Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83422
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玟伶(Wen-Ling Chen)
dc.contributor.authorSih-Yi Yuen
dc.contributor.author余思頤zh_TW
dc.date.accessioned2023-03-19T21:07:13Z-
dc.date.copyright2022-10-04
dc.date.issued2022
dc.date.submitted2022-09-19
dc.identifier.citationArbelaez, P., Borrull, F., Pocurull, E., & Marce, R. M. (2015). Determination of high-intensity sweeteners in river water and wastewater by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1393, 106-114. https://doi.org/10.1016/j.chroma.2015.03.035. Asghar, M. A., Zhu, Q. X., Sun, S. T., Peng, Y. E., & Shuai, Q. (2018). Suspect screening and target quantification of human pharmaceutical residues in the surface water of Wuhan, China, using UHPLC-Q-Orbitrap HRMS. Science of the Total Environment, 635, 828-837. https://doi.org/10.1016/j.scitotenv.2018.04.179. Azanu, D., Mortey, C., Darko, G., Weisser, J. J., Styrishave, B., & Abaidoo, R. C. (2016). Uptake of antibiotics from irrigation water by plants. Chemosphere, 157, 107-114. https://doi.org/10.1016/j.chemosphere.2016.05.035. Azanu, D., Styrishave, B., Darko, G., Weisser, J. J., & Abaidoo, R. C. (2018). Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Science of the Total Environment, 622, 293-305. https://doi.org/10.1016/j.scitotenv.2017.11.287. Baczynski, T. P., Pleissner, D., & Grotenhuis, T. (2010). Anaerobic biodegradation of organochlorine pesticides in contaminated soil - significance of temperature and availability. Chemosphere, 78(1), 22-28. https://doi.org/10.1016/j.chemosphere.2009.09.058. Barberini, L., Noto, A., Saba, L., Palmas, F., Fanos, V., Dess?, A., et al. (2016). Multivariate data validation for investigating primary HCMV infection in pregnancy. Data in brief, 9, 220-230. https://doi.org/10.1016/j.dib.2016.08.050. Barrios, R. E., Khuntia, H. K., Bartelt-Hunt, S. L., Gilley, J. E., Schmidt, A. M., Snow, D. D., et al. (2020). Fate and transport of antibiotics and antibiotic resistance genes in runoff and soil as affected by the timing of swine manure slurry application. Science of the Total Environment, 712, 136505. https://doi.org/10.1016/j.scitotenv.2020.136505. Bednar, A. J., Garbarino, J. R., Ferrer, I., Rutherford, D. W., Wershaw, R. L., Ranville, J. F., et al. (2003). Photodegradation of roxarsone in poultry litter leachates. Science of the Total Environment, 302(1-3), 237-245. https://doi.org/10.1016/s0048-9697(02)00322-4. Beltran, E. M., Pablos, M. V., Torija, C. F., Porcel, M. A., & Gonzalez-Doncel, M. (2020). Uptake of atenolol, carbamazepine and triclosan by crops irrigated with reclaimed water in a Mediterranean scenario. Ecotoxicology and Environmental Safety, 191, 110171. https://doi.org/10.1016/j.ecoenv.2020.110171. Berendsen, B. J. A., Wegh, R. S., Memelink, J., Zuidema, T., & Stolker, L. A. M. (2015). The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta, 132, 258-268. https://doi.org/10.1016/j.talanta.2014.09.022. Bijlsma, S., Bobeldijk, L., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry, 78(2), 567-574. https://doi.org/10.1021/ac051495j. Binaku, K., & Schmeling, M. (2017). Multivariate statistical analyses of air pollutants and meteorology in Chicago during summers 2010-2012. Air Quality Atmosphere and Health, 10(10), 1227-1236. https://doi.org/10.1007/s11869-017-0507-7. Bledzka, D., Gromadzinska, J., & Wasowicz, W. (2014). Parabens. From environmental studies to human health. Environment International, 67, 27-42. https://doi.org/10.1016/j.envint.2014.02.007. Bride, E., Heinisch, S., Bonnefille, B., Guillemain, C., & Margoum, C. (2021). Suspect screening of environmental contaminants by UHPLC-HRMS and transposable quantitative structure-retention relationship modelling. Journal of Hazardous Materials, 409, 124652. https://doi.org/10.1016/j.jhazmat.2020.124652. Brodie, B. B., & Axelrod, J. (1950). The fate of antipyrine in man. Journal of Pharmacology and Experimental Therapeutics, 98(1), 97-104. <Go to ISI>://WOS:A1950UM34700119. Chen, C. Q., Li, J., Chen, P. P., Ding, R., Zhang, P. F., & Li, X. Q. (2014). Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environmental Pollution, 193, 94-101. https://doi.org/10.1016/j.envpol.2014.06.005. Chen, T. S., Chen, T. C., Yeh, K. J. C., Chao, H. R., Liaw, E. T., Hsieh, C. Y., et al. (2010). High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. Science of the Total Environment, 408(16), 3223-3230. https://doi.org/10.1016/j.scitotenv.2010.03.054. Chen, W.-L., Ling, Y. S., Lee, D. J. H., Lin, X.-Q., Chen, Z.-Y., & Liao, H.-T. (2020). Targeted profiling of chlorinated transformation products and the parent micropollutants in the aquatic environment: a comparison between two coastal cities. Chemosphere, 242, 125268. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125268. Chen, W. L., Lin, S. C., Huang, C. H., Peng, S. Y., & Ling, Y. S. (2021). Wide-scope screening for pharmaceutically active substances in a leafy vegetable cultivated under biogas slurry irrigation. Science of the Total Environment, 750, 9. https://doi.org/10.1016/j.scitotenv.2020.141519. Chen, X. X., He, S., Liang, Z. B., Li, Q. X., Yan, H., Hu, J. Y., et al. (2018). Biodegradation of pyraclostrobin by two microbial communities from Hawaiian soils and metabolic mechanism. Journal of Hazardous Materials, 354, 225-230. https://doi.org/10.1016/j.jhazmat.2018.04.067. Chiu, C. Y., Yeh, K. W., Lin, G., Chiang, M. H., Yang, S. C., Chao, W. J., et al. (2016). Metabolomics reveals dynamic metabolic changes associated with age in early childhood. Plos One, 11(2), e0149823. https://doi.org/10.1371/journal.pone.0149823. Christou, A., Aguera, A., Bayona, J. M., Cytryn, E., Fotopoulos, V., Lambropoulou, D., et al. (2017). The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - a review. Water Research, 123, 448-467. https://doi.org/10.1016/j.watres.2017.07.004. Colborn, T., Saal, F. S. V., & Soto, A. M. (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives, 101(5), 378-384. https://doi.org/10.2307/3431890. Colby, J. M., Thoren, K. L., & Lynch, K. L. (2018). Suspect screening using LC-QqTOF is a useful tool for detecting drugs in biological samples. Journal of Analytical Toxicology, 42(4), 207-213. https://doi.org/10.1093/jat/bkx107. Cunat, A., Alvarez-Ruiz, R., Suarez-Varela, M. M. M., & Pico, Y. (2022). Suspected-screening assessment of the occurrence of organic compounds in sewage sludge. Journal of Environmental Management, 308, 114587. https://doi.org/10.1016/j.jenvman.2022.114587. Dzyadevych, S. V., & Chovelon, J. M. (2002). A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 21(1-2), 55-60. https://doi.org/10.1016/s0928-4931(02)00058-9. Ekpeghere, K. I., Lee, J. W., Kim, H. Y., Shin, S. K., & Oh, J. E. (2017). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168, 1211-1221. https://doi.org/10.1016/j.chemosphere.2016.10.077. European Commission (2002). 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en Accessed. Ghosh, P. K., Ramesh, P., Bandyopadhyay, K. K., Tripathi, A. K., Hati, K. M., Misra, A. K., et al. (2004). Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. I. Crop yields and system performance. Bioresource Technology, 95(1), 77-83. https://doi.org/10.1016/j.biortech.2004.02.011. Gomez-Perez, M. L., Romero-Gonzalez, R., Vidal, J. L. M., & Frenich, A. G. (2015). Analysis of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to orbitrap high resolution mass spectrometry. Talanta, 131, 1-7. https://doi.org/10.1016/j.talanta.2014.07.066. Gu, D. M., Feng, Q. Y., Guo, C. S., Hou, S., Lv, J. P., Zhang, Y., et al. (2019). Occurrence and risk assessment of antibiotics in manure, soil, wastewater, groundwater from livestock and poultry farms in Xuzhou, China. Bulletin of Environmental Contamination and Toxicology, 103(4), 590-596. https://doi.org/10.1007/s00128-019-02692-0. Guo, C. N., Wang, M. R., Xiao, H., Huai, B. B., Wang, F., Pan, G. F., et al. (2016). Development of a modified QuEChERS method for the determination of veterinary antibiotics in swine manure by liquid chromatography tandem mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1027, 110-118. https://doi.org/10.1016/j.jchromb.2016.05.034. Guo, R., Lee, I. S., Kim, U. J., & Oh, J. E. (2010). Occurrence of synthetic musks in Korean sewage sludges. Science of the Total Environment, 408(7), 1634-1639. https://doi.org/10.1016/j.scitotenv.2009.12.009. Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., & Olariu, R. L. (2005). Nitrated phenols in the atmosphere: a review. Atmospheric Environment, 39(2), 231-248. https://doi.org/10.1016/j.atmosenv.2004.09.044. He, L. Y., He, L. K., Liu, Y. S., Zhang, M., Zhao, J. L., Zhang, Q. Q., et al. (2019). Microbial diversity and antibiotic resistome in swine farm environments. Science of the Total Environment, 685, 197-207. https://doi.org/10.1016/j.scitotenv.2019.05.369. Hu, X. G., Zhou, Q. X., & Luo, Y. (2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 158(9), 2992-2998. https://doi.org/10.1016/j.envpol.2010.05.023. Hu, Y. A., Cheng, H. F., & Tao, S. (2017). Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environment International, 107, 111-130. https://doi.org/10.1016/j.envint.2017.07.003. Hug, C., Ulrich, N., Schulze, T., Brack, W., & Krauss, M. (2014). Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environmental Pollution, 184, 25-32. https://doi.org/10.1016/j.envpol.2013.07.048. Janus, K., Muszczynski, Z., & Suszycka, J. (1997). Influence of short-term water deprivation on antipyrine disposition in calves. Research in Veterinary Science, 63(1), 1-3. https://doi.org/10.1016/s0034-5288(97)90149-1. Janus, K., Suszycka, J., & Muszczynski, Z. (1997). Effect of starvation for four days on antipyrine metabolism in calves. Journal of Animal Physiology and Animal Nutrition-Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde, 77(2), 77-83. https://doi.org/10.1111/j.1439-0396.1997.tb00740.x. Jones, O. A. H., Spurgeon, D. J., Svendsen, C., & Griffin, J. L. (2008). A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere, 71(3), 601-609. https://doi.org/10.1016/j.chemosphere.2007.08.056. Juan, J. X., Hong, Z., Khalid, M., Bilal, M., Gao, Z. L., Huang, D. F., et al. (2018). Influence of application of different proportions of substrates and biogas slurry-based fertilizers on the growth and quality of purple rape-Brassica campestris L. SSP. chinesis (L.) hanelt. Pakistan Journal of Botany, 50(3), 1061-1068. <Go to ISI>://WOS:000433389600028. Kim, H., Hong, Y., Park, J. E., Sharma, V. K., & Cho, S. I. (2013). Sulfonamides and tetracyclines in livestock wastewater. Chemosphere, 91(7), 888-894. https://doi.org/10.1016/j.chemosphere.2013.02.027. Kim, J. P., Jin, D. R., Lee, W., Chae, M., & Park, J. (2020). Occurrence and removal of veterinary antibiotics in livestock wastewater treatment plants, South Korea. Processes, 8(6), 720. https://doi.org/10.3390/pr8060720. Klancar, A., Trontelj, J., & Roskar, R. (2018). Development of a multi-residue method for monitoring 44 pharmaceuticals in slovene surface water by SPE-LC-MS/MS. Water Air and Soil Pollution, 229(6), 192. https://doi.org/10.1007/s11270-018-3845-7. Kong, J. Q. (2015). Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. Rsc Advances, 5(77), 62587-62603. https://doi.org/10.1039/c5ra08196c. Kuchta, S. L., & Cessna, A. J. (2009). Fate of lincomycin in snowmelt runoff from manure-amended pasture. Chemosphere, 76(4), 439-446. https://doi.org/10.1016/j.chemosphere.2009.03.069. Kumar, K., Gupta, S. C., Baidoo, S. K., Chander, Y., & Rosen, C. J. (2005). Antibiotic uptake by plants from soil fertilized with animal manure. Journal of Environmental Quality, 34(6), 2082-2085. https://doi.org/10.2134/jeq2005.0026. Kumar, K., Gupta, S. C., Chander, Y., & Singh, A. K. (2005). Antibiotic use in agriculture and its impact on the terrestrial environment. In D. L. Sparks (Ed.), Advances in Agronomy, Vol 87 (pp. 1-54). Lai, Y. H., & Wang, Y. S. (2022). Advances in high-resolution mass spectrometry techniques for analysis of high mass-to-charge ions. Mass Spectrometry Reviews, e21790. https://doi.org/10.1002/mas.21790. Lei, K. H., & Lai, H. T. (2019). Effects of sunlight, microbial activity, and temperature on the declines of antibiotic lincomycin in freshwater and saline aquaculture pond waters and sediments. Environmental Science and Pollution Research, 26(33), 33988-33994. https://doi.org/10.1007/s11356-018-3006-y. Li, M. R., Zhan, F. D., Chen, J. J., Zu, Y. Q., & Li, Y. (2020). Atrazine degradation pathway and genes of Arthrobacter sp. FM326. Polish Journal of Environmental Studies, 29(5), 3683-3689. https://doi.org/10.15244/pjoes/115326. Liang, T. F., Ke, Z. C., Chen, Q., Liu, L., & Chen, G. W. (2014). Degradation of roxarsone in a silt loam soil and its toxicity assessment. Chemosphere, 112, 128-133. https://doi.org/10.1016/j.chemosphere.2014.03.103. Liu, C., Chen, Y. X., Li, X. H., Zhang, Y. R., Ye, J., Huang, H. K., et al. (2020). Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Environmental Pollution, 258, 113652. https://doi.org/10.1016/j.envpol.2019.113652. Lopez-Sanchez, A., Silva-Galvez, A. L., Aguilar-Juarez, O., Senes-Guerrero, C. A., Orozco-Nunnelly, D., Carrillo-Nieves, D., et al. (2022). Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: enhancement of biomass productivity, pollutant removal and high-value compound production. Journal of Environmental Management, 308, 114612. https://doi.org/10.1016/j.jenvman.2022.114612. Lu, Y., Li, J. M., Meng, J., Zhang, J., Zhuang, H. F., Zheng, G. Y., et al. (2021). Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties. Science of the Total Environment, 759, 12. https://doi.org/10.1016/j.scitotenv.2020.143473. Mahapatra, B., Adak, T., Patil, N. K. B., Pandi, G. G. P., Gowda, G. B., Yadav, M. K., et al. (2017). Effect of abiotic factors on degradation of imidacloprid. Bulletin of Environmental Contamination and Toxicology, 99(4), 475-480. https://doi.org/10.1007/s00128-017-2159-6. Mangalgiri, K. P., Adak, A., & Blaney, L. (2015). Organoarsenicals in poultry litter: detection, fate, and toxicity. Environment International, 75, 68-80. https://doi.org/10.1016/j.envint.2014.10.022. Manjarres-Lopez, D. P., Andrades, M. S., Sanchez-Gonzalez, S., Rodriguez-Cruz, M. S., Sanchez-Martin, M. J., & Herrero-Hernandez, E. (2021). Assessment of pesticide residues in waters and soils of a vineyard region and its temporal evolution*. Environmental Pollution, 284, 117463. https://doi.org/10.1016/j.envpol.2021.117463. Mehrtens, A., Licha, T., Broers, H. P., & Burke, V. (2020). Tracing veterinary antibiotics in the subsurface - A long-term field experiment with spiked manure. Environmental Pollution, 265, 114930. https://doi.org/10.1016/j.envpol.2020.114930. Mehrtens, A., Licha, T., & Burke, V. (2021). Occurrence, effects and behaviour of the antibiotic lincomycin in the agricultural and aquatic environment - a review. Science of the Total Environment, 778, 146306. https://doi.org/10.1016/j.scitotenv.2021.146306. Milman, B. L. (2015). General principles of identification by mass spectrometry. Trac-Trends in Analytical Chemistry, 69, 24-33. https://doi.org/10.1016/j.trac.2014.12.009. Moltu, S. J., Sachse, D., Blakstad, E. W., Strommen, K., Nakstad, B., Almaas, A. N., et al. (2014). Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients, 6(5), 1913-1930. https://doi.org/10.3390/nu6051913. Morgante, V., Flores, C., Fadic, X., Gonzalez, M., Hernandez, M., Cereceda-Balic, F., et al. (2012). Influence of microorganisms and leaching on simazine attenuation in an agricultural soil. Journal of Environmental Management, 95, S300-S305. https://doi.org/10.1016/j.jenvman.2011.06.045. Nath, M., & Tuteja, N. (2016). NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. Protoplasma, 253(3), 767-786. https://doi.org/10.1007/s00709-015-0845-y. Pan, M., & Chu, L. M. (2017). Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution, 231, 829-836. https://doi.org/10.1016/j.envpol.2017.08.051. Perkons, I., Rusko, J., Zacs, D., & Bartkevics, V. (2021). Rapid determination of pharmaceuticals inwastewater by direct infusion HRMS using target and suspect screening analysis. Science of the Total Environment, 755, 142688. https://doi.org/10.1016/j.scitotenv.2020.142688. Perruchon, C., Katsivelou, E., Karas, P. A., Vassilakis, S., Lithourgidis, A. A., Kotsopoulos, T. A., et al. (2022). Following the route of veterinary antibiotics tiamulin and tilmicosin from livestock farms to agricultural soils. Journal of Hazardous Materials, 429, 128293. https://doi.org/10.1016/j.jhazmat.2022.128293. Qiao, X. W., Ma, L. P., & Hummel, H. E. (1996). Persistence of atrazine and occurrence of its primary metabolites in three soils. Journal of Agricultural and Food Chemistry, 44(9), 2846-2848. https://doi.org/10.1021/jf960178y. Raman, D. R., Williams, E. L., Layton, A. C., Burns, R. T., Easter, J. P., Daugherty, A. S., et al. (2004). Estrogen content of dairy and swine wastes. Environmental Science & Technology, 38(13), 3567-3573. https://doi.org/10.1021/es0353208. Rani, N. L., & Lalithakumari, D. (1994). Degradation of methyl parathion by Pseudomonas putida Canadian Journal of Microbiology, 40(12), 1000-1006. https://doi.org/10.1139/m94-160. Reedich, L. M., Millican, M. D., & Koch, P. L. (2017). Temperature impacts on soil microbial communities and potential implications for the biodegradation of turfgrass pesticides. Journal of Environmental Quality, 46(3), 490-497. https://doi.org/10.2134/jeq2017.02.0067. Rotich, H. K., Zhang, Z. Y., Zhao, Y. S., & Li, J. C. (2004). The adsorption behavior of three organophosphorus pesticides in peat and soil samples and their degradation in aqueous solutions at different temperatures and pH values. International Journal of Environmental Analytical Chemistry, 84(4), 289-301. https://doi.org/10.1080/03067310310001637694. Sadeghnia, H., Shahba, S., Ebrahimzadeh-Bideskan, A., Mohammadi, S., Malvandi, A. M., & Mohammadipour, A. (2021). Atrazine neural and reproductive toxicity. Toxin Reviews, 1-14. https://doi.org/10.1080/15569543.2021.1966637. Sanchez, M., & Gonzalez, J. L. (2005). The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresource Technology, 96(10), 1117-1123. https://doi.org/10.1016/j.biortech.2004.10.002. Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., et al. (2014). Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science & Technology, 48(4), 2097-2098. https://doi.org/10.1021/es5002105. Sharma, P., Poustie, A., Verburg, P., Pagilla, K., Yang, Y., & Hanigan, D. (2020). Trace organic contaminants in field-scale cultivated alfalfa, soil, and pore water after 10 years of irrigation with reclaimed wastewater. Science of the Total Environment, 744, 140698. https://doi.org/10.1016/j.scitotenv.2020.140698. Sim, W. J., Kim, H. Y., Choi, S. D., Kwon, J. H., & Oh, J. E. (2013). Evaluation of pharmaceuticals and personal care products with emphasis on anthelmintics in human sanitary waste, sewage, hospital wastewater, livestock wastewater and receiving water. Journal of Hazardous Materials, 248, 219-227. https://doi.org/10.1016/j.jhazmat.2013.01.007. Sjerps, R. M. A., Kooij, P. J. F., van Loon, A., & Van Wezel, A. P. (2019). Occurrence of pesticides in Dutch drinking water sources. Chemosphere, 235, 510-518. https://doi.org/10.1016/j.chemosphere.2019.06.207. Sjerps, R. M. A., Vughs, D., van Leerdam, J. A., ter Laak, T. L., & van Wezel, A. P. (2016). Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Research, 93, 254-264. https://doi.org/10.1016/j.watres.2016.02.034. Soni, M. G., Carabin, I. G., & Burdock, G. A. (2005). Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology, 43(7), 985-1015. https://doi.org/10.1016/j.fct.2005.01.020. Tadic, D., Hernandez, M. J. B., Cerqueira, F., Matamoros, V., Pina, B., & Bayona, J. M. (2021). Occurrence and human health risk assessment of antibiotics and their metabolites in vegetables grown in field-scale agricultural systems. Journal of Hazardous Materials, 401, 123424. https://doi.org/10.1016/j.jhazmat.2020.123424. Tang, X. J., Naveedullah, Hashmi, M. Z., Zhang, H., Qian, M. R., Yu, C. N., et al. (2013). A preliminary study on the occurrence and dissipation of estrogen in livestock wastewater. Bulletin of Environmental Contamination and Toxicology, 90(4), 391-396. https://doi.org/10.1007/s00128-012-0912-4. Topi, D., & Spahiu, J. (2020). Presence of veterinary antibiotics in livestock manure in two Southeastern Europe countries, Albania and Kosovo. Environmental Science and Pollution Research, 27(35), 44552-44560. https://doi.org/10.1007/s11356-020-10341-x. Torrallardona, D., Harris, C. I., & Fuller, M. F. (2003). Pigs' gastrointestinal microflora provide them with essential amino acids. Journal of Nutrition, 133(4), 1127-1131. https://doi.org/10.1093/jn/133.4.1127. Triba, M. N., Le Moyec, L., Amathieu, R., Goossens, C., Bouchemal, N., Nahon, P., et al. (2015). PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Molecular Biosystems, 11(1), 13-19. https://doi.org/10.1039/c4mb00414k. Van den Meersche, T., Van Pamel, E., Van Poucke, C., Herman, L., Heyndrickx, M., Rasschaert, G., et al. (2016). Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. Journal of Chromatography A, 1429, 248-257. https://doi.org/10.1016/j.chroma.2015.12.046. Villamar, C. A., Vera-Puerto, I., Rivera, D., & De la Hoz, F. (2018). Reuse and recycling of livestock and municipal wastewater in Chilean agriculture: a preliminary assessment. Water, 10(6), 817. https://doi.org/10.3390/w10060817. Wang, T. T., Duedahl-Olesen, L., & Frandsen, H. L. (2021). Targeted and non-targeted unexpected food contaminants analysis by LC/HRMS: feasibility study on rice. Food Chemistry, 338, 127957. https://doi.org/10.1016/j.foodchem.2020.127957. Wang, Y. Q., Hu, L. X., Zhao, J. H., Han, Y., Liu, Y. S., Zhao, J. L., et al. (2022). Suspect, non-target and target screening of pharmaceuticals and personal care products (PPCPs) in a drinking water system. Science of the Total Environment, 808, 151866. https://doi.org/10.1016/j.scitotenv.2021.151866. Wei, G. L., Li, D. Q., Zhuo, M. N., Liao, Y. S., Xie, Z. Y., Guo, T. L., et al. (2015). Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environmental Pollution, 196, 29-46. https://doi.org/10.1016/j.envpol.2014.09.012. Widyasari-Mehta, A., Hartung, S., & Kreuzig, R. (2016). From the application of antibiotics to antibiotic residues in liquid manures and digestates: a screening study in one European center of conventional pig husbandry. Journal of Environmental Management, 177, 129-137. https://doi.org/10.1016/j.jenvman.2016.04.012. Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., et al. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074-D1082. https://doi.org/10.1093/nar/gkx1037. Wode, F., van Baar, P., Dunnbier, U., Hecht, F., Taute, T., Jekel, M., et al. (2015). Search for over 2000 current and legacy micropollutants on a wastewater infiltration site with a UPLC-high resolution MS target screening method. Water Research, 69, 274-283. https://doi.org/10.1016/j.watres.2014.11.034. Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current metabolomics, 1(1), 92-107. Wu, E. M. Y., & Kuo, S. L. (2012). Applying a multivariate statistical analysis model to evaluate the water quality of a watershed. Water Environment Research, 84(12), 2075-2085. https://doi.org/10.2175/106143012x13415215906979. Yang, J. F., Ying, G. G., Zhou, L. J., Liu, S., & Zhao, J. L. (2009). Dissipation of oxytetracycline in soils under different redox conditions. Environmental Pollution, 157(10), 2704-2709. https://doi.org/10.1016/j.envpol.2009.04.031. Yang, Q. L., Gao, Y., Ke, J., Show, P. L., Ge, Y. H., Liu, Y. H., et al. (2021). Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 12(1), 7376-7416. https://doi.org/10.1080/21655979.2021.1974657. Ye, G. P., Banerjee, S., He, J. Z., Fan, J. B., Wang, Z. H., Wei, X. Y., et al. (2021). Manure application increases microbiome complexity in soil aggregate fractions: results of an 18-year field experiment. Agriculture Ecosystems & Environment, 307, 107249. https://doi.org/10.1016/j.agee.2020.107249. You, L., Yu, S. Q., Liu, H. Y., Wang, C. T., Zhou, Z. L., Zhang, L., et al. (2019). Effects of biogas slurry fertilization on fruit economic traits and soil nutrients of Camellia oleifera Abel. Plos One, 14(5), e0208289. https://doi.org/10.1371/journal.pone.0208289. Yu, Y. Y., Mo, W. T., Zhu, X. F., Yu, X. L., Sun, J. T., Deng, F. C., et al. (2022). Biodegradation of tricresyl phosphates isomers by a novel microbial consortium and the toxicity evaluation of its major products. Science of the Total Environment, 828, 154415. https://doi.org/10.1016/j.scitotenv.2022.154415. Zedda, M., & Zwiener, C. (2012). Is nontarget screening of emerging contaminants by LC-HRMS successful? A plea for compound libraries and computer tools. Analytical and Bioanalytical Chemistry, 403(9), 2493-2502. https://doi.org/10.1007/s00216-012-5893-y. Zhang, M., He, L. Y., Liu, Y. S., Zhao, J. L., Liu, W. R., Zhang, J. N., et al. (2019). Fate of veterinary antibiotics during animal manure composting. Science of the Total Environment, 650, 1363-1370. https://doi.org/10.1016/j.scitotenv.2018.09.147. Zheng, J., Ma, J., Feng, Z. J., Zhu, C. Y., Wang, J., & Wang, Y. (2020). Effects of biogas slurry irrigation on tomato (Solanum lycopersicum L.) physiological and ecological indexes, yield and quality as well as soil environment. Applied Ecology and Environmental Research, 18(1), 1013-1029. https://doi.org/10.15666/aeer/1801_10131029. Zhu, C. Y., Lai, G. Y., Jin, Y., Xu, D. M., Chen, J. Y., Jiang, X. J., et al. (2022). Suspect screening and untargeted analysis of veterinary drugs in food by LC-HRMS: application of background exclusion-dependent acquisition for retrospective analysis of unknown xenobiotics. Journal of Pharmaceutical and Biomedical Analysis, 210, 114583. https://doi.org/10.1016/j.jpba.2022.114583. Zhu, J. W., Zhao, Y., Fu, L., Liu, Z. M., Li, X. L., & Meng, Z. L. (2020). Application of a simazine degrading bacterium, Arthrobacter ureafaciens XMJ-Z01 for bioremediation of simazine pollution. Water and Environment Journal, 34, 561-572. https://doi.org/10.1111/wej.12560. 行政院農業委員會。農藥查詢。檢自:https://m.coa.gov.tw/Pesticide/Index。 行政院農業委員會(2018)。各月份可供應之國產蔬菜及水果品項參考資料。檢自:https://4b1q.coa.gov.tw/qa_list.php。 行政院農業委員會(2020a)。農產品生產面積統計。檢自: https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx。 行政院農業委員會(2020b)。農產品生產量值統計。檢自:https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx。 行政院農業委員會(2021)。葉菜類。檢自:https://kids.coa.gov.tw/view.php?func=knowledge&subfunc=kids_knowledge&category=A12&id=131。 行政院農業委員會動植物防疫檢疫局。動物用藥品許可證查詢。檢自:https://amdrug2.baphiq.gov.tw/license-query。 行政院農業委員會動植物防疫檢疫局(2015)。