Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83464
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫(Kai-Wun Yeh)
dc.contributor.authorChia-Man Changen
dc.contributor.author張嘉滿zh_TW
dc.date.accessioned2023-03-19T21:08:12Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-12
dc.identifier.citationReferences Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005) FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science 309: 1052-1056. Abreu, P.P., Souza, M.M., de Almeida, A.-A.F., Santos, E.A., Freitas, J.C.d.O., and Figueiredo, A.L. (2014) Photosynthetic responses of ornamental passion flower hybrids to varying light intensities. Acta Physiol. Plant 36: 1993-2004. Ahmad, S., Lu, C., Gao, J., Ren, R., Wei, Y., Wu, J., Jin, J., Zheng, C., Zhu, G., and Yang, F. (2021) Genetic insights into the regulatory pathways for continuous flowering in a unique orchid Arundina graminifolia. BMC Plant Biol. 21: 587. Alexandre, C.M., and Hennig, L. (2008) FLC or not FLC: the other side of vernalization. J. Exp. Bot. 59: 1127-1135. Amasino, R.M., and Michaels, S.D. (2010) The timing of flowering. Plant Physiol. 154: 516-520. Association, T.O.G. (2020) The status of Taiwan’s orchid industry in 2019 In Taiwan Orchid Talks pp. 8–12. Attolico, A.D., and De Tullio, M.C. (2006) Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiol. Biochem. 44: 462-466. Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2: e106. Banks, J.M. (2017) Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiol. 37: 1128-1136. Barman, D., and Naik, S. (2017) Effect of substrate, nutrition and growth regulator on productivity and mineral composition of leaf and pseudobulb of Cymbidium hybrid “Baltic Glacier Mint Ice”. J. Plant Nutr. 40: 784-794. Barth, C., De Tullio, M., and Conklin, P.L. (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J. Exp. Bot. 57: 1657-1665. Barth, C., Moeder, W., Klessig, D.F., and Conklin, P.L. (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol.134: 1784-1792. Bernier, G., and P?rilleux, C. (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol. J. 3: 3-16. Biswas, S.S., Singh, D., De, L., Kalaivanan, N., Pal, R., and Janakiram, T. (2021) A comprehensive scenario of orchid nutrition–a review. J. Plant Nutr. 44: 905-917. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. (1998) Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell 10: 791-800. Bl?zquez, M.A., and Weigel, D. (2000) Integration of floral inductive signals in Arabidopsis. Nature 404: 889-892. Boniecka, J., Prusi?ska, J., D?browska, G.B., and Goc, A. (2017) Within and beyond the stringent response-RSH and (p)ppGpp in plants. Planta 246: 817-842. Cardoso, J.C. (2017). Ionocidium ‘Cerrado 101’: intergeneric orchid hybrid with high quality of blooming. Ornam. Hortic. 23: 351-356. Cardoso, J.C., Zanello, C.A., and Chen, J.-T. (2020) An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. Int. J. Mol. Sci. 21: 985. Chang, S., Puryear, J., and Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11: 113-116. Chang, Y.-Y., Chu, Y.-W., Chen, C.-W., Leu, W.-M., Hsu, H.-F., and Yang, C.-H. (2011) Characterization of Oncidium ‘Gower Ramsey’ Transcriptomes using 454 GS-FLX Pyrosequencing and Their Application to the Identification of Genes Associated with Flowering Time. Plant Cell Physiol. 52: 1532-1545. Chang, Y.Y., Chiu, Y.F., Wu, J.W., and Yang, C.H. (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol. 50: 1425-1438. Chase, M.W., Cameron, K.M., Freudenstein, J.V., Pridgeon, A.M., Salazar, G., Van den Berg, C., and Schuiteman, A. (2015) An updated classification of Orchidaceae. Bot. J. Linn. Soc. 177: 151-174. Cheng, J.-Z., Zhou, Y.-P., Lv, T.-X., Xie, C.-P., and Tian, C.-E. (2017) Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol. Mol. Biol. Plants 23: 477-485. Chin, D.C., Shen, C.H., SenthilKumar, R., and Yeh, K.W. (2014) Prolonged exposure to elevated temperature induces floral transition via up-regulation of cytosolic ascorbate peroxidase 1 and subsequent reduction of the ascorbate redox ratio in Oncidium hybrid orchid. Plant Cell Physiol. 55: 2164-2176. Chin, D.C., Hsieh, C.C., Lin, H.Y., and Yeh, K.W. (2016) A Low Glutathione Redox State Couples with a Decreased Ascorbate Redox Ratio to Accelerate Flowering in Oncidium Orchid. Plant Cell Physiol. 57: 423-436. Conklin, P.L., and Barth, C. (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ. 27: 959-970. Corbesier, L., and Coupland, G. (2006) The quest for florigen: a review of recent progress. J. Exp. Bot. 57: 3395-3403. Cui, Y.-Y., Pandey, D.M., Hahn, E.-J., and Paek, K.-Y. (2004) Effect of drought on physiological aspects of Crassulacean acid metabolism in Doritaenopsis. Plant Sci. 167: 1219-1226. Daughtrey, M.L., and Benson, D.M. (2005) Principles of plant health management for ornamental plants. Annu. Rev. Phytopathol. 43: 141-169. De, L.C. (2020) Good agricultural practices of commercial orchids. Vigyan Varta 1: 53-64. Dietz, K.J. (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21: 1356-1372. Du, J.-S. (2015). SPLs (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) are involved in the regulatory mechanism of high ambient temperature-induced flowering in Oncidesa. Master's thesis. National Taiwan University, Taiwan. Dukowic-Schulze, S., Harris, A., Li, J., Sundararajan, A., Mudge, J., Retzel, E.F., Pawlowski, W.P., and Chen, C. (2014) Comparative Transcriptomics of Early Meiosis in Arabidopsis and Maize. J. Genet. Genomics 41: 139-152. Fichtner, F., Olas, J.J., Feil, R., Watanabe, M., Krause, U., Hoefgen, R., Stitt, M., and Lunn, J.E. (2020) Functional Features of TREHALOSE-6-PHOSPHATE SYNTHASE1, an Essential Enzyme in Arabidopsis. Plant Cell 32: 1949-1972. Foyer, C.H., and Halliwell, B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21-25. Foyer, C.H., Pellny, T.K., Locato, V., Hull, J., and De Gara, L. (2019) Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures. In Redox-Mediated Signal Transduction: Methods and Protocols, J.T. Hancock and M.E. Conway, New York: Springer US). pp. 165-181. Gourlay, L.J., Sommaruga, S., Nardini, M., Sperandeo, P., Deh?, G., Polissi, A., and Bolognesi, M. (2010) Probing the active site of the sugar isomerase domain from E. coli arabinose-5-phosphate isomerase via X-ray crystallography. Protein Sci 19: 2430-2439. Govaerts, R.B., P.; Kratochvil, K.; Gerlach, G.; Carr, G.; Alrich, P.; Pridgeon, A.M.; Pfahl, J.; Campacci, M.A.; Holland, B.D.; et al. . (2019) World checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. Greenup, A., Peacock, W.J., Dennis, E.S., and Trevaskis, B. (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann. Bot. 103: 1165-1172. Halliwell, B., and Foyer, C.H. (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139: 9-17. He, C., Zhang, J., Liu, X., Zeng, S., Wu, K., Yu, Z., Wang, X., Teixeira da Silva, J.A., Lin, Z., and Duan, J. (2015) Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol Biol 88: 219-231. He, Y., Michaels, S.D., and Amasino, R.M. (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302: 1751-1754. Hew, C., and Yong, J. (1994) Growth and photosynthesis of Oncidium ‘Goldiana’. J. Hortic. Sci. 69: 809-819. Hou, C.-J., and Yang, C.-H. (2009) Functional Analysis of FT and TFL1 Orthologs from Orchid (Oncidium Gower Ramsey) that Regulate the Vegetative to Reproductive Transition. Plant Cell Environ. 50: 1544-1557. Hsu, J., and Lin, R. (2004) Effect of calcium supplement and kinetin spray on component of plant and inflorescence quality of Oncidium ‘Gower Ramsey’. J. Chinese Soc. Hort. Sci. 50: 31-42. Huang, L., Zhang, F., Zhang, F., Wang, W., Zhou, Y., Fu, B., and Li, Z. (2014) Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genom. 15: 1026. Huijser, P., and Schmid, M. (2011) The control of developmental phase transitions in plants. Development 138: 4117-4129. Hunter, N., and Borts, R.H. (1997) Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 11: 1573-1582. Ichihashi, S. (2003) Effects of nitrogen application on leaf growth,inflorescence development and flowering in Phalaenopsis. Bul. Aichi Univ. Educ. 52: 35-42 Jenniffer, A.S., Osmar, R.B., and Ricardo, T.d.F. (2018) Nitrogen fertilization in Oncidium baueri seedling growth. Afr. J. Agric. Res. 13: 1747-1753. Johansson, M., and Staiger, D. (2015) Time to flower: interplay between photoperiod and the circadian clock. J Exp. Bot. 66: 719-730. John, R., Raja, V., Ahmad, M., Jan, N., Majeed, U., Ahmad, S., Yaqoob, U., and Kaul, T. (2017) Trehalose: Metabolism and Role in Stress Signaling in Plants. In Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2, M. Sarwat, A. Ahmad, M.Z. Abdin, and M.M. Ibrahim: Springer International Publishing), pp. 261-275. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., and Yamanishi, Y. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36: D480-484. Kim, J.J., Lee, J.H., Kim, W., Jung, H.S., Huijser, P., and Ahn, J.H. (2012) The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol. 159: 461-478. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962. Komeda, Y. (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55: 521-535. Kotchoni, S.O., Larrimore, K.E., Mukherjee, M., Kempinski, C.F., and Barth, C. (2009) Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol 149: 803-815. Kotilo?lu, D., Acet, T., and ?zcan, K. (2020) Phytochemical profile and biological activity of a therapeutic orchid from Anatolia: Dactylorhiza romana subsp. georgica. J. Food Meas. Charact. 14: 3310-3318. Kubota, S., Yoneda, K., and Suzuki, Y. (2000) Effects of Ammonium to Nitrate Ratio in Culture Medium on Growth and Nutrient Absorption of Phalaenopsis Seedlings in Vitro. Environ. Control Biol. 38: 281-284. Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., and Ahn, J.H. (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. 38: 3081-3093. Lee, J.H., Ryu, H.S., Chung, K.S., Pos?, D., Kim, S., Schmid, M., and Ahn, J.H. (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342: 628-632. Li, J., Yuan, J., Li, Y., Sun, H., Ma, T., Huai, J., Yang, W., Zhang, W., and Lin, R. (2022) The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Cell Rep. 39: 110664. Li, M.-H. (1998) Effect on temperature, light intensity and fertilizer concentration on inflorescence development of Oncidium Gower Ramsey. Master's thesis. National Taiwan University, Taiwan. Li, X., Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. 38: 3081-3093. Luo, J., Yan, T., Xiang, L., Jin, F., Qin, D., Sun, C., and Xie, M. (2014) Deep Sequencing-Based Analysis of the Cymbidium ensifolium Floral Transcriptome. PLOS ONE 8: e85480. Lin, R.-S., Shyu, H.-E., and Lai, S.-F. (1999) Effect of NO3--N/NH4+ Raito on the Plant Inorganic Elements Content and Flowering of Oncidium spp. J. Chinese Soc. Hort. Sci. 45: 43-52. Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277. Michaels, S.D., and Amasino, R.M. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956. Montgomery, R.A., and Givnish, T.J. (2008) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. Oecologia 155: 455-467. Noctor, G. (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29: 409-425. Noctor, G., and Foyer, C.H. (1998) ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279. Noctor, G., Mhamdi, A., and Foyer, C.H. (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ. 39: 1140-1160. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., and Foyer, C.H. (2012) Glutathione in plants: an integrated overview. Plant Cell Environ. 35: 454-484. Ogawa, K. (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal 7: 973-981. Ogawa, K.i., Tasaka, Y., Mino, M., Tanaka, Y., and Iwabuchi, M. (2001) Association of Glutathione with Flowering in Arabidopsis thaliana. Plant Cell Physiol. 42: 524-530. Olszewski, N., Sun, T.P., and Gubler, F. (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14 (suppl): S61-80. Ospina-Zapata, D.A., Madrigal, Y., Alzate, J.F., and Pab?n-Mora, N. (2020) Evolution and Expression of Reproductive Transition Regulatory Genes FT/TFL1 With Emphasis in Selected Neotropical Orchids. Front. Plant Sci. 11: 1-19 Palmieri, L., Arrigoni, R., Blanco, E., Carrari, F., Zanor, M.I., Studart-Guimaraes, C., Fernie, A.R., and Palmieri, F. (2006) Molecular identification of an Arabidopsis S-adenosylmethionine transporter. Analysis of organ distribution, bacterial expression, reconstitution into liposomes, and functional characterization. Plant Physiol. 142: 855-865. Pignocchi, C., and Foyer, C.H. (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr. Opin. Plant Biol. 6: 379-389. Pires, M., Almeida, A.-A., Figueiredo, A., Gomes, F., and Souza, M. (2011) Photosynthetic characteristics of ornamental passion flowers grown under different light intensities. Photosynthetica 49: 593-602. Poole, H.A., and Seeley, J.G. (1978) Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 103: 485-488. Pos?, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G.C., Immink, R.G.H., and Schmid, M. (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503: 414-417. Quiroz, S., Yustis, J.C., Ch?vez-Hern?ndez, E.C., Mart?nez, T., Sanchez, M.P., Garay-Arroyo, A., ?lvarez-Buylla, E.R., and Garc?a-Ponce, B. (2021) Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int. J. Mol. Sci. 22: Rolland, F., Moore, B., and Sheen, J. (2002) Sugar Sensing and Signaling in Plants. Plant Cell 14 (suppl): S185-S205. Senthil Kumar, R., Shen, C.-H., Wu, P.-Y., Suresh Kumar, S., Hua, M.S., and Yeh, K.-W. (2016) Nitric oxide participates in plant flowering repression by ascorbate. Sci. Rep. 6: 35246. Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., and Dennis, E.S. (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11: 445-458. Shen, C.H., and Yeh, K.W. (2010) Hydrogen peroxide mediates the expression of ascorbate-related genes in response to methanol stimulation in Oncidium. J Plant Physiol. 167: 400-407. Shen, C.H., Krishnamurthy, R., and Yeh, K.W. (2009) Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant Cell Physiol. 50: 935-946. Shim, J.S., Kubota, A., and Imaizumi, T. (2017) Circadian Clock and Photoperiodic Flowering in Arabidopsis: CONSTANS Is a Hub for Signal Integration. Plant Physiol. 173: 5-15. Shyu, H. E., and Lin, R. S. (1997) Studies on Growth and Flowering of Oncidium. Horticulture NCHU 22:123-134. Smeekens, S. (2017) Drought resistance: Spraying for yield. Nature Plants 3: 17023. Smith, J.J., Ververidis, P., and John, P. (1992) Characterization of the ethylene-forming enzyme partially purified from melon. Phytochemistry 31: 1485-1494. Sohag, S.I., Hoque, M.M., and Huda, M.K. (2017) Phytochemical screening and antioxidant activity of rare medicinal orchid Luisia zeylanica Lindl. J. Pharmacogn. Phytochem. 6: 688-692. Stamm, M.D., Enders, L.S., Donze-Reiner, T.J., Baxendale, F.P., Siegfried, B.D., and Heng-Moss, T.M. (2014) Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. BMC Genom. 15: 1055. Su?rez-L?pez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120. Tan, J., Wang, H.L., and Yeh, K.W. (2005) Analysis of organ-specific, expressed genes in Oncidium orchid by subtractive expressed sequence tags library. Biotechnol. Lett. 27: 1517-1528. Tanaka, T., Matsuno, T., Masuda, M., and Gomi, K. (1988) Effects of Concentration of Nutrient Solution and Potting Media on Growth and Chemical Composition of a Phalaenopsis Hybrid. J. Japan. Soc. Hort. Sci. 57: 78-84. Tay, S., He, J., and Yam, T.W. (2015) Photosynthetic light utilization efficiency, water relations and leaf growth of C3 and CAM tropical orchids under natural conditions. Am. J. Plant Sci. 6: 2949. Tay, S., He, J., and Yam, T.W. (2019) CAM plasticity in epiphytic tropical orchid species responding to environmental stress. Bot. Stud. 60: 1-15. Tejeda-Sartorius, O., Trejo-T?llez, L.I., T?llez, M.d.l.?.A., and G?mez-Merino, F.C. (2018) Nutrient concentration in vegetative organs of the orchid Laelia anceps subsp. anceps based on mineral fertilization and biofertilization. Hort. J. 87: 541-548. Teotia, S., and Tang, G. (2015) To bloom or not to bloom: role of microRNAs in plant flowering. Mol. Plant 8: 359-377. Thakare, D., Yang, R., Steffen, J.G., Zhan, J., Wang, D., Clark, R.M., Wang, X., and Yadegari, R. (2014) RNA-Seq analysis of laser-capture microdissected cells of the developing central starchy endosperm of maize. Genom. Data 2: 242-245. Thiruvengadam, M., Chung, I.-M., and Yang, C.-H. (2012) Overexpression of Oncidium MADS box (OMADS1) gene promotes early flowering in transgenic orchid (Oncidium Gower Ramsey). Acta Physiol. Plant 34: 1295-1302. Tiwari, S.B., Shen, Y., Chang, H.C., Hou, Y., Harris, A., Ma, S.F., McPartland, M., Hymus, G.J., Adam, L., Marion, C., Belachew, A., Repetti, P.P., Reuber, T.L., and Ratcliffe, O.J. (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 187: 57-66. Tsai, H.-T. (2018) Functional analysis of OgTPS1(trehalose-6-phosphate synthesis 1) regulating growth and flowering in Oncidesa Gower Ramsey ‘Honey Angel’. Master's thesis. National Taiwan University, Taiwan. Tsai, Y.F. (1998) Studies on the Fertilization of Oncidium. Taichung district agricultural research and extension station. Res. Rep. 59: 1-11. Tsang, Y.-C. (2013) Functional study of miR156-SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) regulatory module involved in high temperature-induced flowering mechanism in Oncidium ‘Gower Ramsey’. Master's thesis. National Taiwan University, Taiwan. Wang, C.Y., Chiou, C.Y., Wang, H.L., Krishnamurthy, R., Venkatagiri, S., Tan, J., and Yeh, K.W. (2008) Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227: 1063-1077. Wang, H.L., Chung, J.D., and Yeh, K.W. (2003). Changes of carbohydrate and free amino acid pools in current pseudobulb of Oncidium ‘Gower Ramsey’during inflorescence development. J. Agric. Assoc. China 4: 476 – 488. Wang, Y.-T. (1996) Effects of six fertilizers on vegetative growth and flowering of phalaenopsis orchids. Sci. Hortic. 65: 191-197. Wang, Y.-T. (2000) Impact of a high phosphorus fertilizer and timing of termination of fertilization on flowering of a hybrid moth orchid. Hortscience 35: 60-62. Wang, Y.-T. (2007) Potassium nutrition affects Phalaenopsis growth and flowering. HortSci. 42: 1563-1567. Wang, Y.-T., and Gregg, L.L. (1994). Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortSci. 29: 269-271. Wang, Y.C., and Chang, Y.C. (2013) Cyclic change of growth and nitrogen partitioning in Oncidium ‘Gower Ramsey’ and effect of season on inflorescence quality. J. Taiwan Soc. Hort. Sci. 59: 59-73. Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: 1056-1059. Wilson, R.N., Heckman, J.W., and Somerville, C.R. (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100: 403-408. Yanagida, M., Mino, M., Iwabuchi, M., and Ogawa, K.i. (2004) Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant Eustoma grandiflorum. Plant Cell Physiol. 45: 129-137. Yoneda, K., Usui, M., and Kubota, S. (1997) Effect of nutrient deficiency on growth and flowering of Phalaenopsis. J. Japan Soc Hort. Sci. 66: 141-147. Yong, J.W.H., and Hew, C.S. (1995) The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. Int. J. Plant Sci. 156: 450-459. Zhang, J., Wu, K., Zeng, S., Teixeira da Silva, J.A., Zhao, X., Tian, C.-E., Xia, H., and Duan, J. (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genom. 14: 279. Zhang, J., He, C., Wu, K., Teixeira da Silva, J.A., Zeng, S., Zhang, X., Yu, Z., Xia, H., and Duan, J. (2016) Transcriptome analysis of Dendrobium officinale and its application to the identification of genes associated with polysaccharide synthesis. Front. Plant Sci. 7: 5. Zhang, Y., Primavesi, L.F., Jhurreea, D., Andralojc, P.J., Mitchell, R.A., Powers, S.J., Schluepmann, H., Delatte, T., Wingler, A., and Paul, M.J. (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 149: 1860-1871. Zhou, H., Duan, H., Liu, Y., Sun, X., Zhao, J., and Lin, H. (2019) Patellin protein family functions in plant development and stress response. J. Plant Physiol. 234-235: 94-97. Zhu, Q.-H., Stephen, S., Kazan, K., Jin, G., Fan, L., Taylor, J., Dennis, E.S., Helliwell, C.A., and Wang, M.-B. (2013) Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene 512: 259-266.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83464-
dc.description.abstract文心蘭為臺灣重要的出口切花,有其重要的經濟地位。本研究的目的是調查在兩種光強度分別為光合光子通量密度(PPFD) 40% (LI-40)和30% (LI-30)下,三種肥料處理對兩種文心蘭切花栽培種品種‘檸檬綠’(Oncidesa Gower Ramsey “Honey Angel, HA)及‘黃金之星’(“Golden Star”, GS) 對假球莖生長量和開花品質的影響。以農民慣行肥料處理作為對照,由 N:K = 1:1.12 的液體肥料與57.3%有機質肥料(7.8% N、0.8% P2O5、0.3% K2O)混合,每週兩次葉面施用。肥料分期處理為氮鉀肥不同比例於不同生長期分期施用(假球莖出鞘期施用N:P:K=1:1:5,抽梗開花期施用N:P:K=1:1:1)。肥料輪施處理由氮鉀肥不同比例輪施(N:P:K=1:1:5和N:P:K=1:1:1 ),每週葉面施用各一次,調查植株生長量與開花品質。與‘檸檬綠’相比,‘黃金之星’在農民慣行肥料和肥料輪施處理後假球莖球長顯著增加,‘黃金之星’在PPFD 30%以農民慣行肥料處理的假球莖球長81.65 mm為最長。在肥料輪施處理下假球莖球寬隨著光強度的增加而增加,‘黃金之星’在PPFD 40%下以肥料輪施處理的假球莖球寬有最大值,與農民慣行肥料處理下的PPFD 30%相比,PPFD40%的假球莖球厚最大且顯著增加。‘黃金之星’在農民慣行肥料處理下的花梗長度的顯著優於‘檸檬綠’,並且‘黃金之星’在PPFD 30%中最長的花梗長度表現。‘檸檬綠’的分支數和小花數在PPFD40%下顯著高於PPFD 30%,並且以農民慣行肥料和肥料分期處理處理時有最佳表現。不同光強度環境的肥培管理可以促進文心蘭假球莖生長量和開花品質有最佳表現。 目前已知文心蘭的開花機制與維生素C(ascorbate)和穀胱甘?(glutathione, GSH)的氧化還原狀態有關,然而所造成的開花分子機制仍尚未明瞭。我們利用次世代定序技術來調查分別受到穀胱甘?氧化態(GSSG, glutathione disulfide)、還原態(GSH)或還原態生合成抑制劑(buthionine sulfoximine, BSO)處理後的文心蘭假球莖部位之全轉錄體表現,結果得到219,814個差異性基因。其中GSSG處理之正向與負向差異性基因數分別為36,341及20,815個,而GSH處理之正向與負向差異性基因數為22,780及29,952個;BSO處理之正向與負向差異性基因數為32,963及21,881個。再依基因體本體整合性分類系統(GO ontology)歸納這些差異性基因與生物程序與分子功能層次有關。基因體本體整合性分類系統分析顯示參與生殖生長及開花反應有關,且有被註解的正向、負向差異性基因數分別為92及43個。KEGG pathway分析顯示有22(GSSG)、32(GSH)、74(BSO)個差異性基因參與澱粉與醣類代謝途徑。本研究的結論說明文心蘭的開花機制可能是藉由GSSG刺激醣類代謝相關基因表達,進而調控開花基因表現。zh_TW
dc.description.abstractOncidiums are a vital export cut flower and has a significant economic position in Taiwan. This study aimed to investigate the pseudobulb growth and flowering characteristics of the two Oncidesa Gower Ramsey cultivars ‘Honey Angel (HA)’ and ‘Golden Star (GS)’cultivated under three kinds of fertilizer treatments in response to 40% light intensity (LI-40) and 30% light intensity (LI-30, as control) photosynthetic photon flux density over a five-month period. The conventional-fertilizer (CF) treatment, as a control, consisted of a liquid manure solution of N: K = 1: 1.12 mixed with 7.8% N, 0.8% P2O5, 0.3% K2O, and 57.3% of organic matter that was foliage-applied to plants twice a week. The stage-fertilizer (SF) treatment consisted of N: P: K = 1:1:5 foliage-applied to plants in an unsheathing pseudobulb stage until reaching inflorescence, followed by N: P: K=1:1:1 application until the end of the experiment. The fortnight-fertilizer (FF) treatment consisted of N: P: K=1:1:5 and N: P: K=1:1:1 with interval-rotate foliage-application to plants weekly until the end of the experiment. Plant pseudobulb growth and flowering qualities were recorded and calculated. The GS cultivar significantly increased PL when treated with CF and FF compared to HA, and GS treated with CF under LI-30 exhibited the longest PL at 81.65 mm. PW increased as LI increased under FF treatment, and the largest PW was observed in GS treated with FF under LI-40. A maximal and significant increase in PT occurred in LI-40 compared to LI-30 under the CF treatment. GS had a significantly higher FL compared to HA treated with CF, and the longest FL was detected in GS under LI-30. HA had a significantly higher FB and FN under LI-40 than under LI-30, and the highest number of FB and FN in HA occurred when it was treated with CF and SF, respectively. Precision management of fertilization treatments in response to LI can maximize pseudobulb growth, development, and flowering quality in oncidiums. Flowering regulation is also the central issue of oncidiums for agricultural management. Previous studies have revealed that flowering mechanisms and related to ascorbate (AsA) and glutathione (GSH) redox status. However, the molecular mechanisms of the flowering in oncidiums remain unclear. In this work, RNA-seq was used to investigate the global transcriptomic expression of pseudobulb in Oncidesa ‘Gower Ramsey’ that has been treated each with GSSG (glutathione disulfide), GSH (glutathione), and BSO (buthionine sulfoximine), and compared with mock. Four transcriptome databases were integrated and assembled into 219,814 unigenes. These unigenes have shown that, comparing with mock, differentially expressed genes (DEGs) including 36,341 up-regulated and 20,815 down-regulated genes in GSSG, 22,780 up-regulated and 29,952 down-regulated genes in GSH; 32,963 up-regulated and 21,881 down-regulated genes in BSO. Besides, the Gene Ontology analysis indicated 92 up-regulated and 43 down-regulated genes. Furthermore, the DEGs were functionally annotated to associate reproductive growth and flowering regulation. KEGG pathway analysis revealed 22(GSSG),32(GSH) and 74(BSO) DEGs that were involved in starch and sucrose metabolisms. These data implied that the treatment of GSSG can effectively activate starch metabolism and relate to the genetic network of flowering regulation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:08:12Z (GMT). No. of bitstreams: 1
U0001-0709202217051900.pdf: 3278608 bytes, checksum: 877561289b41146644c453a1117b0c75 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents中文摘要 IX Abstract XI Chapter 1 General Introduction 1 1.1 The Oncidiums 2 1.2 Effect of Fertilizer on Orchids 4 1.3 Flowering pathway in plants 5 1.4 The relationship between antioxidants and plant flowering physiology 8 1.5 Flowering regulation mechanism in oncidiums 12 1.6 Goals of This Study 13 Chapter 2 Growth and Flowering Characteristics of Oncidesa Gower Ramsey Cultivars Under Various Fertilizer Management Treatments in Response to Light Intensities 14 2.1 Introduction 14 2.2 Materials and Methods 17 2.2.1 Plant Materials and Growth Conditions 17 2.2.2 Light-intensity (LI) and fertilizer treatments 18 2.2.3 Plant growth and flowering quality assessments 20 2.2.4 Statistical Analysis 21 2.3 Results 21 2.3.1 Plant growth and flower quality traits 21 2.3.2 Plant growth and flower quality traits of Oncidesa cultivars illuminated under different LIs under fertilizer treatments 23 2.4 Discussion 24 2.4.1 Light intensity effects on plant growth and flower quality traits of Oncidesa cultivars 24 2.4.2 Influences of fertilization technique on plant growth and flower quality in Oncidesa cultivars 26 Chapter 3 Transcriptome analysis for Flowering Regulation of Oncidesa Gower Ramsey under varied GSH redox ratio Treatments 36 3.1 Introduction 37 3.2 Materials and Methods 39 3.2.1 Plant Materials and Growth Conditions 39 3.2.2 RNA Extraction, cDNA library preparation, and RNA-seq 40 3.2.3 Denovo assembly, annotation, and differential gene expression of RNA-seq data 40 3.2.4 Validation of RNA-seq data by qPCR 41 3.2.5 Statistical analysis 42 3.3 Results 42 3.3.1 Sequencing analysis and De novo assembly 42 3.3.2 Functional annotations analysis 43 3.3.3 Validation of RNA-Seq analysis 45 3.4 Discussion 46 Chapter 4 Conclusions and Future prospect 66 References 69
dc.language.isoen
dc.title文心蘭切花栽培技術與開花調控機制之研究zh_TW
dc.titleThe study on cultivation technology and flowering mechanism in Oncidesa cultivarsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee詹富智(Fuh-Jyh Jan),林冠宏(Kuan-Hung Lin),楊藹華(Ai-hua Yang),謝旭亮(Hsu-Liang Hsieh)
dc.subject.keyword文心蘭,開花,肥料,光強度,抗壞血酸氧化還原比例,穀胱甘?氧 化還原比例,次世代定序,zh_TW
dc.subject.keywordascorbate (AsA) redox ratio,fertilizer,flowering,light intensity,glutathione (GSH) redox ratio,Oncidesa,next generation sequencing(NGS),en
dc.relation.page78
dc.identifier.doi10.6342/NTU202203230
dc.rights.note未授權
dc.date.accepted2022-09-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0709202217051900.pdf
  目前未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved