請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83402
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宗傑(Tsung-Chieh Yang) | |
dc.contributor.author | Chih-Chun Tseng | en |
dc.contributor.author | 曾致鈞 | zh_TW |
dc.date.accessioned | 2023-03-19T21:06:44Z | - |
dc.date.copyright | 2022-10-04 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-20 | |
dc.identifier.citation | 1. Hattab FN, Yassin OM. Etiology and diagnosis of tooth wear: a literature review and presentation of selected cases. Int J Prosthodont 2000;13(2):101-7. 2. Moses CH. Studies of wear, arrangement and occlusion of the dentitions of humans and animals and their relationship to orthodontia, periodontia and prosthodontia. Dent Items Interest 1946;68:953-99. 3. Akpata ES. Molar tooth attrition in a selected group of Nigerians. Community Dent Oral Epidemiol 1975;3(3):132-5. 4. Taylor RM. The significance of tooth wear in Polynesians--a review. Ann Dent 1976;35(1):5-11. 5. Kitasako Y, Ikeda M, Takagaki T, Burrow MF, Tagami J. The prevalence of non-carious cervical lesions (NCCLs) with or without erosive etiological factors among adults of different ages in Tokyo. Clin Oral Investig 2021;25(12):6939-47. 6. Karki S, Alaraudanjoki V, P?kkil? J, Laitala ML, Anttonen V. Different Risk Factors for Erosive Tooth Wear in Rural and Urban Nepal: A National Study. Int J Environ Res Public Health 2021;18(15). 7. Yu T, Tao DY, Lu HX, Zhu JL, Xie CY, Bartlett D, et al. Prevalence and Associated Factors of Tooth Wear in Shanghai. Chin J Dent Res 2021;24(2):95-103. 8. Wetselaar P, Vermaire JH, Visscher CM, Lobbezoo F, Schuller AA. The Prevalence of Tooth Wear in the Dutch Adult Population. Caries Res 2016;50(6):543-50. 9. Attin T, K?rner P, Wegehaupt F. Erosive tooth wear among athletes. Quintessence Int 2021;52(10):912-9. 10. Silva NC, Ventura TMO, Oliveira BP, Dos Santos NM, Pel? VT, Buzalaf MAR, et al. Proteomic profile of the acquired enamel pellicle of professional wine tasters with erosive tooth wear. Eur J Oral Sci 2021;129(3):e12779. 11. W?rner F, Eger T, Simon U, Wolowski A. Periodontal Disease and Tooth Wear in a Sample of German Soldiers with Posttraumatic Stress Disorder. Oral Health Prev Dent 2021;19(1):449-56. 12. Vieira AR. Individual Susceptibility to Erosive Tooth Wear: Wine Tasters. Monogr Oral Sci 2021;30:71-8. 13. Carvalho TS, Lussi A, Jaeggi T, Gambon DL. Erosive tooth wear in children. Monogr Oral Sci 2014;25:262-78. 14. Lussi A, Carvalho TS. Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Monogr Oral Sci 2014;25:1-15. 15. Jaeggi T, Lussi A. Prevalence, incidence and distribution of erosion. Monogr Oral Sci 2014;25:55-73. 16. Van't Spijker A, Rodriguez JM, Kreulen CM, Bronkhorst EM, Bartlett DW, Creugers NH. Prevalence of tooth wear in adults. Int J Prosthodont 2009;22(1):35-42. 17. Schlueter N, Amaechi BT, Bartlett D, Buzalaf MAR, Carvalho TS, Ganss C, et al. Terminology of Erosive Tooth Wear: Consensus Report of a Workshop Organized by the ORCA and the Cariology Research Group of the IADR. Caries Res 2020;54(1):2-6. 18. Shellis RP, Addy M. The interactions between attrition, abrasion and erosion in tooth wear. Monogr Oral Sci 2014;25:32-45. 19. Kanzow P, Wegehaupt FJ, Attin T, Wiegand A. Etiology and pathogenesis of dental erosion. Quintessence Int 2016;47(4):275-8. 20. Wiegand A, Attin T. Occupational dental erosion from exposure to acids: a review. Occup Med (Lond) 2007;57(3):169-76. 21. Watson ML, Burke FJ. Investigation and treatment of patients with teeth affected by tooth substance loss: a review. Dent Update 2000;27(4):175-83. 22. Ortiz AC, Fideles SOM, Pomini KT, Buchaim RL. Updates in association of gastroesophageal reflux disease and dental erosion: systematic review. Expert Rev Gastroenterol Hepatol 2021;15(9):1037-46. 23. Alaraudanjoki V, Laitala ML, Tj?derhane L, Pesonen P, Lussi A, Ronkainen J, et al. Influence of Intrinsic Factors on Erosive Tooth Wear in a Large-Scale Epidemiological Study. Caries Res 2016;50(5):508-16. 24. Bishop K, Kelleher M, Briggs P, Joshi R. Wear now? An update on the etiology of tooth wear. Quintessence Int 1997;28(5):305-13. 25. Rees JS, Somi S. A guide to the clinical management of attrition. Br Dent J 2018;224(5):319-23. 26. Clark GT, Tsukiyama Y, Baba K, Watanabe T. Sixty-eight years of experimental occlusal interference studies: what have we learned? J Prosthet Dent 1999;82(6):704-13. 27. De Boever JA, Carlsson GE, Klineberg IJ. Need for occlusal therapy and prosthodontic treatment in the management of temporomandibular disorders. Part I. Occlusal interferences and occlusal adjustment. J Oral Rehabil 2000;27(5):367-79. 28. Lavigne GJ, Khoury S, Abe S, Yamaguchi T, Raphael K. Bruxism physiology and pathology: an overview for clinicians. J Oral Rehabil 2008;35(7):476-94. 29. Milosevic A, Agrawal N, Redfearn P, Mair L. The occurrence of toothwear in users of Ecstasy (3,4-methylenedioxymethamphetamine). Community Dent Oral Epidemiol 1999;27(4):283-7. 30. Milanlioglu A. Paroxetine-induced severe sleep bruxism successfully treated with buspirone. Clinics (Sao Paulo) 2012;67(2):191-2. 31. Azouzi I, Kalghoum I, Hadyaoui D, Harzallah B, Cherif M, editors. Principles and guidelines for managing tooth wear: a Review. Int Med Care 2018;2(1):1-9. 32. Mahalick JA, Knap FJ, Weiter EJ. Occlusal Wear in Prosthodontics. J Am Dent Assoc 1971;82(1):154-9. 33. Turner KA, Missirlian DM. Restoration of the extremely worn dentition. J Prosthet Dent 1984;52(4):467-74. 34. Alhilou A, Beddis HP, Mizban L, Seymour DW. Basic Erosive Wear Examination: assessment and prevention. Dent Nursing 2015;11(5):262-7. 35. Grippo JO, Simring M, Coleman TA. Abfraction, abrasion, biocorrosion, and the enigma of noncarious cervical lesions: a 20-year perspective. J Esthet Restor Dent 2012;24(1):10-23. 36. Bartlett DW, Shah P. A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion, and abrasion. J Dent Res 2006;85(4):306-12. 37. Johansson A, Johansson AK, Omar R, Carlsson GE. Rehabilitation of the worn dentition. J Oral Rehabil 2008;35(7):548-66. 38. Dietschi D, Argente A. A comprehensive and conservative approach for the restoration of abrasion and erosion. Part I: concepts and clinical rationale for early intervention using adhesive techniques. Eur J Esthet Dent 2011;6(1):20-33. 39. Davies SJ, Gray RJ, Qualtrough AJ. Management of tooth surface loss. Br Dent J 2002;192(1):11-6, 9-23. 40. Dietschi D, Argente A. A comprehensive and conservative approach for the restoration of abrasion and erosion. part II: clinical procedures and case report. Eur J Esthet Dent 2011;6(2):142-59. 41. Mehta SB, Banerji S, Millar BJ, Suarez-Feito JM. Current concepts on the management of tooth wear: part 1. Assessment, treatment planning and strategies for the prevention and the passive management of tooth wear. Br Dent J 2012;212(1):17-27. 42. Dahl BL, Krogstad O. The effect of a partial bite raising splint on the occlusal face height. An x-ray cephalometric study in human adults. Acta Odontol Scand 1982;40(1):17-24. 43. Loomans BAC, Kreulen CM, Huijs-Visser H, Sterenborg B, Bronkhorst EM, Huysmans M, et al. Clinical performance of full rehabilitations with direct composite in severe tooth wear patients: 3.5 Years results. J Dent 2018;70:97-103. 44. Eccles JD. Dental erosion of nonindustrial origin. A clinical survey and classification. J Prosthet Dent 1979;42(6):649-53. 45. Smith BG, Knight JK. An index for measuring the wear of teeth. Br Dent J 1984;156(12):435-8. 46. Lussi A, Schaffner M, Hotz P, Suter P. Dental erosion in a population of Swiss adults. Community Dent Oral Epidemiol 1991;19(5):286-90. 47. Bartlett D, Ganss C, Lussi A. Basic Erosive Wear Examination (BEWE): a new scoring system for scientific and clinical needs. Clin Oral Investig 2008;12 Suppl 1(Suppl 1):S65-8. 48. Vailati F, Belser UC. Classification and treatment of the anterior maxillary dentition affected by dental erosion: the ACE classification. Int J Periodontics Restorative Dent 2010;30(6):559-71. 49. Wetselaar P, Lobbezoo F. The tooth wear evaluation system: a modular clinical guideline for the diagnosis and management planning of worn dentitions. J Oral Rehabil 2016;43(1):69-80. 50. Wulfman C, Koenig V, Mainjot AK. Wear measurement of dental tissues and materials in clinical studies: A systematic review. Dent Mater 2018;34(6):825-50. 51. Pintado MR, Anderson GC, DeLong R, Douglas WH. Variation in tooth wear in young adults over a two-year period. J Prosthet Dent 1997;77(3):313-20. 52. Pesun IJ, Olson AK, Hodges JS, Anderson GC. In vivo evaluation of the surface of posterior resin composite restorations: a pilot study. J Prosthet Dent 2000;84(3):353-9. 53. Folwaczny M, Mehl A, Kunzelmann KH, Hickel R. Determination of changes on tooth-colored cervical restorations in vivo using a three-dimensional laser scanning device. Eur J Oral Sci 2000;108(3):233-8. 54. Esquivel-Upshaw JF, Young H, Jones J, Yang M, Anusavice KJ. In vivo wear of enamel by a lithia disilicate-based core ceramic used for posterior fixed partial dentures: first-year results. Int J Prosthodont 2006;19(4):391-6. 55. Kr?mer N, Kunzelmann KH, Taschner M, Mehl A, Garcia-Godoy F, Frankenberger R. Antagonist enamel wears more than ceramic inlays. J Dent Res 2006;85(12):1097-100. 56. Heintze SD, Zellweger G, Grunert I, Mu?oz-Viveros CA, Hagenbuch K. Laboratory methods for evaluating the wear of denture teeth and their correlation with clinical results. Dent Mater 2012;28(3):261-72. 57. Lohbauer U, Reich S. Antagonist wear of monolithic zirconia crowns after 2 years. Clin Oral Investig 2017;21(4):1165-72. 58. Michou S, Vannahme C, Ekstrand KR, Benetti AR. Detecting early erosive tooth wear using an intraoral scanner system. J Dent 2020;100:103445. 59. Witecy C, Ganss C, W?stmann B, Schlenz MB, Schlenz MA. Monitoring of Erosive Tooth Wear with Intraoral Scanners In vitro. Caries Res 2021;55(3):215-24. 60. Schlenz MA, Schlenz MB, W?stmann B, Jungert A, Ganss C. Intraoral scanner-based monitoring of tooth wear in young adults: 12-month results. Clin Oral Investig 2022;26(2):1869-78. 61. Loomans B, Opdam N, Attin T, Bartlett D, Edelhoff D, Frankenberger R, et al. Severe Tooth Wear: European Consensus Statement on Management Guidelines. J Adhes Dent 2017;19(2):111-9. 62. Muts EJ, van Pelt H, Edelhoff D, Krejci I, Cune M. Tooth wear: a systematic review of treatment options. J Prosthet Dent 2014;112(4):752-9. 63. Mehta SB, Banerji S, Millar BJ, Suarez-Feito JM. Current concepts on the management of tooth wear: part 3. Active restorative care 2: the management of generalised tooth wear. Br Dent J 2012;212(3):121-7. 64. Ormianer Z, Gross M. A 2-year follow-up of mandibular posture following an increase in occlusal vertical dimension beyond the clinical rest position with fixed restorations. J Oral Rehabil 1998;25(11):877-83. 65. Ormianer Z, Palty A. Altered vertical dimension of occlusion: a comparative retrospective pilot study of tooth- and implant-supported restorations. Int J Oral Maxillofac Implants 2009;24(3):497-501. 66. Gross MD, Ormianer Z. A preliminary study on the effect of occlusal vertical dimension increase on mandibular postural rest position. Int J Prosthodont 1994;7(3):216-26. 67. Dahl BL, Krogstad O. Long-term observations of an increased occlusal face height obtained by a combined orthodontic/prosthetic approach. J Oral Rehabil 1985;12(2):173-6. 68. Carlsson GE, Ingervall B, Kocak G. Effect of increasing vertical dimension on the masticatory system in subjects with natural teeth. J Prosthet Dent 1979;41(3):284-9. 69. Abduo J. Safety of increasing vertical dimension of occlusion: a systematic review. Quintessence Int 2012;43(5):369-80. 70. Edelhoff D, Schweiger J, Prandtner O, Trimpl J, Stimmelmayr M, G?th JF. CAD/CAM splints for the functional and esthetic evaluation of newly defined occlusal dimensions. Quintessence Int 2017;48(3):181-91. 71. Edelhoff D, Stimmelmayr M, Schweiger J, Ahlers MO, G?th JF. Advances in materials and concepts in fixed prosthodontics: a selection of possible treatment modalities. Br Dent J 2019;226(10):739-48. 72. Chu FC, Siu AS, Newsome PR, Chow TW, Smales RJ. Restorative management of the worn dentition: 4. Generalized toothwear. Dent Update 2002;29(7):318-24. 73. Mesko ME, Sarkis-Onofre R, Cenci MS, Opdam NJ, Loomans B, Pereira-Cenci T. Rehabilitation of severely worn teeth: A systematic review. J Dent 2016;48:9-15. 74. Bevenius J, Evans S, L'Estrange P. Conservative management of erosion-abrasion: a system for the general practitioner. Aust Dent J 1994;39(1):4-10. 75. Briggs P, Djemal S, Chana H, Kelleher M. Young adult patients with established dental erosion--what should be done? Dent Update 1998;25(4):166-70. 76. Marais JT. Restoring palatal tooth loss with composite resin, aided by increased vertical height. Sadj 1998;53(3):111-9. 77. Darbar UR, Hemmings KW. Treatment of localized anterior toothwear with composite restorations at an increased occlusal vertical dimension. Dent Update 1997;24(2):72-5. 78. Briggs PF, Bishop K, Djemal S. The clinical evolution of the 'Dahl Principle'. Br Dent J 1997;183(5):171-6. 79. Christensen GJ. A new technique for restoration of worn anterior teeth. Oral Health 1996;86(3):25-7. 80. Poyser N, Porter R, Briggs P, Kelleher M. Demolition experts: management of the parafunctional patient: 2. Restorative management strategies. Dent Update 2007;34(5):262-4, 6-8. 81. Gulamali AB, Hemmings KW, Tredwin CJ, Petrie A. Survival analysis of composite Dahl restorations provided to manage localised anterior tooth wear (ten year follow-up). Br Dent J 2011;211(4):E9. 82. Poyser NJ, Porter RW, Briggs PF, Chana HS, Kelleher MG. The Dahl Concept: past, present and future. Br Dent J 2005;198(11):669-76; quiz 720. 83. Maeder M, Pasic P, Ender A, Ozcan M, Benic GI, Ioannidis A. Load-bearing capacities of ultra-thin occlusal veneers bonded to dentin. J Mech Behav Biomed Mater 2019;95:165-71. 84. Ioannidis A, Muhlemann S, Ozcan M, Husler J, Hammerle CHF, Benic GI. Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations. J Mech Behav Biomed Mater 2019;90:433-40. 85. Welbury RR. A clinical study of a microfilled composite resin for labial veneers. Int J Paediatr Dent 1991;1(1):9-15. 86. Hemmings KW, Darbar UR, Vaughan S. Tooth wear treated with direct composite restorations at an increased vertical dimension: results at 30 months. J Prosthet Dent 2000;83(3):287-93. 87. Redman CD, Hemmings KW, Good JA. The survival and clinical performance of resin-based composite restorations used to treat localised anterior tooth wear. Br Dent J 2003;194(10):566-72; discussion 59. 88. Bartlett D, Sundaram G. An up to 3-year randomized clinical study comparing indirect and direct resin composites used to restore worn posterior teeth. Int J Prosthodont 2006;19(6):613-7. 89. Vajani D, Tejani TH, Milosevic A. Direct Composite Resin for the Management of Tooth Wear: A Systematic Review. Clin Cosmet Investig Dent 2020;12:465-75. 90. Gow AM, Hemmings KW. The treatment of localised anterior tooth wear with indirect Artglass restorations at an increased occlusal vertical dimension. Results after two years. Eur J Prosthodont Restor Dent 2002;10(3):101-5. 91. Bartlett D. A proposed system for screening tooth wear. Br Dent J 2010;208(5):207-9. 92. Mehta SB, Banerji S, Millar BJ, Suarez-Feito JM. Current concepts on the management of tooth wear: part 4. An overview of the restorative techniques and dental materials commonly applied for the management of tooth wear. Br Dent J 2012;212(4):169-77. 93. Suh BI. New concepts and technology for processing of indirect composites. Compend Contin Educ Dent 2003;24(8 Suppl):40-2. 94. Nguyen JF, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater 2012;28(5):529-34. 95. Rocca GT, Bonnafous F, Rizcalla N, Krejci I. A technique to improve the esthetic aspects of CAD/CAM composite resin restorations. J Prosthet Dent 2010;104(4):273-5. 96. Kassardjian V, Andiappan M, Creugers NHJ, Bartlett D. A systematic review of interventions after restoring the occluding surfaces of anterior and posterior teeth that are affected by tooth wear with filled resin composites. J Dent 2020;99:103388. 97. Santos MJ, Costa MD, Rubo JH, Pegoraro LF, Santos GC, Jr. Current all-ceramic systems in dentistry: a review. Compend Contin Educ Dent 2015;36(1):31-7; quiz 8, 40. 98. Kelly JR, Benetti P. Ceramic materials in dentistry: historical evolution and current practice. Aust Dent J 2011;56 Suppl 1:84-96. 99. Pjetursson BE, Sailer I, Zwahlen M, H?mmerle CH. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clin Oral Implants Res 2007;18 Suppl 3:73-85. 100. Sailer I, Pjetursson BE, Zwahlen M, H?mmerle CH. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin Oral Implants Res 2007;18 Suppl 3:86-96. 101. Sozio RB. The marginal aspect of the ceramo-metal restoration: the collarless ceramo-metal restoration. Dent Clin North Am 1977;21(4):787-801. 102. Toogood GD, Archibald JF. Technique for establishing porcelain margins. J Prosthet Dent 1978;40(4):464-6. 103. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98(5):389-404. 104. Dong JK, Luthy H, Wohlwend A, Sch?rer P. Heat-pressed ceramics: technology and strength. Int J Prosthodont 1992;5(1):9-16. 105. Giordano R, McLaren EA. Ceramics overview: classification by microstructure and processing methods. Compend Contin Educ Dent 2010;31(9):682-4, 6, 8 passim; quiz 98, 700. 106. Griggs JA. Recent advances in materials for all-ceramic restorations. Dent Clin North Am 2007;51(3):713-27, viii. 107. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: laboratory and clinical performance. Dent Clin North Am 2011;55(2):333-52, ix. 108. Peutzfeldt A. Indirect resin and ceramic systems. Oper Dent 2001;36(3):153-76. 109. Guazzato M, Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont 2002;15(4):339-46. 110. Andersson M, Od?n A. A new all-ceramic crown. A dense-sintered, high-purity alumina coping with porcelain. Acta Odontol Scand 1993;51(1):59-64. 111. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24(3):299-307. 112. Aristidis GA, Dimitra B. Five-year clinical performance of porcelain laminate veneers. Quintessence Int 2002;33:21-30. 113. Brignardello-Petersen R. Ceramic inlays, onlays, and overlays have a high survival rate and a low rate of complications. J Am Dent Assoc 2017;148(4):e3. 114. Edelhoff D, Guth JF, Erdelt K, Brix O, Liebermann A. Clinical performance of occlusal onlays made of lithium disilicate ceramic in patients with severe tooth wear up to 11 years. Dent Mater 2019;35(9):1319-30. 115. Fradeani M, Barducci G, Bacherini L, Brennan M. Esthetic rehabilitation of a severely worn dentition with minimally invasive prosthetic procedures (MIPP). Int J Periodontics Restorative Dent 2012;32(2). 116. Vailati F, Gruetter L, Belser UC. Adhesively restored anterior maxillary dentitions affected by severe erosion: up to 6-year results of a prospective clinical study. Eur J Esthet Dent 2013;8(4). 117. Fradeani M, Barducci G, Bacherini L. Esthetic rehabilitation of a worn dentition with a minimally invasive prosthetic procedure (MIPP). Int J Esthet Dent 2016;11(1):16-35. 118. Vailati F, Bruguera A, Belser U. Minimally invasive treatment of initial dental erosion using pressed lithium disilicate glass-ceramic restorations: a case report. Quintessence Dent Tech 2012;35:65-78. 119. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater 2014;30(5):564-9. 120. Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent 2015;7(4):e495. 121. Campos F, Almeida C, Rippe M, De Melo R, Valandro L, Bottino M. Resin bonding to a hybrid ceramic: effects of surface treatments and aging. Oper Dent 2016;41(2):171-8. 122. Mihali S, Bortun C, Bratu E. Nano-ceramic particle reinforced composite-Lava Ultimate CAD/CAM restorative. Rev Chim 2013;64(4):435-7. 123. Jorquera G, Mahn E, Sanchez J, Berrera S, Prado M, Stange VB. Hybrid Ceramics in Dentistry: A Literature Review. J Clin Res Dent 2018;1(2):1-5. 124. Ab-Ghani Z, Jaafar W, Foo SF, Ariffin Z, Mohamad D. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement. J Conserv Dent 2015;18(5):355. 125. Sismanoglu S, Yildirim-Bilmez Z, Erten-Taysi A, Ercal P. Influence of different surface treatments and universal adhesives on the repair of CAD-CAM composite resins: An in vitro study. J Prosthet Dent 2020;124(2):238 e1- e9. 126. Dirxen C, Blunck U, Preissner S. Clinical performance of a new biomimetic double network material. Open Dent J 2013;7:118. 127. Aboushelib MN, Elsafi MH. Survival of resin infiltrated ceramics under influence of fatigue. Dent Mater 2016;32(4):529-34. 128. Naffah N, Ounsi H, Ozcan M, Bassal H, Salameh Z. Evaluation of the adaptation and fracture resistance of three cad-cam resin ceramics: An in vitro study. J Contemp Dent Pract 2019;20(5):571-6. 129. Swain M, Coldea A, Bilkhair A, Guess P. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater 2016;32(1):34-42. 130. Sorrentino R. In Vitro Analysis of the Fracture Resistance of Cad-Cam Cerasmart Molar Crowns with Different Occlusal Thickness. Biomed J Sci & Tech Res 2018;3(1). 131. Spitznagel FA, Boldt J, Gierthmuehlen PC. CAD/CAM Ceramic Restorative Materials for Natural Teeth. J Dent Res 2018;97(10):1082-91. 132. Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater 2016;32(1):34-42. 133. El-Damanhoury HM, Haj-Ali RN, Platt JA. Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Oper Dent 2015;40(2):201-10. 134. Argyrou R, Thompson GA, Cho SH, Berzins DW. Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials. J Prosthet Dent 2016;116(3):397-403. 135. Shembish FA, Tong H, Kaizer M, Janal MN, Thompson VP, Opdam NJ, et al. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent Mater 2016;32(4):499-509. 136. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 2013;29(4):419-26. 137. Stawarczyk B, Liebermann A, Eichberger M, Guth JF. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed Mater 2015;55:1-11. 138. Lebon N, Tapie L, Vennat E, Mawussi B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent 2015;114(2):236-47. 139. Tsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent 2007;35(12):897-902. 140. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 2015;114(4):587-93. 141. Magne P, Carvalho AO, Bruzi G, Giannini M. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process. J Prosthet Dent 2015;114(4):574-9. 142. Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater 2016;32(11):e275-e83. 143. Mormann WH, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness. J Mech Behav Biomed Mater 2013;20:113-25. 144. Okamura K, Koizumi H, Kodaira A, Nogawa H, Yoneyama T. Surface properties and gloss of CAD/CAM composites after toothbrush abrasion testing. J Oral Sci 2019;61(2):358-63. 145. Tinastepe N, Turkes E, Kazazoglu E. Comparative approach to analyse the effects of different surface treatments on CAD/CAM resin nanoceramics–resin composite repair bond strength. Biotech & Biotechnological Equip 2017;32(1):142-9. 146. Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater 2014;30(9):954-62. 147. Johnson AC, Versluis A, Tantbirojn D, Ahuja S. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers. J Prosthodont Res 2014;58(2):107-14. 148. Acar O, Yilmaz B, Altintas SH, Chandrasekaran I, Johnston WM. Color stainability of CAD/CAM and nanocomposite resin materials. J Prosthet Dent 2016;115(1):71-5. 149. Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J Dent Res 2016;95(5):487-95. 150. Egbert JS, Johnson AC, Tantbirojn D, Versluis A. Fracture strength of ultrathin occlusal veneer restorations made from CAD/CAM composite or hybrid ceramic materials. Oral Sci Int 2015;12(2):53-8. 151. Abu-Izze FO, Ramos GF, Borges ALS, Anami LC, Bottino MA. Fatigue behavior of ultrafine tabletop ceramic restorations. Dent Mater 2018;34(9):1401-9. 152. Oudkerk J, Eldafrawy M, Bekaert S, Grenade C, Vanheusden A, Mainjot A. The one-step no-prep approach for full-mouth rehabilitation of worn dentition using PICN CAD-CAM restorations: 2-yr results of a prospective clinical study. J Dent 2020;92:103245. 153. Zimmermann M, Koller C, Reymus M, Mehl A, Hickel R. Clinical Evaluation of Indirect Particle-Filled Composite Resin CAD/CAM Partial Crowns after 24 Months. J Prosthodont 2018;27(8):694-9. 154. Spitznagel FA, Scholz KJ, Strub JR, Vach K, Gierthmuehlen PC. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin Oral Investig 2018;22(5):1973-83. 155. Co?kun E, Aslan YU, ?zkan YK. Evaluation of two different CAD-CAM inlay-onlays in a split-mouth study: 2-year clinical follow-up. J Esthet Restor Dent 2020;32(2):244-50. 156. Tunac AT, Celik EU, Yasa B. Two-year performance of CAD/CAM fabricated resin composite inlay restorations: A randomized controlled clinical trial. J Esthet Restor Dent 2019;31(6):627-38. 157. Fasbinder DJ, Neiva GF, Heys D, Heys R. Clinical evaluation of chairside Computer Assisted Design/Computer Assisted Machining nano-ceramic restorations: Five-year status. J Esthet Restor Dent 2020;32(2):193-203. 158. Souza J, Fuentes MV, Baena E, Ceballos L. One-year clinical performance of lithium disilicate versus resin composite CAD/CAM onlays. Odontology 2021;109(1):259-70. 159. Tekce N, Fidan S, Tuncer S, Kara D, Demirci M. The effect of glazing and aging on the surface properties of CAD/CAM resin blocks. J Adv Prosthodont 2018;10(1):50-7. 160. Sagsoz O, Demirci T, Demirci G, Sagsoz NP, Yildiz M. The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics. J Adv Prosthodont 2016;8(6):417-22. 161. Hickel R, Roulet J-F, Bayne S, Heintze SD, Mj?r IA, Peters M, et al. Recommendations for conducting controlled clinical studies of dental restorative materials. Science Committee Project 2/98--FDI World Dental Federation study design (Part I) and criteria for evaluation (Part II) of direct and indirect restorations including onlays and partial crowns. J Adhes Dent 2007;9:121-47. 162. Hickel R, Peschke A, Tyas M, Mjor I, Bayne S, Peters M, et al. FDI World Dental Federation - clinical criteria for the evaluation of direct and indirect restorations. Update and clinical examples. J Adhes Dent 2010;12(4):259-72. 163. Zimmermann M, Ender A, Mehl A. Local accuracy of actual intraoral scanning systems for single-tooth preparations in vitro. J Am Dent Assoc 2020;151(2):127-35. 164. Schmidlin PR, Filli T, Imfeld C, Tepper S, Attin T. Three-year evaluation of posterior vertical bite reconstruction using direct resin composite--a case series. Oper Dent 2009;34(1):102-8. 165. Attin T, Filli T, Imfeld C, Schmidlin PR. Composite vertical bite reconstructions in eroded dentitions after 5·5 years: a case series. J Oral Rehabil 2012;39(1):73-9. 166. Cvar JF, Ryge G. Reprint of criteria for the clinical evaluation of dental restorative materials. 1971. Clin Oral Investig 2005;9(4):215-32. 167. Marquillier T, Dom?jean S, Le Clerc J, Chemla F, Gritsch K, Maurin JC, et al. The use of FDI criteria in clinical trials on direct dental restorations: A scoping review. J Dent 2018;68:1-9. 168. G?th JF, Erdelt K, Keul C, Burian G, Schweiger J, Edelhoff D. In vivo wear of CAD-CAM composite versus lithium disilicate full coverage first-molar restorations: a pilot study over 2 years. Clin Oral Investig 2020;24(12):4301-11. 169. Rodriguez JM, Austin RS, Bartlett DW. In vivo measurements of tooth wear over 12 months. Caries Res 2012;46(1):9-15. 170. Etman MK, Woolford M, Dunne S. Quantitative measurement of tooth and ceramic wear: in vivo study. Int J Prosthodont 2008;21(3):245-52. 171. Esquivel-Upshaw JF, Rose WF, Jr., Barrett AA, Oliveira ER, Yang MC, Clark AE, et al. Three years in vivo wear: core-ceramic, veneers, and enamel antagonists. Dent Mater 2012;28(6):615-21. 172. Kumar S, Keeling A, Osnes C, Bartlett D, O'Toole S. The sensitivity of digital intraoral scanners at measuring early erosive wear. J Dent 2019;81:39-42. 173. Winkler J, Gkantidis N. Trueness and precision of intraoral scanners in the maxillary dental arch: an in vivo analysis. Sci Rep 2020;10(1):1172. 174. Charalambous P, O'Toole S, Bull T, Bartlett D, Austin R. The measurement threshold and limitations of an intra-oral scanner on polished human enamel. Dent Mater 2021;37. 175. Alada? A, O?uz D, ??mleko?lu ME, Akan E. In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment. J Adv Prosthodont 2019;11(2):120-7. 176. Gkantidis N, Dritsas K, Katsaros C, Halazonetis D, Ren Y. 3D Method for Occlusal Tooth Wear Assessment in Presence of Substantial Changes on Other Tooth Surfaces. J Clin Med 2020;9(12). 177. Gkantidis N, Dritsas K, Ren Y, Halazonetis D, Katsaros C. An accurate and efficient method for occlusal tooth wear assessment using 3D digital dental models. Sci Rep 2020;10(1):10103. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83402 | - |
dc.description.abstract | 實驗目的: 本研究目的為觀察磨耗齒列使用彈性奈米陶瓷做為?復材料時,在長期追蹤下(最高達18個月),其臨床表現及病患滿意度。並觀察此材料存活率、成功率,及併發症出現機率、呈現方式、嚴重程度、易發於哪些口腔環境及生理習慣(例如有無不良習癖)、修補後之臨床表現等,並比較此材料與自然齒質之磨耗程度差異。 材料與方法: 自2020年2月起,本研究陸續招募37位(11名男性,26名女性,平均年齡53.65±12.27歲)被診斷為齒質磨耗且有?復需求之受試者,確認其參加之意願後,以彈性奈米陶瓷(Cerasmart; GC Corporation, Japan)製作?復體,?復體總數82個。?復體裝戴完成後之定期回診時間為?復治療後第1個月、?復治療後第3個月、?復治療後第6個月、?復治療後第12個月、?復治療後第18個月(平均追蹤月份術13 ± 5.22)。本研究以Visual Analogue Scale(VAS)主觀調查問卷評估受試者術前及術後各追蹤時間之滿意度。客觀評估方面,以修正後的F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria評估量表,由三位經過校正的術者之一評估?復體裝戴後各追蹤時間之臨床表現,另以口內掃描機(TRIOS 3 Intraoral Scanner, 3Shape, Denmark)取得?復體裝戴後各追蹤時間之掃描記錄,並利用掃描檔案之疊合來比較?復體本身、對咬之自然齒質、及參考之自然齒質,三者之磨耗量。 經過追蹤後,整理各回診時間所得之VAS主觀問卷(內涵6項評估項目)及FDI客觀量表(內涵三大類共15項評估項目)得分及?復體與自然對咬牙之磨耗量。以統計軟體(SAS 9.4)進行統計分析,藉由Pair-T test進行各項目在不同時間點之比較;並基於FDI客觀評估量表之結果,計算追蹤時間內的成功率、存活率,並繪出Kaplan-Meier存活曲線。磨耗量分析方面,以Anova及Pair-T test比較?復體、對咬之自然齒質、及參考之自然齒質,各追蹤時間之磨耗量差異。 實驗結果: 在此追蹤期內,在VAS主觀調查問卷方面,6項評估項目在術後各追蹤時間皆顯著比術前高。外型之術後各追蹤時間呈現緩升。顏色、表面光澤於3個月時下降,之後緩升。對黏膜之刺激、清潔容易度大致持平,於18個月時略降。咀嚼效率於6個月前呈現緩升,6個月後呈緩降。在FDI客觀評估量表方面,三大類共15項評估項目中,染色程度略為增加,顏色穩定度較低,磨耗之FDI評分有顯著增加。?復體、對咬牙、參考牙於各追蹤時間之磨耗量皆介於30至50?m,三者之間於各追蹤時間皆無統計上顯著差異(p < 0.05),各追蹤時間之前後比較也無統計上之顯著差異(p < 0.05)。37位受試者共82個?復體中,有5位受試者共6個?復體出現併發症,形式皆為可修復或不可修復之?復體缺損。此5位受試者中,3位為重度磨耗者,另1位有緊咬及單側咀嚼(?復體側)之習癖。此6個?復體中,4個為可修復之小範圍缺損(其中1個修磨量不足),2個為需要置換之大範圍缺損。整體之3個月成功率為98.78%,6個月成功率為97.5%,12個月成功率為94.59%,18個月成功率為85.76%,整體存活率為96.6%。 結論: 使用彈性奈米陶瓷作為磨耗齒列之?復材料在此研究之追蹤期中有可接受的受試者滿意度、臨床結果、與高存活率。在嚴重磨耗之受試者與有特殊習癖之受試者則出現併發症之可能性略高,其中大多為可修復之小範圍缺損,極少數為不可修復之大範圍缺損。在此長期追蹤中,染色情形略為增加,顏色表現則隨著時間下降,磨耗量則隨著時間增加,與對咬自然牙及參考牙之磨耗量與磨耗速率皆相似。基於本實驗之果,可得之此材料使用於磨耗齒列仍有可接受之臨床結果。 | zh_TW |
dc.description.abstract | Objective: The aim of this in vivo study is to observe the long term (18 months maximum) prosthetic treatment outcome of flexible nanoceramic used on worn dentition, and assess the clinical performance, patient satisfaction; calculate the success rate and survival rate; observe the complication mode and the risk factors ; and compare the wear amount between hybrid ceramic and natural tooth structure. Materials and Methods: Since February 2020, thirty-seven participants (11 males, 26 females, average age 53.65±12.27) with the need of prosthetic treatment, and were diagnosed as “worn dentition” were enrolled in the current study. After confirming the participants’ willingness to participate in our study, prosthetic treatments were done with flexible nanoceramic (Cerasmart; GC Corporation, Japan) (NTUH IRB number: 201912143RIPB), with a total of 82 restorations. After the restorations were delivered, the participants were asked to return on specific points of time (1 month after delivery, 3 months after delivery, 6 months after delivery, 12 months after delivery, and 18 months after delivery, average follow-up time 13 ± 5.22 months). The participants’ satisfaction (subjective evaluation) were recorded with Visual Analogue Scale (VAS) questionnaire (including 6 indices) before delivery, at the time of delivery, and on each follow-up appointments. The clinical performance (objective evaluation) of the restorations were evaluated according to the modified F?d?ration Dentaire Internationale (FDI) World Dental Federation clinical criteria (including 3 genres, 15 indices totally) on each follow-up appointments. Intra-oral scanning (TRIOS 3; 3Shape, Denmark) was done on each follow-up appointments. The wear amount of the restorations and the antagonists were compared with that of natural tooth structure. SAS software (SAS 9.4) was used for data analysis. The score of VAS (subjective) and FDI (objective) indices of each different follow-up appointments were compared with Pair-T test. P < 0.05 was considered as statistically different. Survival rate and success rate were calculated, and Kaplan-Meier survival curve was sketched. The wear amount of the restoration, antagonist, and the reference natural tooth were compared with Anova and Pair-T test. Results: During the follow-up interval, the VAS scores of the participants’ satisfaction after delivery were significantly higher than pre-treatment. The scores of morphology slowly ascend. The scores of color and surface luster decrease at 6 months follow-up, but slowly ascend after that. The scores of mucosal irritation and cleansability don’t change much after delivery, but decrease at 18 months follow-up. The scores of chewing efficiency ascend before 6 months follow-up, descend after 6 months follow-up. The clinical performance recorded with FDI scores shows a slight increase in staining, moderate decrease in color stability, evident increase in wear amount. The wear amount of the restoration, antagonist, and reference tooth of all follow-up interval were between 30 and 50 ?m. Among the 37 participants and 82 restorations, complications occurred on 5 participants and 6 restorations. The complications were all presented as fracture of restoration, 4 restorations were repairable, 2 of them were not. Among the 5 participants, 3 were classified as severe tooth wear, 1 was recorded as parafunction (clenching, prosthesis side chewing only). 3 months success rate was 98.78%, 6 months success rate was 97.5%, 12 months success rate was 94.59%, 18 months success rate was 85.76%, the overall survival rate was 96.6%. Conclusion: During the follow-up interval, restorations fabricated with flexible nanoceramics showed good participant satisfaction, good clinical performance, and high survival rate. Complications tends to occur on participants with severe tooth wear or parafunction, most of these complications were repairable, very few of these complications were non-repairable. After 18 months, staining slightly increases, color stability moderately decreases, wear amount increases. When compared with opposing natural tooth structure and reference tooth, flexible nanoceramic shows similar wear amount and wear rate. According to the results, flexible nanoceramic presented acceptable long term clinical performance, on participants with worn dentition. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:06:44Z (GMT). No. of bitstreams: 1 U0001-1309202223225100.pdf: 7989735 bytes, checksum: 924f8875d94dc7ff702f309e13617eaf (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 I 中文摘要 II Abstract V 圖表目錄 XIII 第一章、文獻回顧 1 1. 磨耗 1 2. 磨耗之診斷及風險因素 1 3. 磨耗齒列之臨床表徵 4 4. 磨耗程度之分級 6 5. 磨耗程度之定量 9 6. 磨耗齒列之治療建議 13 7. ?復材料之選擇 16 7.1. 複合樹脂 16 7.2. 陶瓷(ceramic) 19 7.3. 複合陶瓷(hybrid ceramic) 25 第二章、研究動機與目的 32 第三章、材料與方法 33 1. 實驗計畫與規程 33 實驗流程圖: 34 2. 材料選擇 35 3. 受試者之篩選 35 4. ?復治療前之資料收集 36 5. 治療規程 38 5.1. 資料收集 38 5.2. 牙齒修磨及印製正式模型 38 5.3. 臨時?復體之製作 38 5.4. 正式?復體之製作 39 5.5. 正式?復體之裝戴 40 6. ?復治療後之資料收集 41 7. 受試者滿意度調查(VAS主觀調查問卷) 42 8. ?復體臨床表現之評估(FDI客觀評估量表) 43 9. ?復體磨耗之評估 45 9.1. 口內掃描機之校正 45 9.2. 納入磨耗分析之條件 45 9.3. 磨耗分析 46 10. 併發症(complications) 48 10.1. 併發症發生後之修復 48 10.2. 併發症發生後之追蹤 49 11. 資料分析與統計 50 11.1. VAS主觀調查問卷 50 11.2. FDI客觀評估量表 50 第四章、實驗結果 51 1. Visual Analogue Scale(VAS)主觀調查問卷 53 1.1. 外型 53 1.2. 顏色 53 1.3. 表面光澤 54 1.4. 對黏膜之刺激性 54 1.5. 咀嚼效率 54 1.6. 清潔容易度 54 2. F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria客觀評估量表 55 2.1. 美觀性評估 55 2.2. 功能性評估 57 2.3. 生物性評估 59 3. 磨耗量 60 4. 併發症 61 5. 成功率與存活率 62 第五章、討論 64 1. 客觀評估之方式 65 2. Visual Analogue Scale主觀調查問卷 66 3. F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria客觀評估量表 68 4. 磨耗量 69 5. 併發症 71 6. 複合陶瓷材料之體內實驗 72 7. 小結 73 第六章、誤差與限制 75 第七章、結論 76 第八章、未來展望 77 表 一、各廠牌產品成分。 78 表 二、VAS主觀滿意度調查問卷 第一頁。 79 表 三、VAS主觀滿意度調查問卷 第二頁。 80 表 六、VAS主觀滿意度調查問卷 第五頁。 83 表 七、VAS主觀滿意度調查問卷 第六頁。 84 表 八、VAS主觀滿意度調查問卷 第七頁。 85 表 九、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria 美觀性。 86 表 十、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria 功能性。 87 表 十一、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria 生物相容性。 88 表 十二、FDI客觀評估量表 第一頁。 89 表 十三、FDI客觀評估量表 第二頁。 90 表 十四、Visual Analogue Scale(VAS)主觀調查問卷,各時間點之平均值,及各時間點之比較,p value < 0.05。 91 表 十五、Visual Analogue Scale(VAS)主觀調查問卷,各時間點之比較,p value < 0.05。(承上) 92 表 十六、Visual Analogue Scale(VAS)主觀調查問卷,各時間點之比較,p value < 0.05。(承上) 93 表 十七、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria客觀評估量表,各回診時間之平均值。 94 表 十八、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria客觀評估量表,各回診時間之比較,p value < 0.05。 95 表 十九、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria客觀評估量表,各回診時間之比較(承上),p value < 0.05。 96 表 二十、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria客觀評估量表,各回診時間之比較(承上),p value < 0.05。 97 表 二十一、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria客觀評估量表,各回診時間之比較(承上),p value < 0.05。 98 表 二十二、?復體、對咬牙、參考牙,各追蹤時間之總磨耗量。p value < 0.05。 99 表 二十三、?復體、對咬牙、參考牙,各追蹤時間之總磨耗量與前一次之比較。p value < 0.05。 99 表 二十四、已發生之可修復併發症相關資訊。 100 表 二十五、已發生之不可修復併發症相關資訊。 100 表 二十六、各追蹤時間及整體之成功率。Type 1為前牙,Type 2為小臼齒,Type 3為大臼齒。 100 表 二十七、各追蹤時間及整體之存活率。Type 1為前牙,Type 2為小臼齒,Type 3為大臼齒。 100 圖 一、印模材料(Express XT Light Body, Express XT Putty Soft; 3M ESPE, USA)。 101 圖 二、超硬石膏(Silky-Rock; Whip Mix, USA)。 101 圖 三、口內掃描機(Trios 3 Intraoral Scanner; 3Shape, Denmark)。 102 圖 四、複合樹脂(BEAUTIFIL II; Shofu, Japan)。 102 圖 五、聚甲基丙烯酸甲酯(TOKUSO CUREFAST; Tokuyama Dental Corporation, Japan)。 103 圖 六、聚羧酸鹽黏合劑黏著劑(LIVCARBO; GC Corporation, Japan)。 103 圖 七、複合樹脂(Clip F, VOCO GmbH, Germany)。 104 圖 八、桌上掃描機(E3 Lab Scanner; 3Shape, Denmark)。 104 圖 九、複合陶瓷料塊(Cerasmart; GC Corporation, Japan)。 105 圖 十、銑床機(N4+; vhf Inc, Germany)。 105 圖 十一、氧化鋁(HI ALUMINAS; Shofu, Japan)。 106 圖 十二、樹脂染色劑(Optiglaze color; GC Corporation, Japan)。 106 圖 十三、咬合紙(Arti-Fol Articulating Film 8?, Dr. Jean Bausch GmbH & Co. KG, Germany)。 107 圖 十四、矽膠壓力點顯示劑(Fit tester; Tokuyama Dental Ltd., Japan)。 107 圖 十五、矽烷偶合劑(silane coupling agent)(G-Multi PRIMER; GC Corporation, Japan)。 108 圖 十六、牙菌斑顯示劑(disclosing agent)(Scodyl Dental Disclosing Solution; Beauteeth Company Ltd., Taiwan)。 108 圖 十七、酸蝕劑(phosphoric acid)(Gel Etchant; Kerr Corporation, USA)。 109 圖 十八、黏著劑(bonding agent)(G-Premio BOND; GC Corporation, Japan)。 109 圖 十九、雙聚合模式啟動劑(dual cure activator)(G-Premio BOND DCA; GC Corporation, Japan)。 110 圖 二十、樹脂黏合劑(resin cement)(G-CEM LinkForce; GC Corporation, Japan)。 110 圖 二十一、對?復體之黏著面進行噴砂處理後,表面呈現霧狀 111 圖 二十二、清洗?復體移除殘留之氧化鋁顆粒後,浸泡於酒精中並置入超音波振盪機內 111 圖 二十三、於?復體之黏著面塗佈矽烷偶合劑(silane coping agent)(G-Multi PRIMER; GC Corporation, Japan) 112 圖 二十四、於牙齒黏著表面塗佈磷酸酸蝕劑 112 圖 二十五、將黏著劑(bonding agent)(G-Premio BOND; GC Corporation, Japan)與雙聚合模式啟動劑(dual cure activator)(G-Premio BOND DCA; GC Corporation, Japan)以1:1比例混合調拌 113 圖 二十六、將圖 二十五調拌後之混合液均勻塗佈於牙齒黏著表面 113 圖 二十七、輕吹至黏著劑之溶劑揮發 114 圖 二十八、將樹脂黏合劑(resin cement)(G-CEM LinkForce; GC Corporation, Japan)均勻塗佈於?復體之黏著表面 114 圖 二十九、將?復體完全置放於欲?復之牙齒上 115 圖 三十、移除溢出之多餘黏合劑 115 圖 三十一、充分照光聚合 116 圖 三十二、?復體黏合完成照 116 圖 三十三、咬合調整至均勻且和諧之咬合接觸 117 圖 三十四、重複掃描十一次,將後面十次與第一次分別作疊合,設定疊合之公差為31.5?m。十次的疊合結果皆顯示為全綠色,表示本實驗所使用之口內掃描機之公差在設定之公差範圍內。 117 圖 三十五、初步疊合(initial alignment)後之結果。 118 圖 三十六、最佳擬合疊合(best fit alignment)後所得之兩者差異。 118 圖 三十七、將藍色區域分割之結果,以此區域外之範圍做第二次最佳擬合疊合。 119 圖 三十八、修復組(repair kit)(GC Repair Kit; GC Corporation, Japan)。 119 圖 三十九、受試者之男女分佈。 120 圖 四十、?復體之齒位分佈。 120 圖 四十一、?復體之類型分佈。 121 圖 四十二、?復體對咬牙之材質分佈。 121 圖 四十三、受試者之特殊習癖分佈,因可能有多項習癖,故此處之總數超過總受試者人數。 122 圖 四十四、Visual Analogue Scale(VAS)主觀調查問卷分數平均值長條圖。各項目之a, b, c字母,相同字母表示沒有顯著差異。p value < 0.05。 123 圖 四十五、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria,美觀性之項目。各項目之a, b, c字母,相同字母表示沒有顯著差異。p value < 0.05。 124 圖 四十六、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria,功能性之項目。各項目之a, b, c字母,相同字母表示沒有顯著差異。p value < 0.05。 125 圖 四十七、F?d?ration Dentaire Internationale(FDI) World Dental Federation clinical criteria,生物性之項目,皆無統計上之顯著差異。p value > 0.05。 126 圖 四十八、?復體、對咬牙、參考牙,各追蹤時間之總磨耗量,皆無統計上之顯著差異。p value > 0.05。 127 圖 四十九、1號受試者之左下第二大臼齒於?復治療後18個月出現遠心頰側咬頭之局部缺損。 127 圖 五十、(承上)經修補後,仍可正常行使功能。 128 圖 五十一、11號受試者之左下第一大臼齒於?復治療後18個月追蹤時出現遠心頰側咬頭之局部缺損。 128 圖 五十二、(承上)經修補後,仍可正常行使功能。 129 圖 五十三、29號受試者於?復治療後12個月追蹤時出現遠心顎側咬頭之局部缺損。 129 圖 五十四、(承上)經修補後,仍可正常行使功能。 130 圖 五十五、23號受試者於?復治療後3個月追蹤時出現遠心之局部缺損。 130 圖 五十六、23號受試者於?復治療後6個月追蹤時出現遠心頰側咬頭之局部缺損。 131 圖 五十七、23號受試者於?復治療後12個月追蹤時出現頰側之大範圍缺損。 131 圖 五十八、27號受試者於?復治療後12個月出現顎側之大範圍缺損。 132 圖 五十九、?復體之修復皆按照廠商之建議流程進行。以鑽石鑽針將欲修復之表面粗糙化,於彈性奈米陶瓷修復面塗佈矽烷偶合劑,於牙齒及彈性奈米陶瓷修復面塗佈黏著劑並照光聚合,最後以複合樹脂進行修補並照光聚合。 132 圖 六十、以Kaplan-Meier Curve呈現整體之存活率。 133 圖 六十一、以Kaplan-Meier Curve呈現各組別之存活率。Type 1為前牙,Type 2為小臼齒,Type 3為大臼齒。 133 | |
dc.language.iso | zh-TW | |
dc.title | 使用彈性奈米陶瓷材料修復磨耗齒列之長期臨床表現與磨耗評估-臨床調查 | zh_TW |
dc.title | Evaluation of the long-term clinical outcome and wear condition on worn dentition using flexible nanoceramic material – a clinical investigation | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林立德(Li-Deh Lin),洪志遠(Chi-Yuan Hong) | |
dc.subject.keyword | 複合陶瓷,彈性奈米陶瓷,牙齒磨耗,磨耗齒列,VAS量表,FDI標準,磨耗量,磨耗量測量,Kaplan-Meier存活曲線,成功率,存活率,併發症, | zh_TW |
dc.subject.keyword | Hybrid ceramic,Flexible nanoceramic,Tooth wear,Worn dentition,VAS scale,FDI criteria,Wear amount,Wear amount measurement,Wear compare with natural tooth structure,Wear of natural dentition,Kaplan-Meier survival curve,Success rate,Survival rate,Complication, | en |
dc.relation.page | 146 | |
dc.identifier.doi | 10.6342/NTU202203378 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-21 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1309202223225100.pdf 目前未授權公開取用 | 7.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。