-a-smart-audit-platform.pdf
KPMG (2019). UK Transparency Report 2019. Retrieved from https://assets.kpmg/content/dam/kpmg/uk/pdf/2019/12/uk-transparency-report-2019.pdf
Manita, R., Elommal, N., Baudier, P., Hikkerova, L. (2020). The digital transformation of external audit and its impact on corporate governance. Technological Forecasting Social Change, 150, 1-10.
Moffitt, K. C., Rozario, A. M. Vasarhelyi, M. A. (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting. 15(1), 1-10.
No, W. G., Lee, K., Huang, F., Li, Q. (2019). Multidimensional audit data selection (MADS): a framework for using data analytics in the audit data selection process. Accounting Horizons, 33(3), 127-140.
PwC (2019a). Audit explorer. Retrieved from https://www.pwc.com/gx/en/audit-services/assets/pdf/audit-explorer-at-a-glance-on-screen.pdf
PwC (2019b). Transparency report. Retrieved from https://www.pwc.co.uk/annualreport/assets/2019/pdf/uk-transparency-report-19.pdf
Ravisankar, P., Ravi, V., Rao, G. R., Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50, 491-500.
Salijeni, G., Samsonova-Taddei, A., Turley, S. (2019). Big data and changes in audit technology: contemplating a research agenda. Accounting and Business Research, 49(1), 95-119.
Sun, T. (2019). Applying deep learning to audit procedures: an illustrative framework. Accounting Horizons, 33(3), 89-109.
Sun, T. (2018). The incremental informativeness of the sentiment of conference calls for internal control material weaknesses. Accounting Horizons, 15(1), 11-27.
Sun, T., Vasarhelyi, M. A. (2018). Embracing textual data analytics in auditing with deep learning. The International Journal of Digital Accounting Research, 18, 49-67.
Sun, T., Vasarhelyi, M. A. (2017). Deep learning and the future of auditing: how an evolving technology could transform analysis and improve judgment. The CPA Journal, 6, 24-29.
Tysiac, K. (2019a, June 12). NASBA and AICPA seek input on evolving licensure model. Journal of Accountancy. Retrieved from https://www.journalofaccountancy.com/
Tysiac, K. (2019b, November 1). CPA Exam topics undergoing change for digital age. Journal of Accountancy. Retrieved from https://www.journalofaccountancy.com/
Tysiac, K. (2019c, December 10). Proposed CPA licensure model emphasizes core plus disciplines. Journal of Accountancy. Retrieved from https://www.journalofaccountancy.com/
Tysiac, K. (2020, May 21). AICPA Council supports advancement of new CPA licensure model. Journal of Accountancy. Retrieved from https://www.journalofaccountancy.com/
Venkatesh, V., Morris, M., Davis, G., Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478.
Wang, T., Cuthbertson, R. (2015). Eight issues on audit data analytics we would like researched. Journal of Information Systems, 29(1), 155-162.
Warren Jr, J. D., Moffitt, K. C., Byrnes, P. (2015). How big data will change accounting. Accounting Horizons, 29(2), 397-407.
WEF (2017). Digital Transformation Initiative Professional Services Industry. Location: World Economic Forum.
Yoon, K., Hoogduin, L., Zhang, L. (2019). Big data as complementary audit evidence. Accounting Horizons, 29(2), 431-438.
Zhaokai, Y., Moffitt, K. C. (2019). Contract analytics in auditing. Accounting Horizons, 33(3), 111-126.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8347-
dc.description.abstract本論文透過訪談與問卷調查,探討台灣四大會計師事務所發展與應用數位審計之情形,以及查核人員對於使用查核分析之接受度。
本論文發現四大會計師事務所對於發展查核分析之動機、應用查核分析所面臨之挑戰、因應挑戰之方式、應用查核分析所能獲得之預期效益、查核分析工具發展之現況與歷程,以及對數位審計之未來展望的大方向皆相似。在接受度方面,整體而言,受試者認同使用查核分析進行查核確實具有效益且受到審計準則支持,事務所亦提供足夠之輔助。事務所間在因應挑戰與發展數位審計工具之具體行動雖然有較大的差異,但該等差異並未顯著影響不同事務所之查核人員對於使用查核分析之接受度。
深究影響查核人員對查核分析接受度之原因,本論文發現查核人員是否感受到使用查核分析之效益為影響其接受度的關鍵。另外,管理職與非管理職間在查核分析工具操作上之困難、使用查核分析可能會增加客戶之工作量,以及事務所提供之輔助之認同程度存有落差,隱含注重非管理職之感受,將能更有效地發現並解決實務上的痛點,有助於發揮查核分析之效益,進而提升查核人員之接受度。
本論文亦發現不論接受度或職級高低,皆面臨正確地判讀並解釋查核分析的結果之困難,顯示查核分析工具只是協助分析之輔助,並未淡化專業判斷的重要性。
zh_TW
dc.description.abstractBy interviews and questionnaire surveys, this study explores the development and application of digital auditing as well as the acceptance of auditors applying audit data analytics (ADA) technique in the Big Four accounting firms in Taiwan.
Interview results indicates similar findings among Big Four in the following aspects: the motivation for the development of ADA, the challenges arising from applying ADA, the ways responding to the challenges, the expected benefits of applying ADA, the current situation and history of the development of digital audit tools, and the future outlook of digital auditing. In terms of the acceptance of auditors applying ADA, the auditors surveyed agree that the use of ADA is indeed beneficial and supported by the auditing standards and the Big Four also provide sufficient support. Although some differences exist in the specific ways to respond to challenges and the development of digital audit tools, they didn’t significantly affect the acceptance of the use of ADA among auditors from different audit firms.
Investigating the reasons that affect the acceptance of auditors applying ADA, this paper finds that the perception of benefits of using ADA is the key factor to affecting auditors’ acceptance. In addition, there are differences between management and non-management positions in the following aspects: the difficulty in using ADA tools, the perceived workload of the client, and the sufficiency of the support by the Big Four. They imply that taking into account the perception of non-management positions will be able to more effectively find and solve the pain points in practice. It’s also useful to maximize the benefit of ADA and enhance the acceptance of auditors for using ADA.
This paper also finds that regardless of acceptance or position, it is difficult for auditors to correctly interpret the data analysis results, which implies that the ADA tools do not replace the professional judgment.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:52:30Z (GMT). No. of bitstreams: 1
U0001-3107202016033100.pdf: 1071841 bytes, checksum: 8b5d3fcecc1dbb4dcae9ecf349e900fe (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
表目錄 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與預期貢獻 3
第三節 研究架構 4
第二章 文獻回顧 5
第一節 影響會計師事務所投入於發展查核分析之因素 5
第二節 會計師事務所應用查核分析時面臨之挑戰 6
第三節 應用查核分析時所面臨挑戰之因應方式 8
第四節 會計師事務所應用查核分析預期成效 11
第五節 查核分析工具或方法於審計領域之應用 12
第六節 查核人員對應用科技於審計領域之接受度 16
第三章 研究方法與設計 18
第一節 訪談 18
第二節 問卷調查 20
第四章 研究結果 23
第一節 訪談結果彙整 23
第二節 問卷結果 39
第五章 研究結論、限制與建議 63
第一節 研究結論 63
第二節 研究限制與建議 66
參考文獻 67
附錄 75
附錄A 訪談前置問卷 75
附錄B 會計師事務所數位審計應用狀況研究問卷 77
dc.language.isozh-TW
dc.title會計師事務所發展及應用數位審計之探討—以台灣四大會計師事務所為例
zh_TW
dc.titleResearch on the Development and Application of Digital Auditing in Taiwanese Big Four Accounting Firmsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee諶家蘭(Jia-Lang Seng),顏如君(Ju-Chun Yen)
dc.subject.keyword數位審計,審計創新,大數據分析,查核資料分析,會計師事務所,zh_TW
dc.subject.keyworddigital audit,audit innovation,big data analytics,audit data analytics (ADA),accounting firm,en
dc.relation.page82
dc.identifier.doi10.6342/NTU202002166
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-03
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept會計學研究所zh_TW
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
U0001-3107202016033100.pdf1.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved