請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83468完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貞佑(Chen-Yu Liu) | |
| dc.contributor.author | Yu-Ping Fang | en |
| dc.contributor.author | 方鈺萍 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:08:17Z | - |
| dc.date.copyright | 2022-10-20 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-29 | |
| dc.identifier.citation | 1. Dery, J.L., D. Gerrity, and C.M. Rock, Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS): What consumers need to know. University of Arizona Cooperative Extension. az1794, 2019. 2. Buck, R., et al., Polyfluorinated Chemicals and Transformation Products. Chemistry, Properties, and Uses of Commercial Fluorinated. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012: p. 1-24. 3. Shigei, M., et al., Per- and polyfluoroalkyl substances in water and soil in wastewater-irrigated farmland in Jordan. Science of The Total Environment, 2020. 716: p. 137057. 4. Klaunig, J.E., et al., Evaluation of the chronic toxicity and carcinogenicity of perfluorohexanoic acid (PFHxA) in Sprague-Dawley rats. Toxicol Pathol, 2015. 43(2): p. 209-20. 5. Ohmori, K., et al., Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology, 2003. 184(2-3): p. 135-40. 6. Gao, S. and R. Liu, Comprehensive insights into the interaction mechanism between perfluorodecanoic acid and human serum albumin. New Journal of Chemistry, 2018. 42(11): p. 9065-9073. 7. Kudo, N., et al., Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats. Chemico-biological interactions, 2001. 134(2): p. 203-216. 8. Fu, Y., et al., Associations between serum concentrations of perfluoroalkyl acids and serum lipid levels in a Chinese population. Ecotoxicology and Environmental Safety, 2014. 106: p. 246-252. 9. Lau, C., Perfluorinated Compounds: An Overview, in Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances, J.C. DeWitt, Editor. 2015, Springer International Publishing: Cham. p. 1-21. 10. Brusseau, M.L. and J.F. Artiola, Chapter 12 - Chemical Contaminants, in Environmental and Pollution Science (Third Edition), M.L. Brusseau, I.L. Pepper, and C.P. Gerba, Editors. 2019, Academic Press. p. 175-190. 11. Olsen, G.W., et al., Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000–2010. Environmental science & technology, 2012. 46(11): p. 6330-6338. 12. Okada, E., et al., Temporal trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan, 2003–2011. Environment international, 2013. 60: p. 89-96. 13. Wang, M., J.-S. Park, and M. Petreas, Temporal Changes in the Levels of Perfluorinated Compounds in California Women's Serum over the Past 50 Years. Environmental Science & Technology, 2011. 45(17): p. 7510-7516. 14. Customs Administration. PFCs import and export report. [http://portal.g0v.ronny.tw/index/goodid/382478/%E5%90%88%E8%A8%88/10007]. 15. Chen, W.-L., et al., Concentrations of perfluoroalkyl substances in foods and the dietary exposure among Taiwan general population and pregnant women. Journal of Food and Drug Analysis, 2018. 26(3): p. 994-1004. 16. Haug, L.S., et al., Levels in food and beverages and daily intake of perfluorinated compounds in Norway. Chemosphere, 2010. 80(10): p. 1137-1143. 17. Jensen, R.C., et al., Prenatal exposure to perfluorodecanoic acid is associated with lower circulating concentration of adrenal steroid metabolites during mini puberty in human female infants. The Odense Child Cohort. Environ Res, 2020. 182: p. 109101. 18. Huang, M., et al., Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environment International, 2018. 119: p. 37-46. 19. Long, M., M. Ghisari, and E.C. Bonefeld-J?rgensen, Effects of perfluoroalkyl acids on the function of the thyroid hormone and the aryl hydrocarbon receptor. Environ Sci Pollut Res Int, 2013. 20(11): p. 8045-56. 20. Costello, E., et al., Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis. Environ Health Perspect, 2022. 130(4): p. 46001. 21. Yamamoto, A. and Y. Kawashima, Perfluorodecanoic acid enhances the formation of oleic acid in rat liver. Biochem J, 1997. 325 ( Pt 2)(Pt 2): p. 429-34. 22. Gao, S., et al., Cytotoxicity of perfluorodecanoic acid on mouse primary nephrocytes through oxidative stress: Combined analysis at cellular and molecular levels. Journal of Hazardous Materials, 2020. 393: p. 122444. 23. Dong, T., et al., Perfluorodecanoic acid (PFDA) promotes gastric cell proliferation via sPLA2-IIA. Oncotarget, 2017. 8(31): p. 50911-50920. 24. Frawley, R.P., et al., Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid (PFDA) on female Harlan Sprague–Dawley rats and B6C3F1/N mice when administered by oral gavage for 28 days. Journal of Immunotoxicology, 2018. 15(1): p. 41-52. 25. Juge-Aubry, C., et al., DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Journal of Biological Chemistry, 1997. 272(40): p. 25252-25259. 26. Penumetcha, M. and N. Santanam, Nutraceuticals as ligands of PPAR. PPAR research, 2012. 2012. 27. Evans, N., et al., In vitro activity of a panel of per- and polyfluoroalkyl substances (PFAS), fatty acids, and pharmaceuticals in peroxisome proliferator-activated receptor (PPAR) alpha, PPAR gamma, and estrogen receptor assays. Toxicology and Applied Pharmacology, 2022. 449: p. 116136. 28. Grygiel-G?rniak, B., Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutrition journal, 2014. 13: p. 17-17. 29. Cheng, X. and C.D. Klaassen, Perfluorocarboxylic Acids Induce Cytochrome P450 Enzymes in Mouse Liver through Activation of PPAR-α and CAR Transcription Factors. Toxicological Sciences, 2008. 106(1): p. 29-36. 30. Cheng, X. and C.D. Klaassen, Critical Role of PPAR-α in Perfluorooctanoic Acid– and Perfluorodecanoic Acid–Induced Downregulation of Oatp Uptake Transporters in Mouse Livers. Toxicological Sciences, 2008. 106(1): p. 37-45. 31. Sterchele, P.F., et al., Regulation of Peroxisome Proliferator-Activated Receptor-α mRNA in Rat Liver. Archives of Biochemistry and Biophysics, 1996. 326(2): p. 281-289. 32. Ishibashi, H., et al., Contamination and effects of perfluorochemicals in Baikal seal (Pusa sibirica). 2. Molecular characterization, expression level, and transcriptional activation of peroxisome proliferator-activated receptor alpha. Environ Sci Technol, 2008. 42(7): p. 2302-8. 33. Borges, T., et al., Effect of the peroxisome proliferator perfluorodecanoic acid on the promotion of two-stage hepatocarcinogenesis in rats. Cancer Lett, 1993. 72(1-2): p. 111-20. 34. Yoon, M., The role of PPARα in lipid metabolism and obesity: Focusing on the effects of estrogen on PPARα actions. Pharmacological Research, 2009. 60(3): p. 151-159. 35. Montaigne, D., L. Butruille, and B. Staels, PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol, 2021. 18(12): p. 809-823. 36. Kersten, S., Integrated physiology and systems biology of PPARα. Molecular metabolism, 2014. 3(4): p. 354-371. 37. Moya-Camarena, S.Y., et al., Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. Journal of Lipid Research, 1999. 40(8): p. 1426-1433. 38. Ppara gene expression in rat tissues. Available from: https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2800/Results?specific=true&geneQuery=%255B%257B%2522value%2522%253A%2522PPARA%2522%252C%2522category%2522%253A%2522symbol%2522%257D%255D&filterFactors=%257B%2522STRAIN%2522%253A%255B%2522Sprague-Dawley%2522%255D%257D&cutoff=%257B%2522value%2522%253A0.5%257D&unit=%2522TPM%2522. 39. Vanden Heuvel, J.P., Perfluorodecanoic acid as a useful pharmacologic tool for the study of peroxisome proliferation. Gen Pharmacol, 1996. 27(7): p. 1123-9. 40. Ostertag, S.K., et al., Historic dietary exposure to perfluorooctane sulfonate, perfluorinated carboxylates, and fluorotelomer unsaturated carboxylates from the consumption of store-bought and restaurant foods for the Canadian population. Journal of agricultural and food chemistry, 2009. 57(18): p. 8534-8544. 41. Kim, S.-J., et al., Exploring sex differences in human health risk assessment for PFNA and PFDA using a PBPK model. Archives of Toxicology, 2019. 93(2): p. 311-330. 42. Adamski, M.G., P. Gumann, and A.E. Baird, A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity. PloS one, 2014. 9(8): p. e103917. 43. George, M.E. and M.E. Andersen, Toxic effects of nonadecafluoro-n-decanoic acid in rats. Toxicol Appl Pharmacol, 1986. 85(2): p. 169-80. 44. Maher, J.M., et al., Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicological sciences : an official journal of the Society of Toxicology, 2008. 106(2): p. 319-328. 45. Cheng, X. and C.D. Klaassen, Critical role of PPAR-alpha in perfluorooctanoic acid- and perfluorodecanoic acid-induced downregulation of Oatp uptake transporters in mouse livers. Toxicological sciences : an official journal of the Society of Toxicology, 2008. 106(1): p. 37-45. 46. Luo, M., et al., Dual action of peroxisome proliferator-activated receptor alpha in perfluorodecanoic acid-induced hepatotoxicity. Arch Toxicol, 2017. 91(2): p. 897-907. 47. Abbott, B.D., et al., Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci, 2007. 98(2): p. 571-81. 48. Wada, T., J. Gao, and W. Xie, PXR and CAR in energy metabolism. Trends in Endocrinology & Metabolism, 2009. 20(6): p. 273-279. 49. Halling, J.F. and H. Pilegaard, PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab, 2020. 45(9): p. 927-936. 50. LeBleu, V.S., et al., PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol, 2014. 16(10): p. 992-1003, 1-15. 51. Chegary, M., et al., Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochimica et biophysica acta, 2009. 1791(8): p. 806-815. 52. Langley, A.E. and G.D. Pilcher, Thyroid, bradycardic and hypothermic effects of perfluoro?n?decanoic acid in rats. Journal of Toxicology and Environmental Health, 1985. 15(3-4): p. 485-491. 53. Pilcher, G.D. and A.E. Langley, The effects of perfluoro-n-decanoic acid in the rat heart. Toxicology and Applied Pharmacology, 1986. 85(3): p. 389-397. 54. Gutshall, D.M., G.D. Pilcher, and A.E. Langley, Mechanism of the serum thyroid hormone lowering effect of perfluoro?n?decanoic acid (PFDA) in rats. Journal of Toxicology and Environmental Health, 1989. 28(1): p. 53-65. 55. Miyamoto, T., et al., Inhibition of peroxisome proliferator signaling pathways by thyroid hormone receptor. Competitive binding to the response element. J Biol Chem, 1997. 272(12): p. 7752-8. 56. Boujrad, N., et al., The Peroxisome Proliferator Perfluorodecanoic Acid Inhibits the Peripheral-Type Benzodiazepine Receptor (PBR) Expression and Hormone-Stimulated Mitochondrial Cholesterol Transport and Steroid Formation in Leydig Cells*. Endocrinology, 2000. 141(9): p. 3137-3148. 57. Gazouli, M., et al., Effect of Peroxisome Proliferators on Leydig Cell Peripheral-Type Benzodiazepine Receptor Gene Expression, Hormone-Stimulated Cholesterol Transport, and Steroidogenesis: Role of the Peroxisome Proliferator-Activator Receptor α. Endocrinology, 2002. 143(7): p. 2571-2583. 58. Ravnskjaer, K., et al., Peroxisome Proliferator-Activated Receptor α (PPARα) Potentiates, whereas PPARγ Attenuates, Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells. Endocrinology, 2005. 146(8): p. 3266-3276. 59. Valvi, D., et al., Life-course Exposure to Perfluoroalkyl Substances in Relation to Markers of Glucose Homeostasis in Early Adulthood. J Clin Endocrinol Metab, 2021. 106(8): p. 2495-2504. 60. Haluz?k, M.M. and M. Haluz?k, PPAR-alpha and insulin sensitivity. Physiol Res, 2006. 55(2): p. 115-122. 61. Valvi, D., et al., Life-course Exposure to Perfluoroalkyl Substances in Relation to Markers of Glucose Homeostasis in Early Adulthood. The Journal of clinical endocrinology and metabolism, 2021. 106(8): p. 2495-2504. 62. Komatsu, M., et al., Glucose-stimulated insulin secretion: A newer perspective. Journal of diabetes investigation, 2013. 4(6): p. 511-516. 63. Dong, T., et al., Perfluorodecanoic acid (PFDA) promotes gastric cell proliferation via sPLA2-IIA. Oncotarget, 2017. 8(31): p. 50911-50920. 64. Zimmermann-Belsing, T., et al., Circulating leptin and thyroid dysfunction. European Journal of Endocrinology Eur J Endocrinol, 2003. 149(4): p. 257-271. 65. Suzuki, A., et al., Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase. Molecular and cellular biology, 2007. 27(12): p. 4317-4327. 66. Guo, H., et al., AMPK enhances the expression of pancreatic duodenal homeobox-1 via PPARalpha, but not PPARgamma, in rat insulinoma cell line INS-1. Acta pharmacologica Sinica, 2010. 31(8): p. 963-969. 67. Kang, C., et al., Epigenetics: an emerging player in gastric cancer. World journal of gastroenterology, 2014. 20(21): p. 6433-6447. 68. Xu, S., et al., Perilipin 2 Impacts Acute Kidney Injury via Regulation of PPAR<i>α</i>. Journal of Immunology Research, 2021. 2021: p. 9972704. 69. Vanden Heuvel, J.P., et al., Disposition of perfluorodecanoic acid in male and female rats. Toxicology and Applied Pharmacology, 1991. 107(3): p. 450-459. 70. Corton, J.C., J.M. Peters, and J.E. Klaunig, The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Archives of toxicology, 2018. 92(1): p. 83-119. 71. Wolf, C.J., et al., Activation of Mouse and Human Peroxisome Proliferator?Activated Receptor Alpha by Perfluoroalkyl Acids of Different Functional Groups and Chain Lengths. Toxicological Sciences, 2008. 106(1): p. 162-171. 72. Corton, J.C., et al., Mode of action framework analysis for receptor-mediated toxicity: The peroxisome proliferator-activated receptor alpha (PPARα) as a case study. Critical Reviews in Toxicology, 2014. 44(1): p. 1-49. 73. Kersten, S. and R. Stienstra, The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie, 2017. 136: p. 75-84. 74. 洪浚傑, 全氟辛烷磺酸的暴露與大鼠PPAR基因表現量及DNA甲基化的關聯性, in 食品安全與健康研究所. 2021, 國立臺灣大學. p. 1-83. 75. Leuenberger, N., S. Pradervand, and W. Wahli, Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. J Clin Invest, 2009. 119(10): p. 3138-48. 76. Sengupta, P., The Laboratory Rat: Relating Its Age With Human's. International journal of preventive medicine, 2013. 4(6): p. 624-630. 77. Johnson, M., Laboratory Mice and Rats. Materials and Methods, 2012. 2. 78. <P1010XQ4 review all.pdf>. 79. Nair, A.B. and S. Jacob, A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm, 2016. 7(2): p. 27-31. 80. Janhavi, P., et al., DoseCal: a virtual calculator for dosage conversion between human and different animal species. Arch Physiol Biochem, 2022. 128(2): p. 426-430. 81. <Estimating-the-Maximum-Safe-Starting-Dose-in-Initial-Clinical-Trials-for-Therapeutics-in-Adult-Healthy-Volunteers.pdf>. 82. Ojo, A.F., C. Peng, and J.C. Ng, Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. Journal of Hazardous Materials, 2021. 407: p. 124863. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83468 | - |
| dc.description.abstract | 背景 全氟癸酸是全氟碳化合物家族成員之一,其為10 個碳的長碳鍊結構,由碳氟鍵結與羧基組成,兩端分別為疏水與親水端,碳氟鍵是強化學鍵,不易被酸鹼分解且耐油耐熱,使其長時間存於環境,為持久性汙染物質。因特殊的化學特性,全氟癸酸常用在食品包材、鐵氟龍、消防泡沫等等。隨著其他全氟碳化合物被禁用與限用後,全氟癸酸的使用量遞增,在不同國家皆有觀察到其在人體血液含量增加的趨勢,又因為10個碳,導致消除速率較慢,血液半衰期長達12年。一項關於台灣食物偵測全氟碳化合物的研究,全氟癸酸在所有食品中檢出量為第一或第二高,使我們須重視全氟癸酸並探討相關健康效應。 過氧化物?體增殖物活化受體α (peroxisome proliferator-activated receptor α, Ppara)是核受體,會與配體結合,進行轉錄作用,與細胞生長、發育、調控脂質代謝有關。其配體為脂肪酸,由於全氟癸酸與脂肪酸結構相似,會被誤認成配體與之結合,進而活化影響調控,造成不良健康效應,如肝腫大。 現階段全氟癸酸研究,大多使用高劑量且腹腔注射和細胞培養實驗探討急毒性效應,但人體實際暴露劑量不高,且暴露途徑為口服,為了模擬人體暴露全氟癸酸的情形,採用較低劑量且管灌餵食老鼠實驗進行研究。 研究目的 探討低劑量的全氟癸酸與過氧化物?體增殖物活化受體在SD大鼠的多重器官的基因表現關聯性。 研究方法 將五週齡大的18隻SD大鼠分成三組: 對照組、低暴露組、高暴露組,劑量分別為 0、0.5、1 mg/kg/day (全氟癸酸),連續管灌餵食21天後,取出七個器官組織: 心臟、肝臟、肺臟、胰臟、腎臟、睪丸、血液,比較各組間的重量差異並做即時聚合?連鎖反應實驗觀察Ppara基因表現量變化。 所有統計方法使用R語言軟體,體重或器官重量採用Kruskal-Wallis分析比較三組間的差異。各組器官基因表達在不同全氟癸酸暴露劑量的差異採用Kruskal-Wallis分析和Wilcoxon 排序和檢定。劑量與各器官基因表達的相關性,採用簡單線性迴歸分析檢定線性的劑量關係效應。 結果 重量: 肝臟重量在三組間有顯著差異(p < 0.05),對照組(平均值 ± 標準差= 13.47 ± 0.73)、低暴露組(15.02 ± 1.52)、高暴露組(16.78 ± 0.93)。 基因表現: 各組基因表達中,心臟在對照組與低暴露組有顯著差異(p < 0.05)。實際食入劑量與基因表達中,與對照組相比,心臟基因表達在低暴露呈正相關 (ρ = 0.6; p = 0.01)。 結論 全氟癸酸暴露會增加肝臟重量,過氧化物?體增殖物活化受體α的基因表達在心臟組織與全氟癸酸暴露量呈正相關。 | zh_TW |
| dc.description.abstract | Background Perfluorodecanoic acid (PFDA) is heat-resistant and not easily degraded due to its strong carbon–fluorine bonds. With its chemical stability and widespread usage, PFDA is highly persistent in the environment. In human, PFDA has a slow excretion rate and long half-life (about 12 years in average). Because of the fatty acid-like structure, PFDA exposure may induce peroxisome proliferator-activated receptor alpha (Ppara) gene expression, increase lipid storage, and cause enlarged organs and toxicity. The purpose of this study was to explore the PFDA exposure in relation to weight and Ppara gene expressions in multiple organs in male Sprague-Dawley (SD) rats. Methods Eighteen male SD rats were divided into control, low-dose (LD), and high-dose (HD) groups randomly (n = 6 for each group). Each group received PFDA doses of 0, 0.5, 1 mg/kg of body-weight/day, ptively, via oral gavage for 21 consecutive days. Seven tissues (liver, heart, kidney, lung, pancreas, testis, and blood) were collected. Ppara gene expressions were detected by quantitative real time polymerase chain reaction (qRT-PCR). All statistical analyses were conducted using R software. The weight gains or organ weights of three groups (C, LD, HD) were compared by Kruskal-Wallis test analysis. The organs’ gene expression 2-?Ct value of each group were compared by the Kruskal-Wallis test analysis and Wilcoxon rank-sum test analysis. Linear relationship between PFDA dosage and organs’ gene expression 2-?Ct value were tested by simple linear regression. Results Weight: There was a significant difference in liver weight among the three groups (p < 0.05), the control group (mean ± SD = 13.47 ± 0.73), the low exposure group (15.02 ± 1.52), and the high exposure group (16.78 ± 0.93). Gene expression: The gene expression of each group in the heart was significantly different between the control group and the low exposure group (p < 0.05). Compared to the control dosage, there are the positive correlation in the heart in low dosage (0.5 mg/kg/day *body weight) of PFDA (ρ = 0.6; p = 0.01). Conclusions PFDA exposure may increase the liver weight and induce the Ppara gene expression level in the heart. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:08:17Z (GMT). No. of bitstreams: 1 U0001-2509202217270200.pdf: 1563566 bytes, checksum: ff7b3ea3dedd622eee03bc2819f47a98 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝.....i 中文摘要.....ii Abstract.....iv Contents.....vi List of Tables.....ix List of Figures.....x Chapter 1. Introduction.....1 1.1 Perfluorodecanoic Acid.....1 1.2 Peroxisome Proliferator Activated Receptors (PPARs).....3 1.3 Study aim.....4 Chapter 2. Materials and methods.....5 2.1 Animal procedure.....5 2.2 RNA extraction.....6 2.2.1 Organs.....6 2.2.2 Blood.....7 2.3 cDNA synthesis.....8 2.4 Quantitative real-time PCR (qRT-PCR).....8 2.4.1 Selection of reference gene.....8 2.4.2 Quantitative real-time PCR procedure (qRT-PCR).....9 2.5 Statistical Analysis.....10 Chapter 3. Results.....11 3.1 Body weight gain and organ weights.....11 3.2 Standard curve of Ppara and Sdha.....11 3.3 Relative Ppara gene expression to PFDA exposure.....12 Chapter 4. Discussion.....14 4.1 Weight.....14 4.2 Ppara gene expression level.....14 4.2.1 Ppara gene expression level in control group.....14 4.2.2 Ppara gene expression level in the liver.....15 4.2.3 Ppara gene expression level in the heart.....16 4.2.4 Ppara gene expression level in the testis.....16 4.2.5 Ppara gene expression level in the pancreas.....17 4.2.6 Ppara gene expression level in the kidney.....18 4.2.7 Ppara gene expression level in the blood.....18 4.2.8 Ppara gene expression level in the lung.....19 4.2.9 Summary.....19 4.3 Ppara different health effect in human & rat.....20 4.4 Ppara different health effect between PFOS and PFDA.....21 4.5 Strength and Limitation.....21 Chapter 5. Conclusion......24 References.....25 Table.....32 Figure.....35 Appendix.....39 | |
| dc.language.iso | en | |
| dc.subject | 管灌餵食 | zh_TW |
| dc.subject | 全氟/多氟烷基化合物(PFASs) | zh_TW |
| dc.subject | 全氟癸酸(PFDA) | zh_TW |
| dc.subject | Ppara | zh_TW |
| dc.subject | 基因表現 | zh_TW |
| dc.subject | PFDA | en |
| dc.subject | Oral gavage | en |
| dc.subject | Gene expression | en |
| dc.subject | PFASs | en |
| dc.subject | Ppara | en |
| dc.title | 短期暴露於全氟癸酸對雄性Sprague-Dawley大鼠的Ppara基因表達和相關健康影響 | zh_TW |
| dc.title | Ppara Gene Expression and Related Health Effects of Short-Term Exposure to Perfluorodecanoic Acid in Male Sprague–Dawley Rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林靖愉(Ching-Yu Lin),魏嘉徵(Chia-Cheng Wei),王如邦(Reu-Ben Wang) | |
| dc.subject.keyword | 全氟/多氟烷基化合物(PFASs),全氟癸酸(PFDA),Ppara,基因表現,管灌餵食, | zh_TW |
| dc.subject.keyword | PFASs,PFDA,Ppara,Gene expression,Oral gavage, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU202204010 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-29 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2509202217270200.pdf 未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