動物用重要抗菌劑清單。檢自:https://www.baphiq.gov.tw/ws.php?id=21138。 行政院環境保護署(2022)。畜牧糞尿資源化。檢自:https://water.epa.gov.tw/Public/CHT/Issue/hus_resources.aspx#Result。 李欣蓉、黃雅玲、蘇天明與蕭庭訓(2022)。肥水回田 畜牧糞尿水再利用 政策與效益案例分享。 李敏郎(2009)。植物殺菌劑之使用介紹。 特有生物研究保育中心(2019)。台灣野生植物資料庫。檢自:https://plant.tesri.gov.tw/plant106/WebPlantDetail.aspx?tno=357003030。 國家衛生研究院(2019)。國家攝食資料庫。檢自:https://tnfcds.nhri.edu.tw/。 陳玟伶、林聖淇(2019)。以高解析質譜法篩檢施灌沼液之農地土壤及農作物中的動物用藥品。 陳琦玲、林旻頡、廖崇億(2018)。畜牧廢水農地施肥要領。檢自:https://www.tari.gov.tw/publication3/index-1.asp?Parser=99,9,54,,,,,211。 經濟部水利署(2021a)。109年各標的用水統計年報。檢自:https://wuss.wra.gov.tw/annuals.aspx。 經濟部水利署(2021b)。109年的水文情勢。檢自:https://epaper.wra.gov.tw/Article_Detail.aspx?s=BEBDB93A2CE72911。 衛生福利部食品藥物管理署(2021)。食品營養成分資料庫(新版)。檢自: https://consumer.fda.gov.tw/food/tfnd.aspx?nodeID=178。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83422-
dc.description.abstract畜牧廢水中富含植物生長所需之巨量營養素,可部分取代化學合成肥料再利用於農業灌溉,同時減少畜牧廢水排放造成自然水體污染。然而畜牧廢水中含有的多重小分子有機污染物,可能經由灌溉途徑進入農田土壤,甚至污染農作物。為了全面性地揭示農業環境的污染概況,本研究利用高解析質譜法對土壤及青江菜進行廣泛篩查,探討畜牧廢水再利用對於農業土壤與葉菜中小分子有機污染物分布的影響。 本研究於真實農田栽種青江菜,將農田分為3組,分別灌溉地下水(控制組)、適量畜牧廢水(? 400公噸/公頃/年)、過量畜牧廢水(適量的3倍)。田間試驗總共進行三期,於每期青江菜採收時,同時採集表層土壤(每組n = 6)。均質的土壤與青江菜樣本(5 g)經過溶劑萃取與管柱淨化,以資料獨立擷取模式收集樣本中小分子(m/z 70-1,100)的高解析質譜資訊,並與化學資料庫中超過3,000種化合物(如:藥物、個人保健品、動物用藥品等)的圖譜比對。針對檢出率高(任一組 ? 3次)的污染物,利用同位素標記化學品標準化波峰面積後,以偏最小平方判別法建立污染物整體分布模型,並以交叉驗證與置換試驗結果評估模型的預測能力及可信度。另外利用Kruskal Wallis檢定與Dunn事後檢定觀察個別污染物相對濃度變化。最後針對土壤中因施灌畜牧廢水而改變相對濃度(p < 0.05)的指標污染物進行化學鑑定,與已知物比對標準為相對質量誤差 ? 5 ppm及至少有2個碎片離子與已知化合物圖譜相符。 我們在三期土壤(n = 54)與青江菜(n = 53)中分別檢出94與90種污染物。土壤中污染物整體分布隨畜牧廢水施灌量與栽種採收期次而改變(交叉驗證Q2 ? 0.5且Q2/R2 ? 0.5,置換試驗p < 0.05),有17種污染物(包括:抗生素、防腐劑、除草劑等)的相對濃度隨畜牧廢水施灌量不同具顯著差異(p < 0.05),其中11種污染物於灌溉畜牧廢水之土壤中濃度較高(1.52-7.31倍,p < 0.05),事後檢定結果顯示有8種污染物(如:防腐劑)僅在過量灌溉時濃度顯著增加。有4種抗生素(lincomycin、tiamulin、tilmicosin、oxytetracycline)在控制組中均未檢出,證明畜牧廢水為這些抗生素的唯一污染源。反之,有6種污染物於控制組濃度較高(1.70-4.52倍,p < 0.05),包含農業廣泛使用之除草劑(atrazine及simazine),可能為畜牧廢水改變土壤中微生物相,加速部分污染物降解所致。此外經過三期的栽種試驗,本研究未發現土壤中污染物含量因畜牧廢水重複施灌而增加,豬隻飼育隨季節變化可能是造成各期之間濃度差異的主因。另外在本研究的試驗條件下,亦未發現青江菜中任何污染物的含量,隨著施灌畜牧廢水而增加,可見小分子有機污染物雖然經由灌溉進入土壤,但可能較不易被青江菜吸收。 本研究成功應用高解析質譜法在土壤及青江菜中篩查出多類小分子有機污染物,並證實畜牧廢水灌溉可能導致小分子有機污染物進入土壤,且具有劑量-效應關係。由於多數指標污染物的含量僅在過量灌溉時明顯增加,本研究建議合理化施灌畜牧廢水,並持續監測抗生素與防腐劑等指標污染物於畜牧廢水與農業環境中的變化趨勢,以同時保護環境水體與促進農業永續發展。zh_TW
dc.description.abstractLivestock wastewater is rich in macronutrients that plants require and can therefore irrigate farmland. Such reuse may reduce the use of synthetic fertilizers and the wastewater discharge into natural water. However, multiple small-molecule contaminants (micropollutants) in livestock wastewater may enter the soil and contaminate crops through irrigation. Aiming to reveal the contamination profile in the agricultural environment, this study employed high-resolution mass spectrometry (HRMS) to perform wide-scope screening of micropollutants in soil and pak choi and investigate the effects of livestock wastewater irrigation on the distribution of micropollutants in agricultural soil and a leafy vegetable. Pak choi was planted on real farmland. The farmland was divided into three groups, irrigated with groundwater only (control group), a rational amount (? 400 tons/hectare/year), and an excessive amount (three times the rational) of livestock wastewater, respectively. Three trials were conducted. Pak choi and topsoil samples were collected at each harvest (n = 6 in each group). A homogenized soil or pak choi sample (5 g) was processed through solvent extraction and cartridge cleanup. The HRMS data (m/z 70-1,100) were acquired in data-independent acquisition mode. The molecular features were matched to over 3,000 compounds included in chemical databases, such as pharmaceuticals, personal care products, and veterinary drugs. For micropollutants with high detection rates (? 3 times in any group), their peak areas were normalized to those of isotope-labeled chemicals. The overall distribution trend of micropollutants was illustrated using partial least squares-discriminant analysis (PLS-DA). The model prediction ability and reliability were evaluated with cross-validation and permutation test, respectively. The difference in the relative concentration of each micropollutant was compared using the Kruskal Wallis test and Dunn post hoc test. The micropollutants that the relative concentrations differed (p < 0.05) by the amount of livestock wastewater irrigated were further identified by matching with known compounds according to the criteria: (1) relative mass error ? 5 ppm, and (2) number of identical fragments ? 2. Ninety-four and 90 micropollutants were found in soil (n = 54) and pak choi (n = 53) samples of three harvests, respectively. The distribution of micropollutants in the soil changed with the amount of livestock wastewater and harvests (cross-validation Q2 ? 0.5 and Q2/R2 ? 0.5, permutation test p < 0.05). The relative concentrations of 17 micropollutants, such as antibiotics, preservatives, and herbicides, significantly changed with the wastewater amount (p < 0.05). Among the 17 micropollutants, 11 exhibited higher relative concentrations in the soil irrigated with livestock wastewater (1.52-7.31 times, p < 0.05). The post hoc test results further demonstrated that for eight of the 11 micropollutants, such as preservatives, a significant increase (p < 0.05) was only found after excessive irrigation. Moreover, four antibiotics (lincomycin, tiamulin, tilmicosin, and oxytetracycline) were absent in the control group, indicating that livestock wastewater was the only contamination source. On the contrary, six micropollutants were more abundant in the control group (1.70-4.52 times, p < 0.05) than in the others, including herbicides (atrazine and simazine) commonly used in agriculture. Livestock wastewater may change the microbiota in soil, promoting the degradation of some micropollutants. Nevertheless, after the three trials, none of the micropollutants increased with the repeat application of livestock wastewater. The differences in micropollutant concentrations among harvests could be primarily attributed to the seasonal changes in swine breeding. Under the experimental conditions of this study, there was no observable change in any micropollutant in pak choi after irrigating livestock wastewater. The result may imply that pak choi would not tend to absorb the micropollutants in the soil translocated from livestock wastewater. This study successfully applied HRMS to screening multiclass micropollutants in soil and pak choi. The screening results and the dose-response relationship proved that livestock wastewater irrigation could result in micropollutant contamination in soil. Given that most marker micropollutants only significantly increased after excessive irrigation, we recommend rational fertilization using livestock wastewater. Also, monitoring marker micropollutants, such as antibiotics and preservatives, in livestock wastewater and the agricultural environment is suggested to protect the natural water and promote sustainable agriculture development.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:07:13Z (GMT). No. of bitstreams: 1
U0001-1609202216585700.pdf: 4870257 bytes, checksum: 44119fabd57e49ca05e83f2a284bae8d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 ii 誌謝 iii 中文摘要 iv Abstract vi 目錄 ix 圖目錄 xi 表目錄 xiv 第一章 前言 1 1.1 畜牧廢水之農業循環利用 1 1.2 灌溉畜牧廢水的潛在衝擊 2 1.3 應用高解析質譜法篩查小分子有機污染物 4 1.3.1 傳統小分子有機污染物分析法的缺點 4 1.3.2 以高解析質譜法進行污染物篩查的優勢 4 1.4 多變量分析於環境研究的應用 5 1.5 青江菜為臺灣代表性蔬菜 6 第二章 研究假說、目的與架構 8 2.1 研究假說 8 2.2 研究目的 8 第三章 材料與方法 10 3.1 化學品、實驗儀器設備 10 3.1.1 化學品 10 3.1.2 儀器設備 10 3.2 田間試驗 11 3.3 樣本採集 14 3.4 樣本前處理 16 3.5 儀器分析 19 3.6 疑似物篩查 20 3.7 品質保證與品質管制 29 第四章 結果與討論 31 4.1 樣本概述 31 4.2 分析方法再現性 33 4.3 小分子有機污染物篩查率 37 4.4 小分子有機污染物整體分布 47 4.4.1 土壤中污染物分布與畜牧廢水施灌量的關係 47 4.4.2 土壤中污染物分布與栽種採收期的關係 50 4.4.3 青江菜中污染物分布與畜牧廢水施灌量的關係 56 4.5 土壤中個別小分子有機污染物相對濃度 59 4.5.1 土壤中個別污染物濃度與畜牧廢水施灌量的關係 59 4.5.2 土壤中個別污染物濃度與栽種採收期的關係 74 第五章 結論 78 參考文獻 79
dc.language.isozh-TW
dc.subject疑似物篩查zh_TW
dc.subject畜牧廢水zh_TW
dc.subject農業土壤zh_TW
dc.subject小分子有機污染物zh_TW
dc.subject高解析質譜zh_TW
dc.subjectlivestock wastewateren
dc.subjectsuspect screeningen
dc.subjecthigh-resolution mass spectrometryen
dc.subjectmicropollutanten
dc.subjectagricultural soilen
dc.title畜牧廢水灌溉對土壤與葉菜中小分子有機污染物分布之影響zh_TW
dc.titleMicropollutant distribution in soil and a leafy vegetable irrigated with livestock wastewateren
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李達源(Dar-Yuan Lee),蔡孟勳(Mong-Hsun Tsai),林聖淇(Sheng-Chi Lin)
dc.subject.keyword畜牧廢水,農業土壤,小分子有機污染物,高解析質譜,疑似物篩查,zh_TW
dc.subject.keywordlivestock wastewater,agricultural soil,micropollutant,high-resolution mass spectrometry,suspect screening,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202203483
dc.rights.note未授權
dc.date.accepted2022-09-19
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept食品安全與健康研究所zh_TW
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
U0001-1609202216585700.pdf
  未授權公開取用
4.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved